Algorithmic Coding theory presentation: Noisy interpolating sets for low degree polynomials Dvir Shpilka [DS08]

Bijayan Ray

November 27, 2023

Contents

Preliminaries 3

э

The problem I

Definition 1.1

 $S = (a_1, \dots a_m) \in (\mathbb{F}^n)^m$ be a list of points in \mathbb{F}^n . We say that S is an (n, d, ϵ) -Noisy interpolating set (NIS) if there exists an algorithm A_S such that for every $q \in F_d[x_1, \dots x_n]$ and for every vector $e = (e_1, \dots e_m) \in \mathbb{F}^m$ such that $|\{i \in [m] : e_i \neq 0\}| \leq \epsilon \cdot m$, the algorithm A_S , when given an input the list of values $(q(a_1) + e_1, \dots, q(a_m) + e_m)$, outputs the polynomial q (as a list of coefficients).

We say that S is a proper NIS if the points $a_1, \dots a_m$ are distinct. If S is a proper NIS we can treat it as a subset $S \subset \mathbb{F}^n$.

< 口 > < 同 > < 回 > < 回 > < 回 > <

The problem II

Definition 1.2

 $S = (S^{(n)})_{n \in \mathbb{N}}$ be a sequence such that for every $n \in \mathbb{N}$ we have that $S^{(n)}$ is an (n, d, ϵ) -NIS. We say that S has an efficient interpolation algorithm if there exists a polynomial time algorithm M(n, L) that takes an input an integer n and a list L of values in \mathbb{F} such that the restriction $M(n, \cdot)$ has the same behaviour as the algorithm $A_{S^{(n)}}$ described above.

Problem 1.1

The problem is to compute the NIS of a set of d-degree polynomials efficiently.

Main theorems I

Definition 2.1

Set addition

$$A+B=\{a+b|a\in A,b\in B\}$$

2 $A \boxplus B$ is the list defined as:

$$A \boxplus B = (a_i + b_j)_{i \in [m], j \in [l]} \in (\mathbb{F}^n)^{ml}$$

Theorem 2.1 (NIS)

Consider $0 < \epsilon_1 \le 1/2$ be a real number and S_1 be an $(n, 1, \epsilon_1)$ -NIS and for each d > 1 take $S_d = S_{d-1} \boxplus S_1$. Then for every d > 1 the set S_d is an (n, d, ϵ_d) -NIS with $\epsilon_d = (\epsilon/2)^d$. Moreover, if S_1 has an efficient interpolation algorithm, then so does S_d .

5/30

- ロ ト ・ 同 ト ・ 三 ト ・ 三 ト - -

Main theorems II

Corollary 2.1 (NIS)

For every prime field \mathbb{F} and for every d > 0 there exists an $\epsilon > 0$ and a collection $S = (S^n)_{n \in \mathbb{N}}$ such that for every $n \in \mathbb{N}$, $S^{(n)}$ is an (n, d, ϵ) -NIS and such that S has an efficient interpolation algorithm. Moreover, for each $n \in \mathbb{N}$ we have $|S^{(n)}| = O(n^d)$ and it is possible to generate the set $S^{(n)}$ in time poly(n).

Main theorems III

Definition 2.2 (Condition \star_k)

Consider $S \in \mathbb{F}^n$, $S = \{0\}$ and for each $d \ge 1$ consider $S_d = S_{d-1} + S$. Consider k > 0 be an integer. For each $x \in S_d$ consider

$$N_d(x) = |\{b \in S | s \in S_{d-1} + b\}|$$

We say that S satisfies condition \star_k if for every $0 < d \le k$ we have

$$|\{x \in S_d | N_d(x) > d\}| \le |S_{d-2}|$$

condition satisfied.

Main theorems IV

Theorem 2.2 (Proper-NIS)

Consider $0 < \epsilon_1 \le 1/2$ be a real number and k > 0 be an integer. There exists a constant C_0 , depending only on ϵ and k, such that for all $n > C_0$ the following holds: For every proper $(n, 1, \epsilon_1)$ -NIS set S_1 and for each d > 1 denote $S_d = S_{d-1} + S_1$. Suppose S_1 satisfies the condition \star_s (definition 2.2). Then for every $1 < d \le k$ the set S_d is a (proper) (n, d, ϵ_d) -NIS with

$$\epsilon_d = \frac{1}{d!} \cdot \left(\frac{\epsilon_1}{3}\right)^d$$

Moreover, if S_1 has an efficient interpolation algorithm, then so does S_d .

