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Overview

• The paper addresses the challenge of enhancing code
generation by LLMs, which struggle with syntax accuracy and
handling problem-specific details.

• Code generation differs from typical natural language tasks
due to the need for exact syntax, handling edge cases, and
following detailed specifications.

• Techniques successful in natural language generation may not
work well for code generation.
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Overview (Cont)

• The authors propose AlphaCodium, a test-based, multistage,
code-focused iterative method for improving code generation
by large language models.

• AlphaCodium was evaluated on the CodeContests dataset,
which includes competitive programming problems from
platforms like Codeforces.

• The approach significantly improves performance; for
instance, GPT-4’s pass@5 accuracy rose from 19% (with a
single prompt) to 44% using AlphaCodium.

• The insights and practices from AlphaCodium are considered
broadly useful for general code generation tasks.
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Dataset

• CodeContests is a challenging dataset introduced by
DeepMind, sourced from competitive programming platforms
like Codeforces.

• It includes 10K code problems for training, and separate
validation (107 problems) and test sets (165 problems) for
evaluation.

• This work focuses on applying a code-oriented flow to existing
LLMs (e.g., GPT, DeepSeek) rather than training a new
model, using only the validation and test sets.

• Each problem provides a description and public tests; the
model must generate code that passes a hidden private test
set.



Overview Dataset AlphaCodium proposed flow Code Oriented design concepts Experiments Conclusion References

Dataset

• Key strengths of CodeContests:
• It includes ≈200 private tests per problem to ensure robustness

and prevent false positives.
• The problem descriptions are intentionally long and nuanced,

requiring attention to small but critical details.
• This setup better reflects real-world coding scenarios, which

often involve complex and detail-rich tasks.
• In contrast, simpler datasets like HumanEval contain shorter,

more straightforward problems.

• Effective problem understanding, supported by techniques like
self-reflection, improves clarity and increases the likelihood of
generating correct solutions.
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Dataset
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AlphaCodium proposed flow

• Common prompt engineering techniques (e.g., single prompts,
chain-of-thought) do not yield significant improvements for
code generation tasks like CodeContests.

• LLMs often fail to fully comprehend the problem, producing
incorrect or overfitted code that passes public tests but fails
on unseen ones.

• Natural language generation flows are suboptimal for code
generation tasks.

• Code generation tasks offer a unique advantage: the ability to
run and test code iteratively.

• AlphaCodium introduces a dedicated, iterative flow optimized
for code generation and testing.
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AlphaCodium proposed flow

• The approach consists of two major phases:
• Pre-processing phase:

• Reflect on the problem in natural language.
• Perform public tests reasoning.
• Generate and rank 2-3 natural language solution strategies.
• Enrich public tests by generating 6-8 additional diverse

AI-generated tests.

• Code iterations phase:
• Generate an initial code solution based on the selected

strategy.
• Run the code on both public and AI tests, iterating and fixing

errors.
• Iterate further to fix code based on test failures and error

messages.
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AlphaCodium proposed flow

• Detailed stages of the flow:
• Problem reflection: summarize the problem’s goal, inputs,

outputs, constraints, and rules in bullet points.
• Public tests reasoning: explain why each input yields the

corresponding output.
• Generate possible solutions: write 2-3 natural language

strategies.
• Rank solutions: select the best based on correctness,

simplicity, and robustness.
• Generate AI tests: create additional tests covering edge cases

and large inputs.
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AlphaCodium proposed flow

Detailed stages of the flow (continued):
• Initial code solution:

• Choose a solution, generate corresponding code.
• Run code on selected tests, repeat until successful or try-limit

reached.
• Use the best-passing or closest-output code as a base.

• Iterate on public tests: run and fix code iteratively using
feedback from public tests.

• Iterate on AI-generated tests: repeat the run-fix process using
AI tests and test anchors.
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AlphaCodium proposed flow

Additional insights:

• The flow supports knowledge accumulation, progressing from
easy to hard tasks.

• Pre-processing outputs help the more difficult code generation
stages.

• Generating test cases is easier for LLMs than writing complete
solutions.

• Additional AI tests improve generalization by targeting
underrepresented scenarios.

• Some stages can be combined in a single LLM call using
structured prompts.
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AlphaCodium proposed flow (continued)
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Code Oriented design concepts

• YAML structured output: The use of YAML format,
equivalent to a Pydantic class, provides a structured, code-like
way to present complex tasks.

• Simplifies prompt engineering by reducing ambiguity.
• Facilitates multi-stage, logical thinking processes.
• Preferred over JSON for code generation tasks due to better

readability and structure.

• Semantic reasoning via bullet points analysis: Encouraging
models to reason using bullet points improves understanding
and output quality.

• Bullet points help divide reasoning into semantic sections (e.g.,
description, rules, input, output).

• Leads to clearer and more structured problem analysis.
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Code Oriented design concepts

• Modular code generation: LLMs perform better when asked
to generate code in modular sub-functions.

• Reduces logical errors and bugs.
• Enhances the effectiveness of iterative fixing by localizing

errors.

• Soft decisions with double validation: To address
hallucinations and errors in complex tasks, AlphaCodium uses
a double validation step.

• The model is asked to re-generate and correct its own output
instead of being queried with binary (yes/no) correctness
questions.

• Encourages deeper reasoning and self-correction.
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Code Oriented design concepts

• Postpone decisions and leave room for exploration: Avoid
asking the model direct questions about complex problems
too early.

