Algorithmic Coding theory presentation:
Noisy interpolating sets for low degree polynomials
Dvir Shpilka
[DS08]

Bijayan Ray

November 27, 2023

Algorithmic Coding theory presentation: Noi November 27, 2023 1/30



Contents

© The problem

© Main theorems

© Preliminaries

@ Proofs of Main Theorem

Algorithmic Coding theory presentation: Noi November 27, 2023 2/30



The problem |

Definition 1.1
S=(a1,--am) € (F")™ be a list of points in F". We say that S is an
(n, d, €)-Noisy interpolating set (NIS) if there exists an algorithm As such
that for every q € Fyq[x1,- - - x,| and for every vector e = (€1, - em) € F™
such that |{i € [m] : e¢; # 0} | < €- m, the algorithm As, when given an
input the list of values (q(a1) + e1, -+ ,q(am) + em), outputs the
polynomial q (as a list of coefficients).

We say that S is a proper NIS if the points a1, - - - ap, are distinct. If S
is a proper NIS we can treat it as a subset S C F".
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The problem Il

Definition 1.2

S = (58M),en be a sequence such that for every n € N we have that S("
is an (n,d,€)-NIS. We say that S has an efficient interpolation algorithm if
there exists a polynomial time algorithm M(n, L) that takes an input an
integer n and a list L of values in I such that the restriction M(n,-) has
the same behaviour as the algorithm Ag(.) described above.

Problem 1.1

The problem is to compute the NIS of a set of d-degree polynomials
efficiently.
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Main theorems |

Definition 2.1
@ Set addition
A+B={a+blac A be B}

@ AH B is the list defined as:

AB B = (aj + b)icmjen € F)™

Theorem 2.1 (NIS)

Consider 0 < €1 < 1/2 be a real number and S; be an (n,1,€1)-NIS and
for each d > 1 take Sy = Sy_1 B S1. Then for every d > 1 the set Sy is
an (n,d, eq)-NIS with eq = (¢/2)?. Moreover, if Sy has an efficient
interpolation algorithm, then so does S4.
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Main theorems Il

Corollary 2.1 (NIS)

For every prime field F and for every d > 0 there exists an € > 0 and a
collection S = (S") .y such that for every n € N, S(") is an (n,d, €)-NIS
and such that S has an efficient interpolation algorithm. Moreover, for

each n € N we have |S(")| = O(n9) and it is possible to generate the set
S() in time poly(n).
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Main theorems Il

Definition 2.2 (Condition *)

Consider S € F", S = {0} and for each d > 1 consider S4 = S4_1 + S.
Consider k > 0 be an integer. For each x € Sy consider

Ng(x) =|{b € S|s € Sg—1 + b} |
We say that S satisfies condition x if for every 0 < d < k we have

| {x € SaNa(x) > d} | < [Sq2|

condition satisfied.
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Main theorems IV
Theorem 2.2 (Proper-NIS)

Consider 0 < €1 < 1/2 be a real number and k > 0 be an integer. There
exists a constant Cy, depending only on € and k, such that for all n >
the following holds: For every proper (n,1,¢€1)-NIS set S; and for each

d > 1 denote Sy = Sy_1 + S1. Suppose S; satisfies the condition x
(definition 2.2). Then for every 1 < d < k the set Sq is a (proper)

(n,d, eq)-NIS with
1 €1\9
=g (3)

Moreover, if S; has an efficient interpolation algorithm, then so does S.

Proof.

