Algorithmic Coding theory presentation:
Noisy interpolating sets for low degree polynomials
Dvir Shpilka
[DS08]

Bijayan Ray

November 27, 2023

Contents

(1) The problem
(2) Main theorems
(3) Preliminaries

4 Proofs of Main Theorem

The problem I

Definition 1.1

$S=\left(a_{1}, \cdots a_{m}\right) \in\left(\mathbb{F}^{n}\right)^{m}$ be a list of points in \mathbb{F}^{n}. We say that S is an (n, d, ϵ)-Noisy interpolating set (NIS) if there exists an algorithm A_{S} such that for every $q \in F_{d}\left[x_{1}, \cdots x_{n}\right]$ and for every vector $e=\left(e_{1}, \cdots e_{m}\right) \in \mathbb{F}^{m}$ such that $\left|\left\{i \in[m]: e_{i} \neq 0\right\}\right| \leq \epsilon \cdot m$, the algorithm A_{S}, when given an input the list of values $\left(q\left(a_{1}\right)+e_{1}, \cdots, q\left(a_{m}\right)+e_{m}\right)$, outputs the polynomial q (as a list of coefficients).

We say that S is a proper NIS if the points $a_{1}, \cdots a_{m}$ are distinct. If S is a proper NIS we can treat it as a subset $S \subset \mathbb{F}^{n}$.

The problem II

Definition 1.2

$S=\left(S^{(n)}\right)_{n \in \mathbb{N}}$ be a sequence such that for every $n \in \mathbb{N}$ we have that $S^{(n)}$ is an ($n, d, \epsilon)$-NIS. We say that S has an efficient interpolation algorithm if there exists a polynomial time algorithm $M(n, L)$ that takes an input an integer n and a list L of values in \mathbb{F} such that the restriction $M(n, \cdot)$ has the same behaviour as the algorithm $A_{S_{(n)}}$ described above.

Problem 1.1

The problem is to compute the NIS of a set of d-degree polynomials efficiently.

Main theorems I

Definition 2.1

(1) Set addition

$$
A+B=\{a+b \mid a \in A, b \in B\}
$$

(2) $A \boxplus B$ is the list defined as:

$$
A \boxplus B=\left(a_{i}+b_{j}\right)_{i \in[m], j \in[l]} \in\left(\mathbb{F}^{n}\right)^{m l}
$$

Theorem 2.1 (NIS)

Consider $0<\epsilon_{1} \leq 1 / 2$ be a real number and S_{1} be an ($n, 1, \epsilon_{1}$)-NIS and for each $d>1$ take $S_{d}=S_{d-1} \boxplus S_{1}$. Then for every $d>1$ the set S_{d} is an $\left(n, d, \epsilon_{d}\right)$-NIS with $\epsilon_{d}=(\epsilon / 2)^{d}$. Moreover, if S_{1} has an efficient interpolation algorithm, then so does S_{d}.

Main theorems II

Corollary 2.1 (NIS)

For every prime field \mathbb{F} and for every $d>0$ there exists an $\epsilon>0$ and a collection $\mathcal{S}=\left(S^{n}\right)_{n \in \mathbb{N}}$ such that for every $n \in \mathbb{N}, S^{(n)}$ is an (n, d, ϵ)-NIS and such that \mathcal{S} has an efficient interpolation algorithm. Moreover, for each $n \in \mathbb{N}$ we have $\left|S^{(n)}\right|=O\left(n^{d}\right)$ and it is possible to generate the set $S^{(n)}$ in time poly(n).

Main theorems III

Definition 2.2 (Condition \star_{k})

Consider $S \in \mathbb{F}^{n}, S=\{0\}$ and for each $d \geq 1$ consider $S_{d}=S_{d-1}+S$. Consider $k>0$ be an integer. For each $x \in S_{d}$ consider

$$
N_{d}(x)=\left|\left\{b \in S \mid s \in S_{d-1}+b\right\}\right|
$$

We say that S satisfies condition \star_{k} if for every $0<d \leq k$ we have

$$
\left|\left\{x \in S_{d} \mid N_{d}(x)>d\right\}\right| \leq\left|S_{d-2}\right|
$$

condition satisfied.

