J. reine angew. Math. 590 (2006), 227-230

Tannakian Krull-Schmidt reduction

By V. Balaji at Chennai, I. Biswas at Mumbai and D. S. Nagaraj at Chennai

Abstract. In this continuation of [BBN] we show that the theory of Tannakian categories gives a very transparent construction of the reduction of structure group, obtained in [BBN], of principal bundles. In fact, a more general construction which is valid for all algebraically closed fields is given. \Box

Let k be an algebraically closed field of arbitrary characteristic. Let M be a quasiprojective variety defined over k such that $M \cong \overline{M} \setminus S$, where \overline{M} is a projective variety and S a subscheme with $\operatorname{codim}(S) \ge 2$. Let G be a linear algebraic group defined over k. The category of finite dimensional left G-modules will be denoted by $\operatorname{Rep}(G)$.

Let E_G be a principal G-bundle over M. Let $Aut(E_G)$ denote the reduced algebraic group defined by the space of all (global) automorphisms of E_G . Fix a reduced abelian algebraic subgroup

(1)
$$\mathscr{T} \subset \operatorname{Aut}(E_G).$$

Take any $V \in \text{Rep}(G)$. Let $E_V = E_G(V) = (E_G \times V)/G$ be the vector bundle associated to E_G for the *G*-module *V*. Any automorphism of E_G gives an automorphism of the associated vector bundle E_V . Therefore, we have a homomorphism of algebraic groups

(2)
$$\rho: \mathscr{T} \to \operatorname{Aut}(E_V),$$

where \mathcal{T} is the subgroup in (1). Since \mathcal{T} is abelian, we have a direct sum decomposition

(3)
$$E_V = \bigoplus_{i=1}^n E_V^{\lambda_i},$$

where λ_i , $i \in [1, n]$, are the distinct characters of \mathscr{T} given by the distinct eigen-values of $\rho(\mathscr{T})$ (the homomorphism ρ is defined in (2)), and $E_V^{\lambda_i}$ is the generalized eigen-bundle for the eigen-character λ_i . Since M does not admit any nonconstant regular function, the characteristic polynomial for any endomorphism of E_V remains unchanged over M. Using this the decomposition in (3) is obtained.

Let $W \in \operatorname{Rep}(G)$ be a *G*-module, and let

(4)
$$\eta: V \to W$$

be a homomorphism of G-modules. This homomorphism η induces a homomorphism of associated vector bundles

(5)
$$\hat{\eta}: E_V \to E_W := (E_G \times W)/G.$$

Let

(6)
$$E_W = \bigoplus_{i=1}^m E_W^{\lambda_i^i}$$

be the decomposition constructed as in (3). It is straight-forward to check that for each $i \in [1, n]$ in (3), one of the following two holds:

(a) $\lambda_i = \lambda'_i$ for some $j \in [1, m]$, and furthermore, $\hat{\eta}(E_V^{\lambda_i})$ is a subbundle of $E_W^{\lambda'_i}$;

(b)
$$\hat{\boldsymbol{\eta}}(E_V^{\lambda_i}) = 0.$$

Consider the category $\mathscr{E}(\mathscr{T})$ of all vector bundles over M of the form $E_V^{\lambda_i}$ (see (3)) with V running over $\operatorname{Rep}(G)$. So $\mathscr{E}(\mathscr{T})$ consists of eigen-bundles for all vector bundles associated to E_G . For objects $E_V^{\lambda_i}$ and $E_W^{\lambda_j'}$ in $\mathscr{E}(\mathscr{T})$ as in (3) and (6) respectively, a morphism from $E_V^{\lambda_i}$ to $E_W^{\lambda_j'}$ is a homomorphism of vector bundles induced by $\hat{\eta}$ (see (5)) for some η as in (4). The category $\mathscr{E}(\mathscr{T})$ is equipped with direct sum and tensor product operations in an obvious way. It is easy to see that $\mathscr{E}(\mathscr{T})$ is an abelian category.

Now fix a k-rational point $x_0 \in M$. For any fiber bundle E over M, its fiber over x_0 will be denoted by E_{x_0} . We have a fiber functor defined on $\mathscr{E}(\mathscr{T})$ that sends any vector bundle E in $\mathscr{E}(\mathscr{T})$ to the k-vector space E_{x_0} .

It is easy to check that the above defined category $\mathscr{E}(\mathscr{T})$ equipped with the above fiber functor is a Tannakian category. Therefore, it defines an affine group scheme defined over k[No], Section 2.1, Theorem 1.1, [Sa], Theorem 1. Let $\mathscr{G}(\mathscr{T})$ denote the affine group scheme defined over k given by the Tannakian category $\mathscr{E}(\mathscr{T})$. We will see that $\mathscr{G}(\mathscr{T})$ is isomorphic to a subgroup scheme of G.

For any affine algebraic group scheme H defined over k, there is a bijective correspondence between the principal H-bundles over M and the functors that sends H-modules to vector bundles over M satisfying certain conditions; the functor corresponding a principal H-bundle E_H sends any H-module V to the vector bundle $E_H(V)$ associated to E_H for V (see [No], Section 2.2 for the details). There is a tautological principal $\mathscr{G}(\mathscr{T})$ -bundle over M that sends any E in $\mathscr{E}(\mathscr{T})$ to the underlying vector bundle E.

