
Reward Augmentation in Reinforcement Learning
for Testing Distributed Systems

(paper presentation)

Bijayan Ray
MCS202403

May 7, 2025

https://arxiv.org/pdf/2409.02137

Contents

Example of distributed system testing

Problem statement

Agent and Environment RL Setup

Main ideas of RL based approaches

NegRL

BonusMaxRL

WayPointRL

Experiments: Intuition with exploring cube world example

Remarks and similar works

References

Example of distributed system testing I

▶ Concurrent Programming is a technique where two or more
processes start to run in an interleaved manner through
context switch and complete in an overlapping time period by
sharing the resource.

▶ Multi-threaded programs with shared memory: Atomic actions
are read and write (possibly user defined) to shared memory,
synchronization is done by locking of shared resource

▶ Distributed systems: No shared memory, actor/machines
communicate with each other via message passing, action is
triggered via message, synchronization also done by message
passing.

▶ Control non determinism: Control non determinism occurs
when more than one machine becomes enabled.

▶ Data non determinism: Data non determinism is used to
generate uncontrolled scalar values e.g. model for handling
user given input.

Example of distributed system testing II

▶ Stateful techniques fully model the system’s state space
(agent states and network) and explore reachable states
through explicit methods like BMC or SPIN.

▶ Stateless techniques, such as Controlled Concurrency Testing
(CCT), dynamically control and explore interleavings without
modeling the full state space, aiming to enhance coverage by
systematically testing different action schedules.

Example of distributed system testing III

Figure: Simple messaging example with 3 workers

▶ Take the program that involves two workers, A and B, sending
messages to a third worker, C.

▶ When A sends the message its denoted by 0 and when B
sends the message its denoted by 1.

Example of distributed system testing IV

▶ Worker C has a constant string η ∈ {0, 1}∗ and a counter m
initialized to 0.

▶ If the i-th message (0 when A sends it and 1 when B sends it)
received by C matches the i-th character of η, m is
incremented. Otherwise, m is set to -1 and is never updated
again.

▶ The program reaches a bad configuration state if m = n.

▶ We test if the program reach a bad configuration.

▶ Note that for any string η of length n, there is exactly one
way of scheduling between A and B that causes C to raise an
error after n messages.

▶ The effectiveness of each scheduler is measured by the B-%
value, which is defined as the percentage of buggy program
runs in a sufficiently large number of runs.

Example of distributed system testing V

▶ In case of Random scheduling, we schedule A and B randomly
to message C, thereby C keeps on getting a random string in
{0, 1}n after n messages.

▶ For any string η of length n the Random scheduler has 1
2n

chance of producing that buggy string, as it must choose
between workers A and B exactly according to η.

▶ Although the Random scheduler has similar B-% values for
different strings, its effectiveness is poor due to the
exponential dependence on the string length.

Example of distributed system testing VI

▶ The QL scheduler exposes the bug for each string with a
much higher B-% compared to the other two schedulers.

▶ QL takes advantage from observing the state of the program
(counter m) during exploration, and optimizes for coverage.

▶ For this problem, we set it up to observe just the value of
counter m of worker C and as m is set to -1 on a wrong
scheduling choice, it is forced to learn scheduling decisions
that keep incrementing m, which leads to the bug.

Problem statement I

Finding optimal search policies in distributed systems as a
reinforcement learning (RL) problem and propose new

algorithms for biased exploration of the program state space
towards semantically significant states for better coverage

and bug detection.

Agent and Environment RL Setup I

Figure: Reinforcement Learning problem

▶ The environment is a program whose configurations form the
set Σ.

▶ A user-defined abstraction function H : Σ→ S maps program
configurations to abstract states, representing the agent’s
observation of the environment.

Agent and Environment RL Setup II

▶ The reward function R : S × A→ R is fixed as a constant
value of −1 for all state-action pairs since that ensures the
Q-values to decrease over time for seen state-action pairs thus
increasing exploration (for maximizing Q-values).

▶ The agent uses a Q-learning based scheduler that selects
actions using a softmax policy over Q-values.

▶ The agent maintains a partial Q-value map Q : S × A→ R,
initialized to 0 for unseen state-action pairs.

▶ The agent’s action selection is based on Q-values and it
updates the Q-values based on abstracted past schedules.

Main ideas of RL based approaches I

▶ NegRL: The reward function is chosen as −1 to increase
exploration.

▶ BonuxMaxRL: Keeps track of number of visits to a state while
exploration.

▶ WayPointRL: Biases exploration towards potentially buggy
states.