Main theorems IV

Theorem 2.2 (Proper-NIS)

Consider $0<\epsilon_{1} \leq 1 / 2$ be a real number and $k>0$ be an integer. There exists a constant C_{0}, depending only on ϵ and k, such that for all $n>C_{0}$ the following holds: For every proper $\left(n, 1, \epsilon_{1}\right)$-NIS set S_{1} and for each $d>1$ denote $S_{d}=S_{d-1}+S_{1}$. Suppose S_{1} satisfies the condition \star_{s} (definition 2.2). Then for every $1<d \leq k$ the set S_{d} is a (proper) $\left(n, d, \epsilon_{d}\right)$-NIS with

$$
\epsilon_{d}=\frac{1}{d!} \cdot\left(\frac{\epsilon_{1}}{3}\right)^{d}
$$

Moreover, if S_{1} has an efficient interpolation algorithm, then so does S_{d}.

Proof.

We don't include the proof of this theorem in this presentation slides, however one can refer the main paper [DS08]: proof of theorem 2 section.

Preliminaries I

Lemma 3.1

Take $q \in \mathbb{F}_{d}\left[x_{1}, \cdots x_{n}\right]$ and q_{d} be its homogenous part of degree d and a, b are elements of \mathbb{F}^{n} then

$$
q(x+a)-q(x+b)=\partial_{q_{d}}(x, a-b)+E(x)
$$

where $\operatorname{deg}(E) \leq d-2$. In other words, the directional derivative of q_{d} in direction $a-b$ is given by the homogenous part of degree $d-1$ in the difference $q(x+a)-q(x+b)$

Proof (sketch):

- Note that it is enough to prove the lemma for the case q is a monomial of degree d and then the result follows from linearity and from the fact that derivatives of all monomials in q are of degree smaller than d at most $d-2$.

Preliminaries II

- Then taking $M(x)=\prod_{i} x_{i}^{c_{i}}$ and observing

$$
M(x+a)=M(x)+\sum_{i} a_{i} \cdot \frac{\partial M}{\partial x_{i}}(x)+E_{1}(x) \quad \text { with } \operatorname{deg}\left(E_{1}\right) \leq d-2
$$

- And then considering $M(x+b)-M(x+a)$ the result follows.

Preliminaries III

Lemma 3.2

Take $q \in \mathbb{F}_{d}\left[x_{1}, \cdots x_{n}\right]$. Given the vector of partial derivatives $\Delta_{q}(x)$, it is possible to reconstruct q in polynomial time.

Proof (sketch):

- The idea is to go over all monomials of degree $\leq d$ and find out the coefficients they have in q as: For every monomial M, take i the first index such that x_{i} appears in the M with positive degree.
- Consider $\frac{\partial q}{\partial x_{i}}(x)$ and check whether the coefficient of the derivative of that monomial is zero or not.
- To get the coefficient in q we divide that by the degree of x_{i} in the monomial.

Preliminaries IV

Lemma 3.3

C is an $[m, n, k]$ code over \mathbb{F} such that C has an efficient decoding algorithm that can correct an α-fraction of errors. For $i \in[m]$ suppose $a_{i} \in \mathbb{F}^{n}$ be the ith row of the generating matrix of C. Then,
(1) $S^{0}=\left(a_{1}, \cdots, a_{m}, \overline{0}, \cdots \overline{0}\right) \in\left(\mathbb{F}^{n}\right)^{2 m}$. Then S^{0} is an $(n, 1, \alpha / 2)$-NIS with an efficient interpolation algorithm.
(2) $S=\left(a_{1}, \cdots, a_{m}\right) \in\left(\mathbb{F}^{n}\right)^{m}$ and suppose that the maximal hamming weight of a codeword in C is smaller than $(1-2 \alpha) \cdot m$. Then S is an ($n, 1, \alpha$)-NIS with an efficient interpolation algorithm.