We don't include the proof of this theorem in this presentation slides,
however one can refer the main paper | |: proof of theorem 2

section. Ol

Algorithmic Coding theory presentation: Noi November 27, 2023 8/30



Preliminaries |

Lemma 3.1

Take g € Fy[xi1, - - xs] and qq be its homogenous part of degree d and
a, b are elements of F" then

q(x + a) — q(x + b) = 9q,(x,a — b) + E(x)

where deg(E) < d — 2. In other words, the directional derivative of q4 in
direction a — b is given by the homogenous part of degree d — 1 in the
difference q(x + a) — q(x + b)

Proof (sketch):

@ Note that it is enough to prove the lemma for the case g is a
monomial of degree d and then the result follows from linearity and
from the fact that derivatives of all monomials in g are of degree
smaller than d at most d — 2.
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Preliminaries 1l

@ Then taking M(x) = []; x/" and observing

M(x + a) = M(x) + Z aj - )+ Er(x)  with deg(Ey) < d —2

@ And then considering M(x + b) — M(x + a) the result follows.
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Preliminaries I

Lemma 3.2

Take q € Fy[x1, - - xa]. Given the vector of partial derivatives Aq(x), it is
possible to reconstruct q in polynomial time.

Proof (sketch):

@ The idea is to go over all monomials of degree < d and find out the
coefficients they have in g as: For every monomial M, take i the first
index such that x; appears in the M with positive degree.

o Consider %(X) and check whether the coefficient of the derivative of
that monomial is zero or not.

@ To get the coefficient in g we divide that by the degree of x; in the
monomial.

Algorithmic Coding theory presentation: Noi November 27, 2023 11/30



Preliminaries 1V

Lemma 3.3

C is an [m, n, k] code over F such that C has an efficient decoding
algorithm that can correct an a-fraction of errors. For i € [m] suppose
a; € F" be the ith row of the generating matrix of C. Then,
Q@ S°= (a1, -+ ,am,0,---0) € (F")?™. Then S® is an (n,1,a/2)-NIS
with an efficient interpolation algorithm.

@ S=(a1,- - ,am) € (F")™ and suppose that the maximal hamming
weight of a codeword in C is smaller than (1 —2a)) - m. Then S is an
(n,1,)-NIS with an efficient interpolation algorithm.

Proof (sketch):

©@ » The idea is to first take a degree of one polynomial q. We describe the
interpolation algorithm for S°.
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Preliminaries V

» First look at the values of g(x) on the last m points(the zeroes). The
majority of these values will be g(0) which will give us the constant
term in gq.

> Take g1(x) = g(x) — g(0) is the linear part of g and this reduces to the
problem of recovering the homogeneous linear function g; form its
values on (ay, - ,am) with at most «- m errors.

» This task is achieved using the decoding algorithm for C, since the
vector (g1(a1), -+, q(am)) is just the encoding of the vector of
coefficients of g; with the code C.

@ > In this take (vq,--- vn) € F be the list of input values given (v; = g(a;)
for a 1 — « fraction of the Js).

» Then we go over all p = |F| possible choices for g(0) and for each

"guess” ¢ € F do: Subtract ¢ from the values (v, - - v;,) and then use
the decoding algorithm of C to decode the vector
Ve=(vi—c¢,- -, vm—C).
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Preliminaries VI

» Clearly, for ¢ = g(0) this procedure will give the list of coefficients
(without constant terms) of g(x) as output.

» So we are just required to find which invocation of the decoding
algorithm is the correct one.

» Say the decoding algorithm, on input V, returns a linear polynomial
gc(x) (there is no constant term).

» We can then check to see whether g.(a;) + ¢ is indeed equal to v; for a
1 — « fraction of the is.

> If we can show that this test succeeds only for a single ¢ € F then we
are done and the lemma shall follow.