NegRL I

Algorithm 1: GetNext-QL

Input: Set of actions {a1, . . . , an}, Configuration σ
1 s ← H(σ);
2 foreach a ∈ {a1, . . . , an} do
3 if Q(s, a) is undefined then
4 Q(s, a)← 0 x; // Initialize Q-value of new (s, a) pair to 0

5 D ← ⟨⟩ ; // Probability distribution over actions
6 foreach i ∈ {1, . . . , n} do
7 D(i)← eQ(s,ai)

n∑
j=1

e
Q(s,aj)

;

8 i ← Sample(D);
9 return ai ;

Algorithm 2: PrepareNext-QL

Input: Schedule ℓ = ⟨σ0
a1−→ σ1, . . . , σn−1

an−→ σn⟩
1 ℓ̂← H(ℓ) ; // Set ℓ̂ to ⟨s0

a1−→ s1
a2−→ . . .

an−→ sn⟩
2 foreach i ∈ {n, . . . , 1} do
3 maxQ← max

a
Q(si , a);

4 Q(si−1, ai)← (1− α) · Q(si−1, ai) + α · [R(si−1, ai) + γ ·maxQ];

NegRL II
▶ Take H be a user-defined function H : Σ→ S , where Σ is the

set of program configurations and S is a set of abstract states.

▶ H(σ) represents the observation the agent makes when the
environment is in configuration σ.

▶ H defines an abstraction over the configuration space,
implemented as a hashing function over part of the program’s
configuration.

▶ The reward function R : S × A→ R is fixed to be a constant
−1, i.e., R(s, a) = −1 for all (s, a).

▶ The constant negative reward ensures Q-values decrease over
time for seen state-action pairs.

▶ For a schedule ℓ = ⟨σinit
a1−→ σ1

a2−→ . . .
an−→ σn⟩, H(ℓ) denotes

the abstracted schedule where each σi is replaced by
si = H(σi).

▶ The QL scheduler is parameterized by H and uses it in its
GetNext and PrepareNext procedures.

NegRL III

▶ It maintains a partial map Q : S × A→ R representing
Q-values for abstract state-action pairs.

▶ GetNext takes input configuration σ and n enabled actions.

▶ It computes s = H(σ), and initializes Q(s, a) to 0 for any
action a not yet in Q.

▶ A probability distribution D is computed over actions using
the Softmax policy based on Q(s, a) values.

▶ An action is selected by sampling from D and returned.

▶ PrepareNext updates Q-values based on the abstracted
previous schedule ℓ̂.

▶ For each (si−1, ai) in ℓ̂, Q-values are updated.

▶ The Softmax policy then reduces the probability of selecting
actions that lead to known states, encouraging exploration of
new states.

BonusMaxRL I
Algorithm 3: BonusMaxRL: Positive reward based exploration algorithm

Input: α, γ, ϵ
1 def init ():
2 Q(s, a)← 1, V (s, a)← 0 for all s ∈ S, a ∈ A

3 def newEpisode ():
4 trace← [] ; // reset the trace

5 def pick (s, actions):
6 x ∼ U(0, 1) ; // sample uniformly at random from (0,1)
7 if x < ϵ then
8 return a ∼ U{actions} ; // uniform random action
9 else
10 return argmaxa Q(s, a)

11 def recordStep (state, action, newState,):
12 trace← append(trace, (state, action, newState))

13 def processEpisode ():
14 for i = length(trace), . . . , 1 do
15 (s, a, s′)← trace[i]
16 t ← V (s, a) + 1
17 V (s, a)← t

18 r ← 1
t

19 if i < length(trace) then
20 Q(s, a)← (1− α) · Q(s, a) + α ·max (r , γ ·maxa′ Q(s′, a′))
21 else
22 Q(s, a)← (1− α) · Q(s, a) + α ·max(r , 0)

BonusMaxRL II

▶ The algorithm implements the BonusMaxRL exploration
policy, with hyperparameters α, γ, and ϵ as input.

▶ The action-selection mechanism pick uses the standard
ϵ-greedy strategy:
▶ With probability ϵ, a random action is chosen.
▶ With probability 1− ϵ, the action with the highest Q-value is

selected.

▶ The processEpisode function updates the policy based purely
on exploration bonuses, as no external rewards are provided.

▶ The policy maintains a visit count table V (s, a) for each
state-action pair.

▶ The internal exploration reward is computed as 1
t , where

t = V (s, a) is the number of visits to (s, a).

▶ This reward is high for new states and decreases as the pair is
revisited more often.

BonusMaxRL III

▶ For every transition (s, a, s ′), the visit count V (s, a) is
incremented.

▶ The Q-value update rule is given by:

Q(s, a) = (1− α) · Q(s, a) + α ·max

(
r , γ ·max

a′
Q(s ′, a′)

)
▶ This update differs from traditional Q-learning by using max

instead of a sum, focusing only on the best reachable future
state.

▶ The update rule favors transitions that lead to new states and
devalues over-visited states, pushing Q-values toward 0 over
time in stale regions.

▶ This method does not guarantee optimal policy learning in
environments with explicit reward functions.

