
Algorithmic Coding theory presentation report:

Noisy interpolating sets for low degree polynomials by Dvir Shpilka

Bijayan Ray

January 9, 2024

1 The problem

The main problem is to determine the NIS which is defined below 1.1 formally, in an efficient manner.

Definition 1.1. S = (a1, · · · am) ∈ (Fn)m be a list of points in Fn. We say that S is an
(n, d, ϵ)-Noisy interpolating set (NIS) if there exists an algorithm AS such that for every q ∈
Fd[x1, · · ·xn] and for every vector e = (e1, · · · em) ∈ Fm such that | {i ∈ [m] : ei ̸= 0} | ≤ ϵ ·m, the
algorithm AS, when given an input the list of values (q(a1) + e1, · · · , q(am) + em), outputs the
polynomial q (as a list of coefficients). We say that S is a proper NIS if the points a1, · · · am are
distinct. If S is a proper NIS we can treat it as a subset S ⊂ Fn.

We are also interested in looking at the asymptotic version of our problem which is why we define a sequence
of such sets as follows:

Definition 1.2. S = (S(n))n∈N be a sequence such that for every n ∈ N we have that S(n) is an
(n, d, ϵ)-NIS. We say that S has an efficient interpolation algorithm if there exists a polynomial
time algorithm M(n,L) that takes an input an integer n and a list L of values in F such that the
restriction M(, ·) has the same behaviour as the algorithm AS(n) described above.

Problem 1.1. The problem is to compute the NIS of a set of d-degree polynomials efficiently.

2 Main theorems

First we introduce a couple of notations:

Definition 2.1. 1. Set addition

A+B = {a+ b|a ∈ A, b ∈ B}

2. A⊞B is the list defined as:

A⊞B = (ai + bj)i∈[m],j∈[l] ∈ (Fn)ml

The main theorem of the paper [DS08] that we have elucidated in the presentation and in this report is:

1

Theorem 2.1 (NIS). Consider 0 < ϵ1 ≤ 1/2 be a real number and S1 be an (n, 1, ϵ1)-NIS and
for each d > 1 take Sd = Sd−1 ⊞ S1. Then for every d > 1 the set Sd is an (n, d, ϵd)-NIS with
ϵd = (ϵ/2)d. Moreover, if S1 has an efficient interpolation algorithm, then so does Sd.

Here is an interesting result that follows from the theorem:

Corollary 2.1 (NIS). For every prime field F and for every d > 0 there exists an ϵ > 0 and a
collection S = (Sn)n∈N such that for every n ∈ N, S(n) is an (n, d, ϵ)-NIS and such that S has

an efficient interpolation algorithm. Moreover, for each n ∈ N we have |S(n)| = O(nd) and it is
possible to generate the set S(n) in time poly(n).

Proof. In order to prove corollary 2.1, we just need to construct, for all n an (n, 1, ϵ)-NIS S
(n)
1 with an

efficient interpolation algorithm and ϵ which does not depend on n. The corollary will then follow using
theorem 2.1.

To construct S1 we take a good collection of linear codes {Cn}, where Cn is an [mn, n, kn]-code over
F that has an efficient decoding algorithm that can decode a constant fraction of errors and such that the
generating matrix of Cn is found in polynomial time (which are known to exist from the result in [MS77]).

Now take a1 · · · amn ∈ Fn be the rows of its generating matrix. We define S
(n)
1 to be the list of points

(a1, · · · amn
, b1, · · · , bmn

), where for each j ∈ [mn] we set bj = 0. That is, S
(n)
1 contains the rows of the

generating matrix of a good code, together with the points 0, taken with multiplicity mn. Lemma 3.3 now

shows that S
(n)
1 satisfies the required conditions.

In order to state the next main result in the paper (which we have not elaborated here) we formally state
the star condition.

Definition 2.2 (Condition ⋆k). Consider S ∈ Fn, S = {0} and for each d ≥ 1 consider
Sd = Sd−1 + S. Consider k > 0 be an integer. For each x ∈ Sd consider Nd(x) =
| {b ∈ S|s ∈ Sd−1 + b} |. We say that S satisfies condition ⋆k if for every 0 < d ≤ k we have

| {x ∈ Sd|Nd(x) > d} | ≤ |Sd−2|

condition satisfied.