• Adopt a gradual process:
• Start with self-reflection and reasoning about public tests.
• Proceed to generate AI tests and explore possible solutions.
• Only then generate the code and perform run-fix iterations.

• Instead of selecting a single solution, rank multiple and explore
iterations from top-ranked options.

• This reduces the risk of hallucinations and premature
commitments.
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Code Oriented design concepts

• Test anchors: Designed to address the uncertainty of whether
a failed test is due to incorrect code or an incorrect test.

• Begin with public tests (known correct) to form initial anchor
tests.

• Iterate through AI-generated tests, adding passing ones to the
anchor list.

• For failing tests, assume the code is incorrect, but ensure that
the fix still passes all anchor tests.

• This process protects against overfitting to faulty AI-generated
tests.

• An additional optimization involves sorting AI-generated tests
from easy to hard to build the anchor base early.
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Code Oriented design concepts
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Why YAML?

• YAML is superior to JSON for code generation tasks:
• Code often contains single quotes, double quotes, and special

characters that cause problems in JSON format
• JSON output must be surrounded by double quotes, requiring

complex escaping
• YAML with block scalar only requires proper indentation to be

valid

• Additional benefits of YAML:
• No need for curly brackets, quotations, or escape characters
• Results in fewer tokens compared to JSON
• Reduces cost and inference time
• Improves quality by allowing the model to focus on essential

content rather than syntax
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Why YAML?
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Evaluating Solutions

• When testing a solution against input, the comparison yields a
pass/fail result

• AlphaCodium also estimates the distance between generated
and expected outputs:

• For numeric outputs: Calculate L2 distance
• For arrays of numbers: Sum of L2 distances between

corresponding cells
• For arrays of strings: Count the number of non-identical cells

• This methodology provides a more nuanced assessment of
how close an incorrect solution is to being correct

• Helps prioritize which solutions to refine during iterative
improvement
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The pass@k Metric

• pass@k is a standard evaluation measure for code generation
tasks

• Measures the probability that at least one of k generated
solutions is correct

• Formula: pass@k = 1− (n−c
k )
(nk)

where:

• n = total number of samples generated per problem
• c = number of correct solutions among them
• k = number of samples drawn (e.g., 5 for pass@5)

• In practice for pass@5:
• Generate 5 solutions for each problem
• Count as success if at least one solution is correct
• Average across all problems for overall pass@5 score

• Higher pass@k indicates better model performance
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Experiments

• Single direct prompt using the pass@k metric:
• AlphaCodium significantly outperforms the direct prompt

approach across both validation and test sets.
• For example, GPT-4’s pass@5 score on the validation set

improves from 19% to 44%, a 2.3x improvement.
• The improvement is consistent for both open-source

(DeepSeek) and closed-source (GPT) models.

• Comparison with prior works:
• AlphaCodium outperforms CodeChain when using the same

model (GPT-3.5) and metric (pass@5).
• AlphaCode employs a brute-force-like approach: fine-tuning an

unknown model, generating up to 100K code solutions,
clustering them, and submitting the top K clusters.
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Experiments

• Comparison with prior works (continued):
• Despite AlphaCode’s large-scale generation strategy,

AlphaCodium achieves better top results using significantly
fewer resources.

• Neither AlphaCode nor CodeChain released reproducible
open-source code or evaluation scripts, while AlphaCodium
provides a full reproducible solution to support consistent
future comparisons.

• Evaluation subtleties, such as handling multiple correct
solutions or timeouts, are addressed in AlphaCodium’s released
framework.
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Experiments

• Computational efficiency:
• AlphaCodium requires around 15–20 LLM calls per solution;

thus, a pass@5 submission uses approximately 100 LLM calls.
• AlphaCode’s pass@10@100K setup involves generating 100K

solutions and selecting 10, leading to an estimated 1 million
LLM calls.

• AlphaCodium achieves superior performance with four orders
of magnitude fewer LLM calls.

• AlphaCode2, using a fine-tuned Gemini-Pro model, claims over
10,000× greater sample efficiency than AlphaCode.

• Both AlphaCode2 and AlphaCodium achieve similar efficiency
improvements over AlphaCode, but AlphaCodium relies solely
on general-purpose models without extra training or
fine-tuning.
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Experiments
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Future Work

• The evaluation of each model-method pair is done over the
wholde dataset, CodeForces has a great scoring system that
assigns a difficulty ELO rating to each problem, calculating
pass@k score based on rating bounds could give better
insights into what works better for which difficulty of problem.

• Try the same experiment with Claude-3.7-sonnet which has
shown better competency in solving software engineering
problems.

• As it stands, AlphaCodium is completely automated and does
not involve any human intervention. Involving human
mathematical intuition to generate better test cases can lead
to better results.
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Conclusion

• The paper presents AlphaCodium, a code-oriented iterative
flow that improves code generation by running and fixing
generated code against input-output tests.

• The flow is divided into two main phases:
• Pre-processing phase: natural language reasoning about the

problem.
• Code iterations phase: iteratively refining code using public

and AI-generated tests.

• AlphaCodium incorporates several effective design practices:
• Structured output in YAML format.
• Modular code generation.
• Semantic reasoning using bullet point analysis.
• Soft decisions validated by double checks.
• Encouragement of solution exploration.
• Use of test anchors to guide iterations.
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Conclusion

• The approach was evaluated on the CodeContests dataset, a
challenging benchmark for code generation.

• AlphaCodium consistently improves performance across both
closed-source and open-source models.

• It outperforms prior works while using a significantly smaller
computational budget.
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Thank you!

Questions?
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