Proof.

We don't include the proof of this theorem in this presentation slides, however one can refer the main paper [DS08]: proof of theorem 2 section.

3

イロト 不良 トイヨト イヨト

Preliminaries I

Lemma 3.1

Take $q \in \mathbb{F}_d[x_1, \dots, x_n]$ and q_d be its homogenous part of degree d and a, b are elements of \mathbb{F}^n then

$$q(x+a) - q(x+b) = \partial_{q_d}(x, a-b) + E(x)$$

where $deg(E) \le d - 2$. In other words, the directional derivative of q_d in direction a - b is given by the homogenous part of degree d - 1 in the difference q(x + a) - q(x + b)

Proof (sketch):

• Note that it is enough to prove the lemma for the case q is a monomial of degree d and then the result follows from linearity and from the fact that derivatives of all monomials in q are of degree smaller than d at most d - 2.

Preliminaries II

• Then taking $M(x) = \prod_i x_i^{c_i}$ and observing

$$M(x+a) = M(x) + \sum_{i} a_i \cdot \frac{\partial M}{\partial x_i}(x) + E_1(x) \quad \text{with } deg(E_1) \leq d-2$$

• And then considering M(x+b) - M(x+a) the result follows.

< 47 ▶

э

Preliminaries III

Lemma 3.2

Take $q \in \mathbb{F}_d[x_1, \dots x_n]$. Given the vector of partial derivatives $\Delta_q(x)$, it is possible to reconstruct q in polynomial time.

Proof (sketch):

- The idea is to go over all monomials of degree ≤ d and find out the coefficients they have in q as: For every monomial M, take i the first index such that x_i appears in the M with positive degree.
- Consider $\frac{\partial q}{\partial x_i}(x)$ and check whether the coefficient of the derivative of that monomial is zero or not.
- To get the coefficient in *q* we divide that by the degree of *x_i* in the monomial.

Preliminaries IV

Lemma 3.3

C is an [m, n, k] code over \mathbb{F} such that *C* has an efficient decoding algorithm that can correct an α -fraction of errors. For $i \in [m]$ suppose $a_i \in \mathbb{F}^n$ be the *i*th row of the generating matrix of *C*. Then,

- $S^0 = (a_1, \dots, a_m, \overline{0}, \dots, \overline{0}) \in (\mathbb{F}^n)^{2m}$. Then S^0 is an $(n, 1, \alpha/2)$ -NIS with an efficient interpolation algorithm.
- S = (a₁, · · · , a_m) ∈ (ℝⁿ)^m and suppose that the maximal hamming weight of a codeword in C is smaller than (1 − 2α) · m. Then S is an (n, 1, α)-NIS with an efficient interpolation algorithm.

Proof (sketch):

The idea is to first take a degree of one polynomial q. We describe the interpolation algorithm for S⁰.

Preliminaries V

- ► First look at the values of q(x) on the last m points(the zeroes). The majority of these values will be q(0) which will give us the constant term in q.
- Take q₁(x) = q(x) − q(0) is the linear part of q and this reduces to the problem of recovering the homogeneous linear function q₁ form its values on (a₁, ..., a_m) with at most α · m errors.
- ► This task is achieved using the decoding algorithm for C, since the vector (q₁(a₁), · · · , q(a_m)) is just the encoding of the vector of coefficients of q₁ with the code C.
- ▶ In this take $(v_1, \dots v_m) \in \mathbb{F}$ be the list of input values given $(v_i = q(a_i))$ for a 1α fraction of the *is*).
 - Then we go over all p = |𝔅| possible choices for q(0) and for each "guess" c ∈ 𝔅 do: Subtract c from the values (v₁, ··· v_m) and then use the decoding algorithm of C to decode the vector V_c = (v₁ − c, ··· , v_m − c).

