
Overview Dataset AlphaCodium proposed flow Code Oriented design concepts Experiments Conclusion References

Code Generation with AlphaCodium: From
Prompt Engineering to Flow Engineering

(paper presentation)

Akhoury Shauryam
Bijayan Ray

May 18, 2025

https://arxiv.org/pdf/2401.08500


Overview Dataset AlphaCodium proposed flow Code Oriented design concepts Experiments Conclusion References

Contents

Overview

Dataset

AlphaCodium proposed flow

Code Oriented design concepts

Experiments

Conclusion

References



Overview Dataset AlphaCodium proposed flow Code Oriented design concepts Experiments Conclusion References

Overview

• The paper addresses the challenge of enhancing code
generation by LLMs, which struggle with syntax accuracy and
handling problem-specific details.

• Code generation differs from typical natural language tasks
due to the need for exact syntax, handling edge cases, and
following detailed specifications.

• Techniques successful in natural language generation may not
work well for code generation.



Overview Dataset AlphaCodium proposed flow Code Oriented design concepts Experiments Conclusion References

Overview (Cont)

• The authors propose AlphaCodium, a test-based, multistage,
code-focused iterative method for improving code generation
by large language models.

• AlphaCodium was evaluated on the CodeContests dataset,
which includes competitive programming problems from
platforms like Codeforces.

• The approach significantly improves performance; for
instance, GPT-4’s pass@5 accuracy rose from 19% (with a
single prompt) to 44% using AlphaCodium.

• The insights and practices from AlphaCodium are considered
broadly useful for general code generation tasks.



Overview Dataset AlphaCodium proposed flow Code Oriented design concepts Experiments Conclusion References

Dataset

• CodeContests is a challenging dataset introduced by
DeepMind, sourced from competitive programming platforms
like Codeforces.

• It includes 10K code problems for training, and separate
validation (107 problems) and test sets (165 problems) for
evaluation.

• This work focuses on applying a code-oriented flow to existing
LLMs (e.g., GPT, DeepSeek) rather than training a new
model, using only the validation and test sets.

• Each problem provides a description and public tests; the
model must generate code that passes a hidden private test
set.



Overview Dataset AlphaCodium proposed flow Code Oriented design concepts Experiments Conclusion References

Dataset

• Key strengths of CodeContests:
• It includes ≈200 private tests per problem to ensure robustness

and prevent false positives.
• The problem descriptions are intentionally long and nuanced,

requiring attention to small but critical details.
• This setup better reflects real-world coding scenarios, which

often involve complex and detail-rich tasks.
• In contrast, simpler datasets like HumanEval contain shorter,

more straightforward problems.

• Effective problem understanding, supported by techniques like
self-reflection, improves clarity and increases the likelihood of
generating correct solutions.



Overview Dataset AlphaCodium proposed flow Code Oriented design concepts Experiments Conclusion References

Dataset



Overview Dataset AlphaCodium proposed flow Code Oriented design concepts Experiments Conclusion References

AlphaCodium proposed flow

• Common prompt engineering techniques (e.g., single prompts,
chain-of-thought) do not yield significant improvements for
code generation tasks like CodeContests.

• LLMs often fail to fully comprehend the problem, producing
incorrect or overfitted code that passes public tests but fails
on unseen ones.

• Natural language generation flows are suboptimal for code
generation tasks.

• Code generation tasks offer a unique advantage: the ability to
run and test code iteratively.

• AlphaCodium introduces a dedicated, iterative flow optimized
for code generation and testing.



Overview Dataset AlphaCodium proposed flow Code Oriented design concepts Experiments Conclusion References

AlphaCodium proposed flow

• The approach consists of two major phases:
• Pre-processing phase:

• Reflect on the problem in natural language.
• Perform public tests reasoning.
• Generate and rank 2-3 natural language solution strategies.
• Enrich public tests by generating 6-8 additional diverse

AI-generated tests.

• Code iterations phase:
• Generate an initial code solution based on the selected

strategy.
• Run the code on both public and AI tests, iterating and fixing

errors.
• Iterate further to fix code based on test failures and error

messages.



Overview Dataset AlphaCodium proposed flow Code Oriented design concepts Experiments Conclusion References

AlphaCodium proposed flow

• Detailed stages of the flow:
• Problem reflection: summarize the problem’s goal, inputs,

outputs, constraints, and rules in bullet points.
• Public tests reasoning: explain why each input yields the

corresponding output.
• Generate possible solutions: write 2-3 natural language

strategies.
• Rank solutions: select the best based on correctness,

simplicity, and robustness.
• Generate AI tests: create additional tests covering edge cases

and large inputs.



Overview Dataset AlphaCodium proposed flow Code Oriented design concepts Experiments Conclusion References

AlphaCodium proposed flow

Detailed stages of the flow (continued):
• Initial code solution:

• Choose a solution, generate corresponding code.
• Run code on selected tests, repeat until successful or try-limit

reached.
• Use the best-passing or closest-output code as a base.