Proof (sketch):
(1) The idea is to first take a degree of one polynomial q. We describe the interpolation algorithm for S^{0}.

Preliminaries V

- First look at the values of $q(x)$ on the last m points(the zeroes). The majority of these values will be $q(0)$ which will give us the constant term in q.
- Take $q_{1}(x)=q(x)-q(0)$ is the linear part of q and this reduces to the problem of recovering the homogeneous linear function q_{1} form its values on $\left(a_{1}, \cdots, a_{m}\right)$ with at most $\alpha \cdot m$ errors.
- This task is achieved using the decoding algorithm for C, since the vector $\left(q_{1}\left(a_{1}\right), \cdots, q\left(a_{m}\right)\right)$ is just the encoding of the vector of coefficients of q_{1} with the code C.
(2) In this take $\left(v_{1}, \cdots v_{m}\right) \in \mathbb{F}$ be the list of input values given $\left(v_{i}=q\left(a_{i}\right)\right.$ for a $1-\alpha$ fraction of the is).
- Then we go over all $p=|\mathbb{F}|$ possible choices for $q(0)$ and for each "guess" $c \in \mathbb{F}$ do: Subtract c from the values ($v_{1}, \cdots v_{m}$) and then use the decoding algorithm of C to decode the vector $V_{c}=\left(v_{1}-c, \cdots, v_{m}-c\right)$.

Preliminaries VI

- Clearly, for $c=q(0)$ this procedure will give the list of coefficients (without constant terms) of $q(x)$ as output.
- So we are just required to find which invocation of the decoding algorithm is the correct one.
- Say the decoding algorithm, on input V_{c}, returns a linear polynomial $q_{c}(x)$ (there is no constant term).
- We can then check to see whether $q_{c}\left(a_{i}\right)+c$ is indeed equal to v_{i} for a $1-\alpha$ fraction of the is.
- If we can show that this test succeeds only for a single $c \in \mathbb{F}$ then we are done and the lemma shall follow.
- So to prove that, suppose on the contrary that there are two linear polynomials $q_{c}(x)$ and $q_{c^{\prime}}(x)$ such that both agree with a fraction $1-\alpha$ of the input values.

Preliminaries VII

- This mean s that there exist two codeword $W_{c}, W_{c^{\prime}} \in \mathbb{F}^{m}$ in C such that $\operatorname{dist}\left(V_{c}, W_{c}\right) \leq \alpha \cdot m$ and $\operatorname{dist}\left(V_{c^{\prime}}, W_{c^{\prime}}\right) \leq \alpha \cdot m$ which implies that

$$
\operatorname{dist}\left(V_{c}-V_{c^{\prime}}, W_{c}-W_{c^{\prime}}\right) \leq 2 \alpha \cdot m
$$

- Now the vectors $V_{c}-V_{c^{\prime}}$ has the value $c^{\prime}-c \neq 0$ in all of its coordinates and so we get that the hamming weight of the codeword $W_{c}-W_{c^{\prime}}$ is at least $(1-2 \alpha) \cdot m$ contradicting the properties of C.

Proof of Main theorem

Proof of Theorem 2.1 I

- Take $S_{1}=\left(a_{1}, \cdots a_{m}\right) \in\left(\mathbb{F}^{n}\right)^{m}$ be an $\left(n, 1, \epsilon_{1}\right)$-NIS of size $\left|S_{1}\right|=m$ and $S_{d-1}=\left(b_{1}, \cdots b_{r}\right) \in\left(\mathbb{F}^{n}\right)^{r}$ be an $\left(n, d-1, \epsilon_{d-1}\right)$-NIS of size $\left|S_{d-1}\right|=r$ and A_{d-1} and A_{1} be interpolation algorithms for $S_{d_{1}}$ and S_{1} respectively.
- Take $S_{d}=S_{d-1} \boxplus S_{1}$. We shall prove the theorem 2.1 by showing that S_{d} has an interpolation algorithm that makes at most a polynomial number of calls to A_{d-1} and to A_{1} and can "correct" a fraction

$$
\epsilon_{d}=\frac{\epsilon_{1} \cdot \epsilon_{d-1}}{2}
$$

of errors.