Preliminaries VI

- ► Clearly, for c = q(0) this procedure will give the list of coefficients (without constant terms) of q(x) as output.
- So we are just required to find which invocation of the decoding algorithm is the correct one.
- Say the decoding algorithm, on input V_c , returns a linear polynomial $q_c(x)$ (there is no constant term).
- We can then check to see whether $q_c(a_i) + c$ is indeed equal to v_i for a 1α fraction of the *i*s.
- If we can show that this test succeeds only for a single $c \in \mathbb{F}$ then we are done and the lemma shall follow.
- So to prove that, suppose on the contrary that there are two linear polynomials q_c(x) and q_{c'}(x) such that both agree with a fraction 1 - α of the input values.

イロト 不得 トイヨト イヨト 二日

Preliminaries VII

▶ This mean s that there exist two codeword $W_c, W_{c'} \in \mathbb{F}^m$ in C such that $dist(V_c, W_c) \leq \alpha \cdot m$ and $dist(V_{c'}, W_{c'}) \leq \alpha \cdot m$ which implies that

$$dist(V_c - V_{c'}, W_c - W_{c'}) \le 2\alpha \cdot m$$

Now the vectors V_c − V_{c'} has the value c' − c ≠ 0 in all of its coordinates and so we get that the hamming weight of the codeword W_c − W_{c'} is at least (1 − 2α) · m contradicting the properties of C.

Proof of Main theorem

November 27, 2023

Proof of Theorem 2.1 I

- Take $S_1 = (a_1, \dots a_m) \in (\mathbb{F}^n)^m$ be an $(n, 1, \epsilon_1)$ -NIS of size $|S_1| = m$ and $S_{d-1} = (b_1, \dots b_r) \in (\mathbb{F}^n)^r$ be an $(n, d-1, \epsilon_{d-1})$ -NIS of size $|S_{d-1}| = r$ and A_{d-1} and A_1 be interpolation algorithms for S_{d_1} and S_1 respectively.
- Take $S_d = S_{d-1} \boxplus S_1$. We shall prove the theorem 2.1 by showing that S_d has an interpolation algorithm that makes at most a polynomial number of calls to A_{d-1} and to A_1 and can "correct" a fraction

$$\epsilon_d = \frac{\epsilon_1 \cdot \epsilon_{d-1}}{2}$$

of errors.

• We shall describe the algorithm A_d and prove its correctness simultaneously (the number of calls to A_{d-1} and A_1 will clearly be polynomial as we shall see).

Bijayan Ray

November 27, 2023

Proof of Theorem 2.1 II

- So fix, $q \in \mathbb{F}_d[x_1, \cdots x_n]$ to be some degree d polynomial and q_d be its homogeneous part of degree d.
- Now denote $S_d = (c_1, \dots c_{mr})$ where each $c_i \in \mathbb{F}^n$. We also denote by $e = (e_1, \dots e_{mr}) \in \mathbb{F}^{mr}$ the list of "errors", so that $|\{i \in [mr] | e \neq 0\}| \le \epsilon_d \cdot mr$.
- The list S_d can be partitioned in a natural way into all the "shifts" of the list S_{d-1}. Now define for each i ∈ [m] the list T_i = (b₁ + a_i, ... b_r + a_i) ∈ (𝔅ⁿ)^r. We thus have that S_d is the concatenation of T₁, ... T_m.
- We can also partition the list of errors in a similar way into *m* lists $e^{(1)}, \dots e^{(m)}$, each of length *r* such that $e^{(i)}$ is the list of errors corresponding to the points in T_i .

Proof of Theorem 2.1 III

 We say that an index i ∈ [m] is good if the fraction of errors in T_i is at most e_{d-1}/2, otherwise we say that i is bad. In other words, i is good if

$$\left|\left\{j \in [r] | e_j^{(i)} \neq 0\right\}\right| \le (\epsilon_{d-1}/2) \cdot |T_i| = (\epsilon_{d-1}/2) \cdot r$$

Now take E = {i ∈ [m] | i is bad}. From the bound on the total number of errors we get that

$$|E| \leq \epsilon_1 \cdot m$$

The algorithm is divided into three steps.