» So to prove that, suppose on the contrary that there are two linear
polynomials g-(x) and g./(x) such that both agree with a fraction
1 — « of the input values.
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Preliminaries VII

» This mean s that there exist two codeword W,., W, € F™ in C such
that dist(V., W.) < a-m and dist(V., W) < a- m which implies that

dist(Ve — Vo, W — Wo) <2a-m
» Now the vectors V. — V., has the value ¢/ — ¢ # 0 in all of its

coordinates and so we get that the hamming weight of the codeword
W, — W, is at least (1 — 2a) - m contradicting the properties of C.
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Proof of Main theorem
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Proof of Theorem 2.1 |

o Take S1 = (a1,---am) € (F")™ be an (n, 1, €1)-NIS of size |S1| = m
and Sg_1 = (b1,---by) € (F")" be an (n,d — 1,€e4-1)-NIS of size
|Sg—1] = r and Ag_1 and A; be interpolation algorithms for Sy, and
S1 respectively.

o Take Sy = Sy_1 H S1. We shall prove the theorem 2.1 by showing
that Sy has an interpolation algorithm that makes at most a
polynomial number of calls to Ay_1 and to A; and can "correct” a

fraction
€1 €d—1

2

€d

of errors.

@ We shall describe the algorithm Ay and prove its correctness
simultaneously (the number of calls to Ay_1 and A; will clearly be
polynomial as we shall see).
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Proof of Theorem 2.1 |l

e So fix, g € Fy[xy, - - - xn] to be some degree d polynomial and g4 be
its homogeneous part of degree d.

e Now denote Sy = (ci, - - - C¢mr) Where each ¢; € F”. We also denote by
e= (e, - emr) € F™ the list of "errors”, so that
|{i € [mr]le #0}| < eq-mr.

@ The list Sy can be partitioned in a natural way into all the "shifts” of
the list Sy_1. Now define for each i € [m] the list
Ti=(b1+a;, - b+ a;) € (F")". We thus have that Sy is the
concatenation of Tq,--- Tp,.

@ We can also partition the list of errors in a similar way into m lists

e(l), . e(m), each of length r such that e() is the list of errors
corresponding to the points in T;.
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Proof of Theorem 2.1 |l

o We say that an index i € [m] is good if the fraction of errors in T; is
at most e4_1/2, otherwise we say that i is bad. In other words, i is
good if

(i e e # 0} < (ca-1/2) - ITil = (a-a/2) -+

o Now take E = {i € [m]|i is bad}. From the bound on the total
number of errors we get that

‘E|§€1~m

The algorithm is divided into three steps.

@ The idea is, in the first step we look at all pairs (T;, T;) and from
each one attempt to reconstruct, using Ay_1, the directional
derivative Jq,(x a; — a;). We will claim that this step gives the correct
output for most pairs (T;, T;).
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Proof of Theorem 2.1 |V

@ In the next step we take all the directional derivatives obtained in the
first step and from them reconstruct, using A1, the vector of
derivatives Ag,(x) and so also recover gq(x).

@ In the last step of the algorithm we recover the polynomial
g<d—1(x) = q(x) — qa(x), again using Ay_1 which shall give us

q(x) = g<d—1(x) + qa(x)
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Proof of Theorem 2.1 V

The algorithm

Step 1 » Take i # j € [m] be two good indices as defined above, we shall show
how to reconstruct dg,(x, a; — a;) from the values in T;, T;.

» Recall that we have two lists of values
L= (qlbi+a7) + e, q(b, + a) + )

and
L= (q(b1 o)t e, gy + a) + eﬁf))

» Now taking the the differences we get that

LU:L,—LJ:< (b1+a)—q(b1+aj)+e()—e¥)7

albe+ 2) - by +3) + ) — &)
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Proof of Theorem 2.1 VI

and observe that since i and j are both good we have that the terms

e,(i) and e,(j) is non zero for at most €41 - r values of /| € [r].

» Therefore, we can use algorithm Ay_; to recover the degree d — 1
polynomials Qji(x) := q(x + a;) — q(x + a;) from the list L;.

» From lemma 3.1 we see that throwing away all monomials of degree
less than d — 1 in Qj leaves us with Og,(x, ai — a;).

m

» On carrying out the first step for all pairs (T;, T;) and obtaining (2
homogeneous polynomials of degree d — 1, we denote them by Rj(x).