- We shall describe the algorithm A_{d} and prove its correctness simultaneously (the number of calls to A_{d-1} and A_{1} will clearly be polynomial as we shall see).

Proof of Theorem 2.1 II

- So fix, $q \in \mathbb{F}_{d}\left[x_{1}, \cdots x_{n}\right]$ to be some degree d polynomial and q_{d} be its homogeneous part of degree d.
- Now denote $S_{d}=\left(c_{1}, \cdots c_{m r}\right)$ where each $c_{i} \in \mathbb{F}^{n}$. We also denote by $e=\left(e_{1}, \cdots e_{m r}\right) \in \mathbb{F}^{m r}$ the list of "errors", so that $|\{i \in[m r] \mid e \neq 0\}| \leq \epsilon_{d} \cdot m r$.
- The list S_{d} can be partitioned in a natural way into all the "shifts" of the list S_{d-1}. Now define for each $i \in[m]$ the list $T_{i}=\left(b_{1}+a_{i}, \cdots b_{r}+a_{i}\right) \in\left(\mathbb{F}^{n}\right)^{r}$. We thus have that S_{d} is the concatenation of $T_{1}, \cdots T_{m}$.
- We can also partition the list of errors in a similar way into m lists $e^{(1)}, \ldots e^{(m)}$, each of length r such that $e^{(i)}$ is the list of errors corresponding to the points in T_{i}.

Proof of Theorem 2.1 III

- We say that an index $i \in[m]$ is good if the fraction of errors in T_{i} is at most $\epsilon_{d-1} / 2$, otherwise we say that i is bad. In other words, i is good if

$$
\left|\left\{j \in[r] \mid e_{j}^{(i)} \neq 0\right\}\right| \leq\left(\epsilon_{d-1} / 2\right) \cdot\left|T_{i}\right|=\left(\epsilon_{d-1} / 2\right) \cdot r
$$

- Now take $E=\{i \in[m] \mid i$ is bad $\}$. From the bound on the total number of errors we get that

$$
|E| \leq \epsilon_{1} \cdot m
$$

The algorithm is divided into three steps.

- The idea is, in the first step we look at all pairs (T_{i}, T_{j}) and from each one attempt to reconstruct, using A_{d-1}, the directional derivative $\partial_{q_{d}}\left(x, a_{i}-a_{j}\right)$. We will claim that this step gives the correct output for most pairs $\left(T_{i}, T_{j}\right)$.

Proof of Theorem 2.1 IV

- In the next step we take all the directional derivatives obtained in the first step and from them reconstruct, using A_{1}, the vector of derivatives $\Delta_{q_{d}}(x)$ and so also recover $q_{d}(x)$.
- In the last step of the algorithm we recover the polynomial $q_{\leq d-1}(x)=q(x)-q_{d}(x)$, again using A_{d-1} which shall give us

$$
q(x)=q_{\leq d-1}(x)+q_{d}(x)
$$

Proof of Theorem 2.1 V

The algorithm
Step 1 - Take $i \neq j \in[m]$ be two good indices as defined above, we shall show how to reconstruct $\partial_{q_{d}}\left(x, a_{i}-a_{j}\right)$ from the values in T_{i}, T_{j}.

- Recall that we have two lists of values

$$
L_{i}=\left(q\left(b_{1}+a_{i}\right)+e_{1}^{(i)}, \cdots q\left(b_{r}+a_{i}\right)+e_{r}^{(i)}\right)
$$

and

$$
L_{j}=\left(q\left(b_{1}+a_{j}\right)+e_{1}^{(j)}, \cdots q\left(b_{r}+a_{j}\right)+e_{r}^{(j)}\right)
$$

