
This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

Contemporary Mathematics

Parabolic Bundles on Algebraic Surfaces II - Irreducibility of
the Moduli Space

V. Balaji and A. Dey

To Professor Ramanan on his 70th birthday

Abstract. In this paper we prove irreducibility of the moduli space of par-
abolic rank 2 bundles over an algebraic surface for c2 � 0 and with an irre-
ducible parabolic divisor D of X. This gives parabolic analogues of theorems
of O’Grady and Gieseker-Li.

1. Introduction

Let X be a smooth projective surface over the ground field C of complex num-
bers and let D be a smooth irreducible divisor. Let H be a very ample line bundle
on X which we fix throughout. We study bundles with c1 = 0 in this paper.

We denote by Mα
k,d the moduli space of parabolic H–stable parabolic bundles of

rank 2 with parabolic structure on D together with rational weights α := (α1, α2)
(see (2.4) and (2.5) for the definition of the invariant d) and where k stands for the
second Chern class c2 of a vector bundle.

In [3], the Donaldson-Uhlenbeck compactification Mα
k,d of the moduli space

Mα
k,d was constructed as a projective variety by realizing it as the closure of Mα

k,d

in a certain projective scheme Mα
k,d endowed with the reduced scheme structure; it

was also shown to be non-empty for large k. There are also obvious bounds on the
invariant d for quasi-parabolic structures to exist.

Let MH(2, c1, c2) (resp. MH(2, c1, c2)
s) denote the moduli space of H-semi-

stable (resp. stable) torsion free sheaves of rank 2 whose Chern classes are c1 and
c2 respectively.

Since the topological type of the bundles is fixed for the problem as also is the
ample polarization H, we will have the following convenient notations:

Ms
α := Mα

k,d; Mα := Mα
k,d

and
Ms := MH(2, 0, c2)

s.
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2 V. BALAJI AND A. DEY

We carry the weight tuple α as a part of the notation since this parameter will
be varied in the arguments and the moduli spaces will be compared for differing
weights.

We say a moduli space as above is asymptotically irreducible if it is irreducible
for c2 � 0, i.e the second Chern class of the bundle underlying the parabolic
bundle is large. In particular we do not quantify c2 when we address the question
of asymptotic irreducibility.

In this paper we prove asymptotic irreducibility of the moduli space Mα when
obvious bounds are imposed on d for the existence of quasi-parabolic structures.
These moduli spaces for rank 2 have been studied from a differential geometric
standpoint in [12] where k = c2 stands for the “instanton number”.

Our theorem generalizes the theorem of Gieseker-Li and O’Grady ([6] and [16])
to the parabolic case. The parabolic case has been of independent interest; for
example, in [14] Maruyama has shown links between the parabolic moduli spaces
for special parabolic weights and the moduli space of instantons. Maruyama uses
these links to prove irreducibility of some of these spaces.

The assumptions on the parabolic divisor, rank and full flag quasi-parabolic
structure can be relaxed; one could take the parabolic divisor to be a divisor with
simple normal crossings and the bundles to be of arbitrary rank and any quasi-
parabolic type. We have made the special choices to make the paper more readable.
The choice of rational weights is the natural one and real weights are really an
artifice and do not occur in the classical setting. In any case this is not a serious
issue as far as the question of irreducibility of the moduli space is concerned since
the “yoga of parabolic weights” allows us to deduce geometric statements for moduli
spaces with real weights from those with nearby rational weights.

The assumption on large second Chern class is what makes the statement an
asymptotic one; the result is shown only for large c2.

Acknowledgements: We wish to thank S. Bandhopadhyay for many helpful discussions

while this paper was getting prepared. The second author wishes to thank the Institute

of Mathematical Sciences, Chennai and the Chennai Mathematical Institute for their

hospitality while this work was being done. Finally we wish to express our grateful thanks

to the diligent referee for correcting the innumerable errors in the earlier versions and

helping us improve the exposition.

2. Preliminaries

Our basic tool is the Seshadri-Biswas correspondence between the category of
parabolic bundles on X and the category of Γ–bundles on a suitable Kawamata
cover. This strategy has been employed in several papers. Most of the material
written in this section is taken from §2 of [3] and the reader will find details of the
Seshadri-Biswas correspondence in this reference. However in this note we are only
interested in the rank 2 case, and we will give definitions in the rank 2 case alone
and lay stress on those points which are relevant to our purpose.

2.1. The category of bundles with parabolic structures. Let X be
a smooth projective surface over the ground field C and let D be an irreducible
smooth divisor in X. Let H be a very ample line bundle on X.
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Definition 2.2. Let E be a rank 2 torsion-free sheaf on X. A parabolic
structure (with respect to D) on E is a filtration (quasi–parabolic structure)

(2.1) E∗ : E = F1(E) ⊃ F2(E) ⊃ F3(E) = E ⊗OX(−D)

together with a system of weights

0 ≤ α1 < α2 < 1

where αi is the weight associated with F i(E).