BonusMaxRL IV

▶ In particular, BonusMaxRL may favor shorter paths that reach
novelty faster, even if longer paths have higher cumulative
rewards.

▶ Despite potential sub-optimality, BonusMaxRL is effective in
distributed system testing, as it aligns with the goal of
aggressive state exploration.

WayPointRL I

Algorithm 4: WaypointRL: init, newEpisode, and pick methods

Input: predicates = {pred1, . . . , predn}, oneTime ∈ {⊤,⊥}, α, γ, ϵ
1 def init ():
2 for i = 1 . . . n do
3 Qi (s, a)← 1, Vi (s, a)← 0 ; // for all s ∈ S, a ∈ A

4 def newEpisode (initialState):
5 trace← [], reached← ⊥
6 for i = n . . . 1 do
7 if predicatei (initialState) = ⊤ then
8 activePredicate← i
9 break

10 def pick (s, actions):
11 x ∼ U(0, 1)
12 if x < ϵ then
13 return a ∼ U(actions)
14 else
15 i ← activePredicate
16 return argmaxa Qi (s, a)

WayPointRL II

Algorithm 5: WaypointRL: recordStep method

Input: predicates = {pred1, . . . , predn}, oneTime ∈ {⊤,⊥}, α, γ, ϵ
1 def recordStep (s, a, s′,):
2 if reached = ⊥ then
3 for i = length(predicates) . . . 1 do
4 if predicatei (s

′) = ⊤ then
5 nextActivePredicate← i
6 break

7 if nextActivePredicate = n ∧ oneTime = ⊤ then
8 reached← ⊤
9 else
10 nextActivePredicate← n

11 trace← append(trace, (s, a, s′, activePredicate, nextActivePredicate))
12 activePredicate← nextActivePredicate

WayPointRL III
Algorithm 6: WaypointRL: processEpisode method

1 def processEpisode ():
2 for i = 1 . . . length(trace) do
3 (s, a, s′, p, p′)← trace[i]
4 if p = n then
5 reachedFinal← ⊤, reachedStep← i
6 break

7 for i = length(trace) . . . 1 do
8 (s, a, s′, p, p′)← trace[i]
9 t ← Vp(s, a) + 1

10 Vp(s, a)← t

11 explR← 1
t
; // visits-based bonus

12 if p = p′ ∨ p = n then
13 if i < length(trace) then
14 Qp(s, a)← (1−α) ·Qp(s, a)+α ·max(explR, γ ·maxa′ Qp(s′, a′))

15 else
16 Qp(s, a)← (1− α) · Qp(s, a) + α ·max(explR, 0)

17 else
18 if p′ > p then
19 progR← 2

20 else
21 progR← 0

22 if reachedFinal then
23 d ← reachedStep− i − 1
24 finalR← γd · 2
25 Qp(s, a)← (1− α) · Qp(s, a) + α ·max(explR, γ · (progR + finalR))

WayPointRL IV

▶ WaypointRL uses a sequence of predicates {pred1, . . . , predn}
to guide exploration. predn defines the target space, while
pred1 is always true.

▶ A separate exploration Q-table is maintained for each
predicate. At each timestep, the highest-indexed true
predicate becomes the active predicate p.

▶ The agent selects actions using the Q-table of p and stores
transitions (s, a, s ′, p, p′) in an episode trace, where p′ is the
active predicate in s ′.

▶ The processEpisode method updates Q-values using the trace.
It:
▶ checks if the final predicate predn was reached and stores the

index,
▶ performs backward updates for each step (s, a, s ′, p, p′) in the

trace.

WayPointRL V

▶ If p = p′, it uses the BonusMaxRL update rule:

Qp(s, a)← (1−α)Qp(s, a) +α ·max(explR, γ ·max
a′

Qp(s
′, a′))

where explR = 1
t with t being the visit count of (s, a).

▶ If p ̸= p′, and p′ > p, a progress bonus progR = 2 is added. If
the final predicate was reached later in the trace, an
additional reward is given:

finalR = γd · 2 where d = reachedStep− i − 1

▶ The final update in this case becomes:

Qp(s, a)← (1−α)Qp(s, a)+α·max(explR, γ ·(progR+finalR))

WayPointRL VI

▶ Hyperparameters include α (learning rate), γ (discount
factor), and ϵ (for ϵ-greedy action selection). A boolean flag
oneTime indicates if once predn is reached, all further states
are considered in the target space.

▶ If oneTime = ⊤, reaching predn sets reached← ⊤, and all
subsequent transitions use the Q-table of predn.

▶ The init method initializes one Q-table per predicate. The
newEpisode method resets the trace and reached flag, and
determines the initial active predicate.

▶ The pick method performs ϵ-greedy action selection using the
Q-table of the current active predicate.