• Iterate on public tests: run and fix code iteratively using
feedback from public tests.

• Iterate on AI-generated tests: repeat the run-fix process using
AI tests and test anchors.



Overview Dataset AlphaCodium proposed flow Code Oriented design concepts Experiments Conclusion References

AlphaCodium proposed flow

Additional insights:

• The flow supports knowledge accumulation, progressing from
easy to hard tasks.

• Pre-processing outputs help the more difficult code generation
stages.

• Generating test cases is easier for LLMs than writing complete
solutions.

• Additional AI tests improve generalization by targeting
underrepresented scenarios.

• Some stages can be combined in a single LLM call using
structured prompts.



Overview Dataset AlphaCodium proposed flow Code Oriented design concepts Experiments Conclusion References

AlphaCodium proposed flow (continued)



Overview Dataset AlphaCodium proposed flow Code Oriented design concepts Experiments Conclusion References

Code Oriented design concepts

• YAML structured output: The use of YAML format,
equivalent to a Pydantic class, provides a structured, code-like
way to present complex tasks.

• Simplifies prompt engineering by reducing ambiguity.
• Facilitates multi-stage, logical thinking processes.
• Preferred over JSON for code generation tasks due to better

readability and structure.

• Semantic reasoning via bullet points analysis: Encouraging
models to reason using bullet points improves understanding
and output quality.

• Bullet points help divide reasoning into semantic sections (e.g.,
description, rules, input, output).

• Leads to clearer and more structured problem analysis.



Overview Dataset AlphaCodium proposed flow Code Oriented design concepts Experiments Conclusion References

Code Oriented design concepts

• Modular code generation: LLMs perform better when asked
to generate code in modular sub-functions.

• Reduces logical errors and bugs.
• Enhances the effectiveness of iterative fixing by localizing

errors.

• Soft decisions with double validation: To address
hallucinations and errors in complex tasks, AlphaCodium uses
a double validation step.

• The model is asked to re-generate and correct its own output
instead of being queried with binary (yes/no) correctness
questions.

• Encourages deeper reasoning and self-correction.



Overview Dataset AlphaCodium proposed flow Code Oriented design concepts Experiments Conclusion References

Code Oriented design concepts

• Postpone decisions and leave room for exploration: Avoid
asking the model direct questions about complex problems
too early.

• Adopt a gradual process:
• Start with self-reflection and reasoning about public tests.
• Proceed to generate AI tests and explore possible solutions.
• Only then generate the code and perform run-fix iterations.

• Instead of selecting a single solution, rank multiple and explore
iterations from top-ranked options.

• This reduces the risk of hallucinations and premature
commitments.



Overview Dataset AlphaCodium proposed flow Code Oriented design concepts Experiments Conclusion References

Code Oriented design concepts

• Test anchors: Designed to address the uncertainty of whether
a failed test is due to incorrect code or an incorrect test.

• Begin with public tests (known correct) to form initial anchor
tests.

• Iterate through AI-generated tests, adding passing ones to the
anchor list.

• For failing tests, assume the code is incorrect, but ensure that
the fix still passes all anchor tests.

• This process protects against overfitting to faulty AI-generated
tests.

• An additional optimization involves sorting AI-generated tests
from easy to hard to build the anchor base early.



Overview Dataset AlphaCodium proposed flow Code Oriented design concepts Experiments Conclusion References

Code Oriented design concepts



Overview Dataset AlphaCodium proposed flow Code Oriented design concepts Experiments Conclusion References

Why YAML?

• YAML is superior to JSON for code generation tasks:
• Code often contains single quotes, double quotes, and special

characters that cause problems in JSON format
• JSON output must be surrounded by double quotes, requiring

complex escaping
• YAML with block scalar only requires proper indentation to be

valid

• Additional benefits of YAML:
• No need for curly brackets, quotations, or escape characters
• Results in fewer tokens compared to JSON
• Reduces cost and inference time
• Improves quality by allowing the model to focus on essential

content rather than syntax



Overview Dataset AlphaCodium proposed flow Code Oriented design concepts Experiments Conclusion References

Why YAML?



Overview Dataset AlphaCodium proposed flow Code Oriented design concepts Experiments Conclusion References

Evaluating Solutions

• When testing a solution against input, the comparison yields a
pass/fail result

• AlphaCodium also estimates the distance between generated
and expected outputs:

• For numeric outputs: Calculate L2 distance
• For arrays of numbers: Sum of L2 distances between

corresponding cells
• For arrays of strings: Count the number of non-identical cells

• This methodology provides a more nuanced assessment of
how close an incorrect solution is to being correct

• Helps prioritize which solutions to refine during iterative
improvement



Overview Dataset AlphaCodium proposed flow Code Oriented design concepts Experiments Conclusion References

The pass@k Metric

• pass@k is a standard evaluation measure for code generation
tasks

• Measures the probability that at least one of k generated
solutions is correct

• Formula: pass@k = 1− (n−c
k )
(nk)

where:

• n = total number of samples generated per problem
• c = number of correct solutions among them
• k = number of samples drawn (e.g., 5 for pass@5)

• In practice for pass@5:
• Generate 5 solutions for each problem
• Count as success if at least one solution is correct
• Average across all problems for overall pass@5 score

• Higher pass@k indicates better model performance



Overview Dataset AlphaCodium proposed flow Code Oriented design concepts Experiments Conclusion References

Experiments

• Single direct prompt using the pass@k metric:
• AlphaCodium significantly outperforms the direct prompt

approach across both validation and test sets.
• For example, GPT-4’s pass@5 score on the validation set

improves from 19% to 44%, a 2.3x improvement.
• The improvement is consistent for both open-source

(DeepSeek) and closed-source (GPT) models.

• Comparison with prior works:
• AlphaCodium outperforms CodeChain when using the same

model (GPT-3.5) and metric (pass@5).
• AlphaCode employs a brute-force-like approach: fine-tuning an

unknown model, generating up to 100K code solutions,
clustering them, and submitting the top K clusters.



Overview Dataset AlphaCodium proposed flow Code Oriented design concepts Experiments Conclusion References

Experiments

• Comparison with prior works (continued):
• Despite AlphaCode’s large-scale generation strategy,

AlphaCodium achieves better top results using significantly
fewer resources.

• Neither AlphaCode nor CodeChain released reproducible
open-source code or evaluation scripts, while AlphaCodium
provides a full reproducible solution to support consistent
future comparisons.

• Evaluation subtleties, such as handling multiple correct
solutions or timeouts, are addressed in AlphaCodium’s released
framework.



Overview Dataset AlphaCodium proposed flow Code Oriented design concepts Experiments Conclusion References

Experiments

• Computational efficiency:
• AlphaCodium requires around 15–20 LLM calls per solution;

thus, a pass@5 submission uses approximately 100 LLM calls.
• AlphaCode’s pass@10@100K setup involves generating 100K

solutions and selecting 10, leading to an estimated 1 million
LLM calls.

• AlphaCodium achieves superior performance with four orders
of magnitude fewer LLM calls.

• AlphaCode2, using a fine-tuned Gemini-Pro model, claims over
10,000× greater sample efficiency than AlphaCode.

• Both AlphaCode2 and AlphaCodium achieve similar efficiency
improvements over AlphaCode, but AlphaCodium relies solely
on general-purpose models without extra training or
fine-tuning.



Overview Dataset AlphaCodium proposed flow Code Oriented design concepts Experiments Conclusion References

Experiments



Overview Dataset AlphaCodium proposed flow Code Oriented design concepts Experiments Conclusion References

Experiments



Overview Dataset AlphaCodium proposed flow Code Oriented design concepts Experiments Conclusion References

Future Work

• The evaluation of each model-method pair is done over the
wholde dataset, CodeForces has a great scoring system that
assigns a difficulty ELO rating to each problem, calculating
pass@k score based on rating bounds could give better
insights into what works better for which difficulty of problem.

• Try the same experiment with Claude-3.7-sonnet which has
shown better competency in solving software engineering
problems.

• As it stands, AlphaCodium is completely automated and does
not involve any human intervention. Involving human
mathematical intuition to generate better test cases can lead
to better results.



Overview Dataset AlphaCodium proposed flow Code Oriented design concepts Experiments Conclusion References

Conclusion

• The paper presents AlphaCodium, a code-oriented iterative
flow that improves code generation by running and fixing
generated code against input-output tests.

• The flow is divided into two main phases:
• Pre-processing phase: natural language reasoning about the

problem.
• Code iterations phase: iteratively refining code using public

and AI-generated tests.

• AlphaCodium incorporates several effective design practices:
• Structured output in YAML format.
• Modular code generation.
• Semantic reasoning using bullet point analysis.
• Soft decisions validated by double checks.
• Encouragement of solution exploration.
• Use of test anchors to guide iterations.



Overview Dataset AlphaCodium proposed flow Code Oriented design concepts Experiments Conclusion References

Conclusion

• The approach was evaluated on the CodeContests dataset, a
challenging benchmark for code generation.

• AlphaCodium consistently improves performance across both
closed-source and open-source models.

• It outperforms prior works while using a significantly smaller
computational budget.



Overview Dataset AlphaCodium proposed flow Code Oriented design concepts Experiments Conclusion References

References

• Ridnik, Tal, Dedy Kredo, and Itamar Friedman. “Code
generation with AlphaCodium: From prompt engineering to
flow engineering.” arXiv preprint arXiv:2401.08500 (2024).



Overview Dataset AlphaCodium proposed flow Code Oriented design concepts Experiments Conclusion References

Thank you!

Questions?


	Overview
	Dataset
	AlphaCodium proposed flow
	Code Oriented design concepts
	Experiments
	Conclusion
	References