Equipped with this condition we are now ready to state the next main result about proper NIS in the paper
which we don’t include in details in this report, and interested readers can refer to the main paper [DS08].

Theorem 2.2 (Proper-NIS). Consider 0 < ϵ1 ≤ 1/2 be a real number and k > 0 be an integer.
There exists a constant C0, depending only on ϵ and k, such that for all n > C0 the following
holds: For every proper (n, 1, ϵ1)-NIS set S1 and for each d > 1 denote Sd = Sd−1 + S1. Suppose
S1 satisfies the condition ⋆s (definition 2.2). Then for every 1 < d ≤ k the set Sd is a (proper)
(n, d, ϵd)-NIS with

ϵd =
1

d!
·
(ϵ1
3

)d

Moreover, if S1 has an efficient interpolation algorithm, then so does Sd.

Proof. The proof of this result is not included in here, however one can refer the main paper [DS08]: proof
of theorem 2 section.

2

3 Preliminaries

Lemma 3.1. Take q ∈ Fd[x1, · · ·xn] and qd be its homogenous part of degree d and a, b are
elements of Fn then

q(x+ a)− q(x+ b) = ∂qd(x, a− b) + E(x)

where deg(E) ≤ d− 2. In other words, the directional derivative of qd in direction a− b is given
by the homogenous part of degree d− 1 in the difference q(x+ a)− q(x+ b)

Proof (sketch). Note that it is enough to prove the lemma for the case q is a monomial of degree d and then
the result follows from linearity and from the fact that derivatives of all monomials in q are of degree smaller
than d at most d− 2. Then taking M(x) =

∏
i x

ci
i and observing

M(x+ a) = M(x) +
∑
i

ai ·
∂M

∂xi
(x) + E1(x) with deg(E1) ≤ d− 2

and then considering M(x+ b)−M(x+ a) the result follows

Lemma 3.2. Take q ∈ Fd[x1, · · ·xn]. Given the vector of partial derivatives ∆q(x), it is possible
to reconstruct q in polynomial time.

Proof (sketch). The idea is to go over all monomials of degree ≤ d and find out the coefficients they have
in q as: For every monomial M , take i the first index such that xi appears in the M with positive degree.
Consider ∂q

∂xi
(x) and check whether the coefficient of the derivative of that monomial is zero or not. And to

get the coefficient in q we divide that by the degree of xi in the monomial.

Lemma 3.3. C is an [m,n, k] code over F such that C has an efficient decoding algorithm that
can correct an α-fraction of errors. For i ∈ [m] suppose ai ∈ Fn be the ith row of the generating
matrix of C. Then,

1. S0 = (a1, · · · , am, 0, · · · 0) ∈ (Fn)2m. Then S0 is an (n, 1, α/2)-NIS with an efficient inter-
polation algorithm.

2. S = (a1, · · · , am) ∈ (Fn)m and suppose that the maximal hamming weight of a codeword in
C is smaller than (1 − 2α) · m. Then S is an (n, 1, α)-NIS with an efficient interpolation
algorithm.

Proof (sketch). 1. The idea is to first take a degree of one polynomial q. The interpolation algorithm for
S0 will work as:

First look at the values of q(x) on the last m points(the zeroes). The majority of these values will
be q(0) which will give us the constant term in q. Take q1(x) = q(x) − q(0) is the linear part of q
and this reduces to the problem of recovering the homogeneous linear function q1 form its values on
(a1, · · · , am) with at most α ·m errors. This task is achieved using the decoding algorithm for C, since
the vector (q1(a1), · · · , q(am)) is just the encoding of the vector of coefficients of q1 with the code C.

2. In this take (v1, · · · vm) ∈ F be the list of input values given (vi = q(ai) for a 1 − α fraction of the
is). Then we go over all p = |F| possible choices for q(0) and for each ”guess” c ∈ F do: Subtract

3

c from the values (v1, · · · vm) and then use the decoding algorithm of C to decode the vector Vc =
(v1 − c, · · · , vm − c). Clearly, for c = q(0) this procedure will give the list of coefficients of q(x) as
output. So we are just required to find which invocation of the decoding algorithm is the correct one.