» Now since we know that / and j are both good we get
Rij(x) = Oq,(x, ai — )

If either i or j is bad, we do not know anything about Rjj(x).
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Proof of Theorem 2.1 VII

>tep 2 » In this step we take the polynomials Rj obtained in the first step and
recover from them the polynomials Ay, (x) (after which using lemma
3.2 shall give us gq(x)).

» We start by giving some notations: The set of degree d — 1 monomials
is indexed by the set

loo1 ={(aq, -+ ,an)|e; > 0,01+ -+, =d—1}

» We denote x* =[], x{*" and coef (x*, h) the coefficient of the
monomial x* in a polynomial h(x). Take « € ly_1 and define the
degree 1 polynomial

oy y,,)-Zcoef( “ ) Vi
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Proof of Theorem 2.1 VIII
» Now observe that
_ 0qq
Oqy(x, 2 — 3)) = > (ai — a); - TX,(X)

=1
= Z x“ - Ua(a,- - aj)

a€ly_q

(1)

» Therefore, for each pair i, such that / and j are good we can get the
(correct) values U, (a;j — a;j) for all & € Iy, by observing the coefficients

» Now fix some a € Iy_1 and using the procedure implied above for all
pairs i # j € [m], we get () values uj; € F such that if i and j are
good then

uj; = Ua(a,- - aj)

» We now recover U, from ujs. Repeating this procedure for all
a € ly_1 shall give Ag,(x).
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Proof of Theorem 2.1 IX

» Since « is fixed apriori, we denote U(y) = U,(y). We have a list of
values (u;j)i je[m) such that there exists a set £ = {i € [m]|i is bad }of
size |E| < €1 - m such that if / and j are not in E then uj; = U(a; — aj).

» Now partition the list (uj;) according to the index j into disjoint lists:
Bj = (u1j, -+, um;). If j ¢ R then the list B; contains the values of the
degree 1 polynomials U;j(y) = U(y — aj) on the set 5; with at most
€1 - m errors (that is the errors will correspond to indices i € E).

» Therefore, we can use A; in order to reconstruct U;, and from it U.
But now the "problem” is that we do not know which js are good.

» This problem can be solved by applying the above procedure for all
j € [m] and then taking the majority vote. Since all good js will return
the correct U(y) we will have a clear majority of at least a 1 — ¢;
fraction.

» Combining all of the above gives us the polynomial g4(x) and thus
completing this step.
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Proof of Theorem 2.1 X

Step 3 » Now we have recovered ggs from the previous steps, so we now
abstract out the value g4(c;) from the input list of values (which are
values of g(x) on Sy, with €4 fraction of errors "noise”).

» This reduces us to the problem of recovering the degree d — 1
polynomial g<q—1 = q(x) — qa(x) from its values in Sy with a fraction
€q Of errors.

» But this can be solved by using the algorithm Ay_; (17) on the values
in each list T; and then taking the majority.

» Since for good js T; contains at most €4_1 - r errors, and since there
are more than half good js, we will get a clear majority and so be able
to recover g<q4-1.
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Proof of corollary 2.1 |

@ In order to prove corollary 2.1, we just need to construct, for all n an
(n,1,€)-NIS S with an efficient interpolation algorithm and € which
does not depend on n. The corollary will then follow using theorem

2.1.

e To construct S; we take a good collection of linear codes {C,}, where
Cy is an [mp, n, ky]-code over F that has an efficient decoding
algorithm that can decode a constant fraction of errors and such that
the generating matrix of C, is found in polynomial time (which are
known to exist from the result in [ D).
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Proof of corollary 2.1 Il

o Now take aj ---am, € F" be the rows of its generating matrix. We

define 51(") to be the list of points (a1, - am,, b1, , bm,), where for
each j € [mp] we set bj = 0.

@ That is, S{") contains the rows of the generating matrix of a good

code, together with the points 0, taken with multiplicity m,. Lemma
3.3 now shows that 51(") satisfies the required conditions.
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