The above constructions are summarized in the following proposition:

Proposition 0.1. Let G be a linear algebraic group defined over an algebraically closed field k. Let M be a quasi-projective variety defined over k which is the complement of a subscheme of codimension at least two in a projective variety. Let E_G be a principal G-bundle over M and \mathcal{T} a reduced abelian algebraic subgroup of the reduced algebraic group defined by the automorphisms of E_G . Then there is an associated affine algebraic group scheme $\mathscr{G}(\mathcal{T})$ defined over k and a principal $\mathscr{G}(\mathcal{T})$ -bundle $E_{\mathscr{G}(\mathcal{T})}$ over M. Let $\operatorname{Ad}(E_G) = E_G(G) := (E_G \times G)/G$ be the adjoint group scheme over M. The fibers of $\operatorname{Ad}(E_G)$ are groups isomorphic to G. The group $\operatorname{Ad}(E_G)_{x_0}$ has the following Tannakian description:

Let \mathscr{E} denote the category of all vector bundles associated to E_G . A morphism between two associated vector bundles E_V and E_W , associated to $V, W \in \text{Rep}(G)$, is a vector bundle homomorphism given by a *G*-module homomorphism between *V* and *W*. The fiber functor sends an associated vector bundle E_V to its fiber $(E_V)_{\infty}$.

Note that \mathscr{E} is identified with the category $\operatorname{Rep}(G)$. However, the fiber functor on the category $\operatorname{Rep}(G)$ defining the group G sends a G-module V to the underlying vector space V. So G and $\operatorname{Ad}(E_G)_{x_0}$ differ in the fiber functor, although their underlying tensor categories coincide.

Comparing the above description of $\operatorname{Ad}(E_G)_{x_0}$ with that of the group scheme $\mathscr{G}(\mathscr{T})$ in Proposition 0.1 it follows immediately that there is a tautological homomorphism

(7)
$$\tau: \mathscr{G}(\mathscr{T}) \to \mathrm{Ad}(E_G)_{\chi_0}$$

From a criterion, given in [DM], p. 139, Proposition 2.21, for a closed immersion it follows immediately that the homomorphism τ in (7) is a closed immersion.

Using τ , the principal $\mathscr{G}(\mathscr{T})$ -bundle $E_{\mathscr{G}(\mathscr{T})}$ in Proposition 0.1 gives a principal $\operatorname{Ad}(E_G)_{x_0}$ -bundle over M. This principal $\operatorname{Ad}(E_G)_{x_0}$ -bundle will be denoted by $E_{\operatorname{Ad}(E_G)_{x_0}}$.

Fix a k-rational point $z_0 \in (E_G)_{x_0}$. Using z_0 we have an isomorphism

$$f_{z_0}: G \to \operatorname{Ad}(E_G)_{x_0}$$

defined by $g \mapsto [(z_0, g)]$ (recall that $\operatorname{Ad}(E_G)$ is a quotient of $E_G \times G$). It is easy to see that the principal *G*-bundle $E_{\operatorname{Ad}(E_G)_{x_0}}(f_{z_0}^{-1})$ over *M*, given by the principal $\operatorname{Ad}(E_G)_{x_0}$ -bundle $E_{\operatorname{Ad}(E_G)_{x_0}}$ using the homomorphism $f_{z_0}^{-1}$, is the principal *G*-bundle E_G . Indeed, this follows from the fact that for any $V \in \operatorname{Rep}(G)$, the associated vector bundle E_V is the vector bundle associated to $E_{\operatorname{Ad}(E_G)_{x_0}}(f_{z_0}^{-1})$ for the *G*-module *V*. Therefore, the principal $\mathscr{G}(\mathscr{F})$ -bundle $E_{\mathscr{G}(\mathscr{F})}$ is a reduction of structure group of E_G to the subgroup scheme $\mathscr{G}(\mathscr{F}) \subset \operatorname{Ad}(E_G)_{x_0} = G$.

If the base point z_0 in $(E_G)_{x_0}$ is replaced by z_0h , where $h \in G$, then the subgroup scheme $\mathscr{G}(\mathscr{T}) \subset G$ gets replaced by $h^{-1}\mathscr{G}(\mathscr{T})h$, and the reduction of structure group

(8) $E_{\mathscr{G}(\mathscr{F})} \subset E_G$

gets replaced by $E_{\mathscr{G}(\mathscr{T})}h$.

Set the subgroup \mathcal{T} in (1) to be a maximal torus of $\operatorname{Aut}(E_G)$. Since any two maximal tori are conjugate by some element of $\operatorname{Aut}(E_G)$, the corresponding reduction of structure group in (8) is independent of the choice of the maximal torus up to an automorphism of E_G . In other words, any two such reductions differ by an automorphism of E_G . When the characteristic of k is zero and G is reductive, this coincides with the reduction of structure group constructed in [BBN], Theorem 3.2.

References

- [BBN] V. Balaji, I. Biswas, and D. S. Nagaraj, Krull-Schmidt reduction for principal bundles, J. reine angew. Math. 578 (2005), 225-234.
- [DM] P. Deligne and J. S. Milne, Tannakian Categories, in: Hodge cycles, motives, and Shimura varieties, Lect. Notes Math. 900, Springer-Verlag, Berlin-Heidelberg-New York (1982), 101–228.
- [No] M. V. Nori, The fundamental group scheme, Proc. Ind. Acad. Sci. (Math. Sci.) 91 (1982), 73–122.
- [Sa] N. Saavedra Rivano, Catégories Tannakiennes, Lect. Notes Math. 265, Springer-Verlag, Berlin-Heidelberg-New York 1972.

Chennai Mathematical Institute, 92, G.N. Chetty Road, Chennai 600017, India e-mail: balaji@cmi.ac.in

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India e-mail: indranil@math.tifr.res.in

The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India e-mail: dsn@imsc.ernet.in

Eingegangen 15. Mai 2005