• The idea is, in the first step we look at all pairs (T_i, T_j) and from each one attempt to reconstruct, using A_{d-1} , the directional derivative $\partial_{q_d}(x_i, a_i - a_j)$. We will claim that this step gives the correct output for most pairs (T_i, T_j) .

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

Proof of Theorem 2.1 IV

- In the next step we take all the directional derivatives obtained in the first step and from them reconstruct, using A₁, the vector of derivatives Δ_{q_d}(x) and so also recover q_d(x).
- In the last step of the algorithm we recover the polynomial $q_{\leq d-1}(x) = q(x) q_d(x)$, again using A_{d-1} which shall give us

$$q(x) = q_{\leq d-1}(x) + q_d(x)$$

Proof of Theorem 2.1 V

The algorithm

- Take i ≠ j ∈ [m] be two good indices as defined above, we shall show how to reconstruct ∂_{q_d}(x, a_i − a_j) from the values in T_i, T_j.
 - Recall that we have two lists of values

$$L_i = \left(q(b_1 + a_i) + e_1^{(i)}, \cdots q(b_r + a_i) + e_r^{(i)}\right)$$

and

$$L_j = \left(q(b_1 + a_j) + e_1^{(j)}, \cdots q(b_r + a_j) + e_r^{(j)}\right)$$

Now taking the the differences we get that

$$L_{ij} = L_i - L_j = \left(q(b_1 + a_i) - q(b_1 + a_j) + e_1^{(i)} - e_1^{(j)}, \ \cdots, q(b_r + a_i) - q(b_r + a_j) + e_r^{(i)} - e_r^{(j)}
ight)$$

Proof of Theorem 2.1 VI

and observe that since *i* and *j* are both good we have that the terms $e_l^{(i)}$ and $e_l^{(j)}$ is non zero for at most $\epsilon_{d-1} \cdot r$ values of $l \in [r]$.

- ► Therefore, we can use algorithm A_{d-1} to recover the degree d − 1 polynomials Q_{ij}(x) := q(x + a_i) − q(x + a_j) from the list L_{ij}.
- From lemma 3.1 we see that throwing away all monomials of degree less than *d* − 1 in *Q_{ij}* leaves us with ∂_{*q_d*}(*x*, *a_i* − *a_j*).
- ► On carrying out the first step for all pairs (*T_i*, *T_j*) and obtaining ^(m)₂ homogeneous polynomials of degree *d* − 1, we denote them by *R_{ij}(x*).
- Now since we know that i and j are both good we get

$$R_{ij}(x) = \partial_{q_d}(x, a_i - a_j)$$

If either *i* or *j* is bad, we do not know anything about $R_{ij}(x)$.

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Proof of Theorem 2.1 VII

- Step 2 In this step we take the polynomials R_{ij} obtained in the first step and recover from them the polynomials Δ_{qd}(x) (after which using lemma 3.2 shall give us q_d(x)).
 - ▶ We start by giving some notations: The set of degree *d* − 1 monomials is indexed by the set

$$I_{d-1} = \{(\alpha_1, \cdots, \alpha_n) | \alpha_i \ge 0, \alpha_1 + \cdots + \alpha_n = d-1\}$$

We denote x^α = ∏_i x_i^{α_i} and coef(x^α, h) the coefficient of the monomial x^α in a polynomial h(x). Take α ∈ I_{d-1} and define the degree 1 polynomial

$$U_{\alpha}(y_1,\cdots y_n) = \sum_{l=1}^n coef\left(x^{\alpha}, \frac{\partial q_d}{\partial x_l}\right) y_l$$

Proof of Theorem 2.1 VIII

Now observe that

$$\partial_{q_d}(x, a_i - a_j) = \sum_{l=1}^n (a_i - a_j)_l \cdot \frac{\partial q_d}{\partial x_l}(x)$$

= $\sum_{\alpha \in I_{d-1}} x^{\alpha} \cdot U_{\alpha}(a_i - a_j)$ (1)

- Therefore, for each pair i, j such that i and j are good we can get the (correct) values U_α(a_i − a_j) for all α ∈ I_{d₁} by observing the coefficients of R_{ij}.
- Now fix some α ∈ I_{d-1} and using the procedure implied above for all pairs i ≠ j ∈ [m], we get (^m₂) values u_{ij} ∈ 𝔽 such that if i and j are good then

$$u_{ij} = U_{\alpha}(a_i - a_j)$$

We now recover U_α from u_{ij}s. Repeating this procedure for all α ∈ I_{d-1} shall give Δ_{qd}(x).