Say the decoding algorithm, on input Vc, returns a linear polynomial qc(x) (there is no constant term).
We can then check to see whether qc(ai) + c is indeed equal to vi for a 1− α fraction of the is. If we
can show that this test succeeds only for a single c ∈ F then we are done and the lemma shall follow.
So to prove that, suppose on the contrary that there are two linear polynomials qc(x) and qc′(x) such
that both agree with a fraction 1 − α of the input values. This means that there exist two codeword
Wc,Wc′ ∈ Fm in C such that dist(Vc,Wc) ≤ α ·m and dist(Vc′ ,Wc′) ≤ α ·m which implies that

dist(Vc − Vc′ ,Wc −Wc′) ≤ 2α ·m

Now the vectors Vc − Vc′ has the value c′ − c ̸= 0 in all of its coordinates and so we get that the
hamming weight of the codeword Wc −Wc′ is at least (1− 2α) ·m contradicting the properties of C.

4 Proof of Theorem 2.1

In this section we finally present the proof of the theorem 2.1.

Proof. Take S1 = (a1, · · · am) ∈ (Fn)m be an (n, 1, ϵ1)-NIS of size |S1| = m and Sd−1 = (b1, · · · br) ∈ (Fn)r

be an (n, d − 1, ϵd−1)-NIS of size |Sd−1| = r and Ad−1 and A1 be interpolation algorithms for Sd1
and S1

respectively. Take Sd = Sd−1 ⊞ S1. We shall prove the theorem by showing that Sd has an interpolation
algorithm that makes at most a polynomial number of calls to Ad−1 and to A1 and can ”correct” a fraction
ϵd = ϵ1·ϵd−1

2 of errors.
So fix, q ∈ Fd[x1, · · ·xn] to be some degree d polynomial and qd be its homogeneous part of degree d.

Now denote Sd = (c1, · · · cmr) where each ci ∈ Fn. We also denote by e = (e1, · · · emr) ∈ Fmr the list of
”errors”, so that | {i ∈ [mr]|e ̸= 0} | ≤ ϵd ·mr. The list Sd can be partitioned in a natural way into all the
”shifts” of the list Sd−1. Now define for each i ∈ [m] the list Ti = (b1 + ai, · · · br + ai) ∈ (Fn)r. We thus have
that Sd is the concatenation of T1, · · ·Tm. Partition the list of errors in a similar way into m lists.

We say that index i is good if |
{
j ∈ [r]|e(i)j ̸= 0

}
| ≤ (ϵd−1/2) · |Ti| = (ϵd−1/2) · r. Denote E :=

{i ∈ [m]|i is bad}. From the bound on the total number of errors we get that |E| ≤ ϵ1 ·m.
The idea of the algorithm is, in the first step we look at all pairs (Ti, Tj) and from each one attempt

to reconstruct, using Ad−1, the directional derivative ∂qd(x,ai − aj). We will claim that this step gives the
correct output for most pairs (Ti, Tj). In the next step we take all the directional derivatives obtained in the
first step and from them reconstruct, using A1, the vector of derivatives ∆qd(x) and so also recover qd(x). In
the last step of the algorithm we recover the polynomial q≤d−1(x) = q(x) − qd(x), again using Ad−1 which
shall give us q(x) = q≤d−1(x) + qd(x).