(See [12, Section 8] where the weights are given in [− 1
2 ,

1
2 ) following the balanced

convention.)
We will use the notation E∗ to denote a parabolic sheaf and by E (without the

subscript “∗”) when it is without its parabolic luggage. The notation E∗ therefore
carries the data of the weight tuple α as well. A parabolic sheaf E∗ is called a
parabolic bundle if the underlying sheaf E is a vector bundle.

2.3. Some assumptions. The class of parabolic vector bundles that are dealt
with in the present work satisfy certain constraints which will be explained now.

(2.2) All parabolic weights are rational numbers.

(2.3) F1(E)/F2(E) is torsion-free as a sheaf on D.

We need to impose these in order to have the Seshadri–Biswas correspondence (cf.
[3, Remark 2.3] for details). Henceforth, all parabolic vector bundles will be assumed
to have the constraints (2.2) and (2.3).

Also note that the filtration (2.1) is equivalent to a filtration on E |D given by

(2.4) E |D= F1
D(E) ⊃ F2

D(E) ⊃ F3
D(E) = 0.

To see this, simply define

F i(E) = ker

(
E → E |D

F i
D(E)

)
.

In the notation Mα
k,d in the introduction, the numerical invariant d is given by

(2.5) d = c1(F2
D(E)).D.

The slope of a rank 2 parabolic sheaf E∗ is defined as

(2.6) μα(E∗) =
[c1(E) + (α1 + α2)D] ·H

2
.

Let PVect(X,D) denote the category whose objects are rank 2 parabolic vector
bundles over X with parabolic structure over the divisor D satisfying (2.2) and
(2.3), and whose morphisms are homomorphisms of parabolic vector bundles (see
[3] for more detail).

For an integer N ≥ 2, let PVect(X,D,N) ⊆ PVect(X,D) denote the subcat-
egory consisting of all parabolic vector bundles all of whose parabolic weights are
multiples of 1/N .

Let E∗ be a rank 2 parabolic bundle on X with parabolic weight (α1, α2). Let
L be a line subbundle of E, the underlying bundle of the parabolic bundle E∗. The
parabolic weights on E∗ induces a parabolic weight on L denoted by αL; αL equals

9
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α2 if L ⊂ F2
D(E), and is α1 otherwise. Denote this parabolic line bundle with this

induced structure by L∗. The slope of this parabolic line bundle L∗ is given by

(2.7) μαL
(L∗) = (c1(L) + αLD) ·H.

It is not hard to check that for the purposes of stability it suffices to worry about
parabolic line subbundles L∗ of a rank 2 parabolic bundle E∗ which are obtained
from a line subbundle L of E with a weight αL defined as above. The parabolic
bundle E∗ is α-stable (resp. α-semi–stable) if

(2.8) μαL
(L∗) < μα(E∗) (resp. ≤)

for all parabolic line subbundles L∗ of E∗.

2.4.The Kawamata covering lemma. LetD ⊂ X be an irreducible divisor.
Take any E∗ ∈ PVect(X,D) such that all the parabolic weights of E∗ are multiples
of 1/N , i.e. E∗ ∈ PVect(X,D,N). The “covering lemma” of Y. Kawamata ([11,
Theorem 1.1.1], [10, Theorem 17]) says that there is a connected smooth projective
variety Y over C and a Galois covering

(2.9) p : Y −→ X

such that the reduced divisor D̃ := (p∗D)red is a normal crossing divisor of Y and

furthermore the pull-back p∗D equals kND̃, for some positive integer k. Let Γ
denote the Galois group for the covering map p (2.9).

2.5. The category of Γ–bundles. Let Γ ⊆ Aut(Y ) be a finite subgroup of

the group of automorphisms of a connected smooth projective variety Y/C and H̃
be a fixed polarization on Y .

A Γ–vector bundle V on Y is a vector bundle V together with a collection of
isomorphisms of vector bundles

ḡ : V −→ (g−1)∗V

indexed by g ∈ Γ and satisfying the condition that gh = ḡ ◦ h̄ for any g, h ∈ Γ (see
§2, [3] for more detail).

A Γ–homomorphism between two Γ–vector bundles is a homomorphism be-
tween the two underlying vector bundles which commutes with the Γ–actions. Let
VectΓ(Y ) denote the category of Γ–vector bundles on Y with the morphisms being
Γ–homomorphisms.

Having fixed the parabolic divisor and the Kawamata cover together with the
ramification indices, one has the concept of local type of a Γ–bundle which is de-
scribed in [3, 2.4.1] (see [17] for the terminology). This is needed in order to set
up the correspondence between Γ–bundles and parabolic bundles with specified
parabolic datum on X.