▶ The recordStep method updates the active predicate for the
next state and records the transition, setting the reached flag
if the target predicate is encountered.

Experiments: Intuition with exploring cube world example I

Experiments: Intuition with exploring cube world example
II

Experiments: Intuition with exploring cube world example
III

Experiments: Intuition with exploring cube world example
IV

▶ The environment is a 3D cube world with a state space
defined as S = (g ,w , b, d), where g is the cube index, and w ,
b, d are spatial coordinates within each cube.

▶ Agents start at (0, 0, 0, 0) and can take actions: up, down,
left, right, above, below, into, and reset depth.

▶ into action moves the agent to the next cube via doors at

specific positions (e.g., (0, 5, 5, d)
into−−→ (1, 0, 0, 0) for any d),

modeling irreversible transitions.

▶ reset depth returns the agent to depth zero, modeling state
resets.

▶ With 6 cubes of size 10× 10× 6, agents run for a fixed
number of steps per episode across multiple episodes.

Experiments: Intuition with exploring cube world example
V

▶ BonusMaxRL achieves greater coverage than random
exploration but struggles to reach distant cubes within the
episode budget.

▶ Adding a bonus reward for reaching cube 3 is ineffective if the
agent never gets there, illustrating the limits of naive reward
strategies.

▶ Introducing an abstraction by removing depth reduces state
space and improves cube coverage but sacrifices depth
granularity.

▶ WaypointRL splits the task into: reaching the target cube and
exploring it thoroughly.

▶ WaypointRL uses separate Q-tables and reward functions for
each task, allowing targeted and fine-grained exploration.

Experiments: Intuition with exploring cube world example
VI

▶ Intermediate waypoints (e.g., reaching cubes 1 and 2) help
guide the agent to cube 3 efficiently.

▶ WaypointRL generalizes the reward approach via target
predicates associated with Q-tables, achieving both efficient
navigation and full-depth exploration.

▶ This setup is like distributed systems where the state
transition depend on message interleavings and events like
group decisions or timeouts.

Experiments: Intuition with exploring cube world example
VII

Remarks and similar works I

▶ Systematic exploration techniques have scalability issues due
to large state spaces in distributed systems.

▶ Model-based testing also struggles to enumerate all possible
failure scenarios.

▶ Randomized techniques are effective by inducing arbitrary
failures like node crashes and network partitions.

▶ Other random methods include:
▶ Probabilistic guarantees for bug detection.
▶ Partial order reduction to reduce state space.
▶ Standard fuzzing via input mutation.

▶ Verification approaches aim to eliminate testing by proving
correctness or generating code from verified specs, but:
▶ Rarely used in production.
▶ Bugs can still occur at the interfaces between verified and

unverified components.

▶ Reinforcement learning for testing :

Remarks and similar works II

▶ Q-learning has been applied to concurrent and distributed
systems.

▶ Custom reward mechanisms encourage exploration but may
not bias exploration effectively.

▶ RL has also been used in input generation, parameter tuning,
and control system failure induction.

▶ Reward-free exploration:
▶ Theoretical guarantees over state coverage using decaying

reward augmentation.
▶ Requires polynomial (5th degree) number of episodes in

state/action space size.
▶ Ineffective in practice for large-scale systems and hard to bias

exploration.

▶ The paper’s approach: Extends pure exploration with
semantic reward augmentation using programmer knowledge,
enabling effective biasing.

▶ Hierarchical RL:

Remarks and similar works III

▶ Splits tasks into subtasks with learned policies and global
coordination.

▶ The paper’s method instead uses fixed-priority waypoints
without policy reuse.

▶ Reward machines offer structured reward specification and
decomposition:
▶ Enable hierarchical learning and efficient policy optimization.
▶ Not applicable since the rewards depend on actual system

transitions, which are not decoupled from environment.

▶ Temporal logic goals in RL:
▶ Use automata to define goals and subgoals as intermediate

automaton states.
▶ Simulation of transitions based on temporal subgoals is

infeasible with real-world systems due to limited
instrumentation.

References

▶ Andrea Borgarelli, Constantin Enea, Rupak Majumdar, and
Srinidhi Nagendra. Reward Augmentation in Reinforcement
Learning for Testing Distributed Systems. Proceedings of the
ACM on Programming Languages, 8(OOPSLA2):1928–1954,
2024.

▶ Suvam Mukherjee, Pantazis Deligiannis, Arpita Biswas, and
Akash Lal. Learning-based controlled concurrency testing.
Proceedings of the ACM on Programming Languages,
4(OOPSLA):1–31, 2020.

Thank You!

	Example of distributed system testing
	Problem statement
	Agent and Environment RL Setup
	Main ideas of RL based approaches
	NegRL
	BonusMaxRL
	WayPointRL
	Experiments: Intuition with exploring cube world example
	Remarks and similar works
	References