The algorithm

Step 1 Take i ̸= j ∈ [m] be two good indices as defined above, we shall show how to reconstruct ∂qd(x, ai−aj)

from the values in Ti, Tj . Recall that we have the list of values Li =
(
q(b1 + ai) + e

(i)
1 , · · · q(br + ai) + e

(i)
r

)
and define:

Lij := Li − Lj =

(
q(b1 + ai)− q(b1 + aj) + e

(i)
1 − e

(j)
1 , · · · , q(br + ai)− q(br + aj) + e(i)r − e(j)r

)
and observe that since i and j are both good we have that the terms e

(i)
l and e

(j)
l is non zero for

at most ϵd−1 · r values of l ∈ [r]. Therefore, we can use algorithm Ad−1 to recover the degree d − 1
polynomials Qij(x) − q(x + ai) − q(x + aj) from the list Lij . From lemma 3.1 we see that throwing
away all monomials of degree less than d− 1 in Qij leaves us with ∂qd(x, ai − aj). On carrying out the

4

first step for all pairs (Ti, Tj) and obtaining
(
m
2

)
homogeneous polynomials of degree d− 1, we denote

them by Rij(x). Now since we know that i and j are both good we get

Rij(x) = ∂qd(x, ai − aj)

Step 2 In this step we take the polynomialsRij obtained in the first step and recover from them the polynomials
∆qd(x) (after which using lemma 3.2 shall give us qd(x)). Denote the set of degree d− 1 monomials is
indexed by the set Id−1 = {(α1, · · · , αn)|αi ≥ 0, α1 + · · ·+ αn = d− 1}. We denote xα =

∏
i x

αi
i annd

coef(xα, h) the coefficient of the monomial xα in a polynomial h(x). Take α ∈ Id−1 and define the
degree 1 polynomial

Uα(y1, · · · yn) =
n∑

l=1

coef

(
xα,

∂qd
∂xl

)
yl

Now observe that

∂qd(x, ai − aj) =

n∑
l=1

(ai − aj)l ·
∂qd
∂xl

(x)
∑

α∈Id−1

xα · Uα(ai − aj)

Therefore, for each pair i, j such that i and j are good we can get the (correct) values Uα(ai − aj) for
all α ∈ Id1

by observing the coefficients of Rij .

Now fix some α ∈ Id−1 and using the procedure implied above for all pairs i ̸= j ∈ [m], we get
(
m
2

)
values uij ∈ F such that if i and j are good then uij = Uα(ai − aj). We now recover Uα from uijs.
Repeating this procedure for all α ∈ Id−1 shall give ∆qd(x).

Since α is fixed apriori, we denote U(y) = Uα(y). We have a list of values (uij)i,j∈[m] such that there
exists a set E = {i ∈ [m]|i is bad}of size |E| ≤ ϵ1 · m such that if i and j are not in E then uij =
U(ai−aj). Now partition the list (uij) according to the index j into disjoint lists: Bj = (u1j , · · · , umj).
If j /∈ R then the list Bj contains the values of the degree 1 polynomials Uj(y) = U(y − aj) on the set
S1 with at most ϵ1 ·m errors (that is the errors will correspond to indices i ∈ E). Therefore, we can
use A1 in order to reconstruct Uj , and from it U . Now our ”problem” is that we do not know which js
are good. This problem can be solved by applying the above procedure for all j ∈ [m] and then taking
the majority vote. Since all good js will return the correct U(y) we will have a clear majority of at
least a 1− ϵ1 fraction. Combining all of the above gives us the polynomial qd(x) and thus completing
this step.

Step 3 Now we have recovered qds from the previous steps, so we now abstract out the value qd(ci) from the
input list of values (which are values of q(x) on Sd, with ϵd fraction of errors ”noise”). This reduces us
to the problem of recovering the degree d − 1 polynomial q≤d−1 = q(x) − qd(x) from its values in Sd

with a fraction ϵd of errors. But this can be solved by using the algorithm Ad−1 (recall 4) on the values
in each list Tj and then taking the majority. Since for good js Tj contains at most ϵd−1 · r errors, and
since there are more than half good js, we will get a clear majority and so be able to recover q≤d−1.

5 References

References

[DS08] Zeev Dvir and Amir Shpilka. “Noisy interpolating sets for low degree polynomials”. In: 2008 23rd
Annual IEEE Conference on Computational Complexity. IEEE. 2008, pp. 140–148.

[MS77] Florence Jessie MacWilliams and Neil James Alexander Sloane. The theory of error-correcting codes.
Vol. 16. Elsevier, 1977.

5

	The problem
	Main theorems
	Preliminaries
	Proof of Theorem 2.1
	References