- Now taking the the differences we get that

$$
\begin{aligned}
L_{i j}=L_{i}-L_{j}=\left(q \left(b_{1}+\right.\right. & \left.a_{i}\right)-q\left(b_{1}+a_{j}\right)+e_{1}^{(i)}-e_{1}^{(j)} \\
& \left.\cdots, q\left(b_{r}+a_{i}\right)-q\left(b_{r}+a_{j}\right)+e_{r}^{(i)}-e_{r}^{(j)}\right)
\end{aligned}
$$

Proof of Theorem 2.1 VI

and observe that since i and j are both good we have that the terms $e_{l}^{(i)}$ and $e_{l}^{(j)}$ is non zero for at most $\epsilon_{d-1} \cdot r$ values of $I \in[r]$.

- Therefore, we can use algorithm A_{d-1} to recover the degree $d-1$ polynomials $Q_{i j}(x):=q\left(x+a_{i}\right)-q\left(x+a_{j}\right)$ from the list $L_{i j}$.
- From lemma 3.1 we see that throwing away all monomials of degree less than $d-1$ in $Q_{i j}$ leaves us with $\partial_{q_{d}}\left(x, a_{i}-a_{j}\right)$.
- On carrying out the first step for all pairs $\left(T_{i}, T_{j}\right)$ and obtaining $\binom{m}{2}$ homogeneous polynomials of degree $d-1$, we denote them by $R_{i j}(x)$.
- Now since we know that i and j are both good we get

$$
R_{i j}(x)=\partial_{q_{d}}\left(x, a_{i}-a_{j}\right)
$$

If either i or j is bad, we do not know anything about $R_{i j}(x)$.

Proof of Theorem 2.1 VII

- In this step we take the polynomials $R_{i j}$ obtained in the first step and recover from them the polynomials $\Delta_{q_{d}}(x)$ (after which using lemma 3.2 shall give us $\left.q_{d}(x)\right)$.
- We start by giving some notations: The set of degree $d-1$ monomials is indexed by the set

$$
I_{d-1}=\left\{\left(\alpha_{1}, \cdots, \alpha_{n}\right) \mid \alpha_{i} \geq 0, \alpha_{1}+\cdots+\alpha_{n}=d-1\right\}
$$

- We denote $x^{\alpha}=\prod_{i} x_{i}^{\alpha_{i}}$ and $\operatorname{coef}\left(x^{\alpha}, h\right)$ the coefficient of the monomial x^{α} in a polynomial $h(x)$. Take $\alpha \in I_{d-1}$ and define the degree 1 polynomial

$$
U_{\alpha}\left(y_{1}, \cdots y_{n}\right)=\sum_{l=1}^{n} \operatorname{coef}\left(x^{\alpha}, \frac{\partial q_{d}}{\partial x_{l}}\right) y_{l}
$$

Proof of Theorem 2.1 VIII

- Now observe that

$$
\begin{align*}
\partial_{q_{d}}\left(x, a_{i}-a_{j}\right) & =\sum_{l=1}^{n}\left(a_{i}-a_{j}\right)_{l} \cdot \frac{\partial q_{d}}{\partial x_{l}}(x) \tag{1}\\
& =\sum_{\alpha \in I_{d-1}} x^{\alpha} \cdot U_{\alpha}\left(a_{i}-a_{j}\right)
\end{align*}
$$

- Therefore, for each pair i, j such that i and j are good we can get the (correct) values $U_{\alpha}\left(a_{i}-a_{j}\right)$ for all $\alpha \in I_{d_{1}}$ by observing the coefficients of $R_{i j}$.
- Now fix some $\alpha \in I_{d-1}$ and using the procedure implied above for all pairs $i \neq j \in[m]$, we get $\binom{m}{2}$ values $u_{i j} \in \mathbb{F}$ such that if i and j are good then

$$
u_{i j}=U_{\alpha}\left(a_{i}-a_{j}\right)
$$

- We now recover U_{α} from $u_{i j}$ s. Repeating this procedure for all $\alpha \in I_{d-1}$ shall give $\Delta_{q_{d}}(x)$.