Proof of Theorem 2.1 IX

- Since α is fixed apriori, we denote U(y) = U_α(y). We have a list of values (u_{ij})_{i,j∈[m]} such that there exists a set E = {i ∈ [m]|i is bad}of size |E| ≤ ε₁ ⋅ m such that if i and j are not in E then u_{ij} = U(a_i − a_j).
- Now partition the list (u_{ij}) according to the index j into disjoint lists: B_j = (u_{1j}, ..., u_{mj}). If j ∉ R then the list B_j contains the values of the degree 1 polynomials U_j(y) = U(y − a_j) on the set S₁ with at most e₁ · m errors (that is the errors will correspond to indices i ∈ E).
- ► Therefore, we can use A₁ in order to reconstruct U_j, and from it U. But now the "problem" is that we do not know which js are good.
- ▶ This problem can be solved by applying the above procedure for all $j \in [m]$ and then taking the majority vote. Since all good *j*s will return the correct U(y) we will have a clear majority of at least a $1 \epsilon_1$ fraction.
- Combining all of the above gives us the polynomial q_d(x) and thus completing this step.

イロト 不得 トイヨト イヨト 二日

Proof of Theorem 2.1 X

- Now we have recovered q_ds from the previous steps, so we now abstract out the value q_d(c_i) from the input list of values (which are values of q(x) on S_d, with e_d fraction of errors "noise").
 - ▶ This reduces us to the problem of recovering the degree d 1 polynomial $q_{\leq d-1} = q(x) q_d(x)$ from its values in S_d with a fraction ϵ_d of errors.
 - ▶ But this can be solved by using the algorithm A_{d-1} (17) on the values in each list T_j and then taking the majority.
 - Since for good js T_j contains at most €_{d-1} · r errors, and since there are more than half good js, we will get a clear majority and so be able to recover q_{≤d-1}.

Proof of corollary 2.1 I

- In order to prove corollary 2.1, we just need to construct, for all n an $(n, 1, \epsilon)$ -NIS $S_1^{(n)}$ with an efficient interpolation algorithm and ϵ which does not depend on n. The corollary will then follow using theorem 2.1.
- To construct S_1 we take a good collection of linear codes $\{C_n\}$, where C_n is an $[m_n, n, k_n]$ -code over \mathbb{F} that has an efficient decoding algorithm that can decode a constant fraction of errors and such that the generating matrix of C_n is found in polynomial time (which are known to exist from the result in [MS77]).

Proof of corollary 2.1 II

- Now take $a_1 \cdots a_{m_n} \in \mathbb{F}^n$ be the rows of its generating matrix. We define $S_1^{(n)}$ to be the list of points $(a_1, \cdots a_{m_n}, b_1, \cdots, b_{m_n})$, where for each $j \in [m_n]$ we set $b_j = 0$.
- That is, S₁⁽ⁿ⁾ contains the rows of the generating matrix of a good code, together with the points 0, taken with multiplicity m_n. Lemma 3.3 now shows that S₁⁽ⁿ⁾ satisfies the required conditions.

References

- [DS08] Zeev Dvir and Amir Shpilka. "Noisy interpolating sets for low degree polynomials". In: 2008 23rd Annual IEEE Conference on Computational Complexity. IEEE. 2008, pp. 140–148.
- [MS77] Florence Jessie MacWilliams and Neil James Alexander Sloane. The theory of error-correcting codes. Vol. 16. Elsevier, 1977.

Thank you!

<ロト <問ト < 目と < 目と

$G = (\mathcal{V}_1 \cup \mathcal{V}_2, \ \mathcal{T}_1 \cup \mathcal{T}_2, \mathcal{P}, S_2),$

イロト イヨト イヨト イヨト