Proof of Theorem 2.1 IX

- Since α is fixed apriori, we denote $U(y)=U_{\alpha}(y)$. We have a list of values $\left(u_{i j}\right)_{i, j \in[m]}$ such that there exists a set $E=\{i \in[m] \mid i$ is bad $\}$ of size $|E| \leq \epsilon_{1} \cdot m$ such that if i and j are not in E then $u_{i j}=U\left(a_{i}-a_{j}\right)$.
- Now partition the list $\left(u_{i j}\right)$ according to the index j into disjoint lists: $B_{j}=\left(u_{1 j}, \cdots, u_{m j}\right)$. If $j \notin R$ then the list B_{j} contains the values of the degree 1 polynomials $U_{j}(y)=U\left(y-a_{j}\right)$ on the set S_{1} with at most $\epsilon_{1} \cdot m$ errors (that is the errors will correspond to indices $i \in E$).
- Therefore, we can use A_{1} in order to reconstruct U_{j}, and from it U. But now the "problem" is that we do not know which j s are good.
- This problem can be solved by applying the above procedure for all $j \in[m]$ and then taking the majority vote. Since all good $j s$ will return the correct $U(y)$ we will have a clear majority of at least a $1-\epsilon_{1}$ fraction.
- Combining all of the above gives us the polynomial $q_{d}(x)$ and thus completing this step.

Proof of Theorem 2.1 X

Step 3

- Now we have recovered $q_{d} s$ from the previous steps, so we now abstract out the value $q_{d}\left(c_{i}\right)$ from the input list of values (which are values of $q(x)$ on S_{d}, with ϵ_{d} fraction of errors " noise").
- This reduces us to the problem of recovering the degree $d-1$ polynomial $q_{\leq d-1}=q(x)-q_{d}(x)$ from its values in S_{d} with a fraction ϵ_{d} of errors.
- But this can be solved by using the algorithm A_{d-1} (17) on the values in each list T_{j} and then taking the majority.
- Since for good js T_{j} contains at most $\epsilon_{d-1} \cdot r$ errors, and since there are more than half good $j s$, we will get a clear majority and so be able to recover $q_{\leq d-1}$.

Proof of corollary 2.1 I

- In order to prove corollary 2.1, we just need to construct, for all n an $(n, 1, \epsilon)$-NIS $S_{1}^{(n)}$ with an efficient interpolation algorithm and ϵ which does not depend on n. The corollary will then follow using theorem 2.1.
- To construct S_{1} we take a good collection of linear codes $\left\{C_{n}\right\}$, where C_{n} is an $\left[m_{n}, n, k_{n}\right]$-code over \mathbb{F} that has an efficient decoding algorithm that can decode a constant fraction of errors and such that the generating matrix of C_{n} is found in polynomial time (which are known to exist from the result in [MS77]).

Proof of corollary 2.1 II

- Now take $a_{1} \cdots a_{m_{n}} \in \mathbb{F}^{n}$ be the rows of its generating matrix. We define $S_{1}^{(n)}$ to be the list of points $\left(a_{1}, \cdots a_{m_{n}}, b_{1}, \cdots, b_{m_{n}}\right)$, where for each $j \in\left[m_{n}\right]$ we set $b_{j}=0$.
- That is, $S_{1}^{(n)}$ contains the rows of the generating matrix of a good code, together with the points 0 , taken with multiplicity m_{n}. Lemma 3.3 now shows that $S_{1}^{(n)}$ satisfies the required conditions.

References

[DS08] Zeev Dvir and Amir Shpilka. "Noisy interpolating sets for low degree polynomials". In: 2008 23rd Annual IEEE Conference on Computational Complexity. IEEE. 2008, pp. 140-148.
[MS77] Florence Jessie MacWilliams and Neil James Alexander Sloane. The theory of error-correcting codes. Vol. 16. Elsevier, 1977.

Thank you!
$G=\left(\mathcal{V}_{1} \cup \mathcal{V}_{2}, \mathcal{T}_{1} \cup \mathcal{T}_{2}, \mathcal{P}, S_{2}\right)$,