Let VectDΓ (Y,N) denote the subcategory of VectΓ(Y ) consisting of all rank 2
Γ–vector bundles V over Y of fixed local type (see [3, 2.4.1] for details).

A Γ–vector bundle V is called Γ–stable (resp. Γ–semistable) iff for all Γ–
invariant line subbundles L ⊂ V the following holds

(2.10) c1(L) · H̃ < (resp. ≤)
c1(V ) · H̃

2
.

Note that the above definition of Γ–stability is strictly weaker than the usual defini-
tion of stability; in particular the notion of Γ– stability does not imply the stability
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of the underlying Γ–bundle. In contrast, the notion of Γ–semistability is equiva-
lent to the usual notion of semistability of the underlying Γ–bundle because of the
uniqueness of the Harder-Narasimhan filtration.

2.6.Parabolic bundles and Γ–bundles. In [4] a categorical correspondence

between the objects of PVect(X,D,N) and the objects of VectDΓ (Y,N) has been
constructed, induced by the “invariant direct image” functor pΓ∗ . The details of this
identification is also given in [2, Section 2].

Let H̃ denote the pullback p∗(H). Then the above correspondence between
parabolic bundles on X and Γ–bundles on Y identifies the Γ–semistable (resp. Γ–
stable) objects with parabolic semistable (resp. parabolic stable) objects as well.
The invariant direct image functor pΓ∗ giving this equivalence of categories is more-
over a “tensor functor” which sends the usual dual of a Γ–vector bundle to the
“parabolic dual” of the corresponding parabolic vector bundle .

2.7. Γ–derived functors Let C be a C-linear abelian category with enough
injectives. Let Γ be a finite group. Let CΓ be the category whose objects are
pairs of the form (A, ρ : Γ → AutC(A)) where A ∈ C. A morphism between
pairs (A, ρ : Γ → AutC(A)), (B, ρ′ : Γ → AutC(B)) is defined as a Γ–equivariant
morphism in C, i.e. the diagram

(2.11) A
ρ(γ) ��

f

��

A

f

��
B

ρ′(γ) �� B

is required to commute for all γ ∈ Γ.
Since the ground field is assumed to be of characteristic 0, for any object

(A, ρ) ∈ CΓ, we have a subobject AΓ
ρ ⊂ A defined as follows. Given γ ∈ Γ and

A ∈ C, we can define the γ-invariant subobject Aγ of A to be the kernel of the
composite map:

A
Δ−→ A⊕A

id⊕(−ρ(γ))−→ A

where Δ is the diagonal morphism. We define the Γ-invariant subobject AΓ
ρ of A

to be the intersection of the Aγ ’s in A, γ ∈ Γ, i.e.

(2.12) AΓ
ρ :=

⋂
γ∈Γ

Ker((id⊕ (−ρ(γ))) ◦Δ).

Note that the induced action of Γ on AΓ
ρ is trivial. Therefore we will just write AΓ

instead of AΓ
ρ .

Let F be a covariant left exact functor from C to an abelian category B. Any
k-linear additive functor F : C → D extends uniquely to a functor F̃ : CΓ → DΓ

since any action of Γ on an object A extends to an action of Γ on F (A). Let FΓ

be the invariant functor which sends A to F (A)Γ. It is a subfunctor of F . We have
the following useful observation.

Lemma 2.8. FΓ is a direct summand of F . Consequently the right derived
functors RiFΓ are direct summands of RiF .

Proof. The fact that FΓ is a direct summand of F follows immediately from
the assumption on the characteristic of the ground field. �

11
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Now we return to the case in which we are interested. Let Y be a Kawamata
cover of X with a finite group Γ acting on Y such that Y/Γ = X. Note that by our
previous notations if C denotes the category Vect(Y ) of vector bundles on Y then

CΓ is the category VectΓ(Y ) of Γ-vector bundles on Y . The global section functor
Hom(Y,−) gives rise to a left exact functor from CΓ to category of k-linear spaces.
We denote the i-th right derived functor of this by Exti(Y,−). Let Exti

Γ
(Y,−) be

the right derived functor of the global invariant section functor HomΓ(Y,−).
By Lemma 2.8 we have the following proposition.

Proposition 2.9. ExtiΓ(Y,−) is a direct summand of Exti(Y,−). Hence

exti
Γ
(Y, F ) ≤ exti(Y, F )

for all F ∈ CΓ, where “ext” denotes the dimension of the vector space “Ext”.

Let us consider the category C• of filtered OY -modules whose objects are de-
noted by F•, i.e. sheaves F with a filtration of subsheaves

(2.13) F• : 0 = F0 ⊂ F1 · · · ⊂ Fn = F.

Let CΓ,−
• be the category whose objects are given by Γ-filtered sheaves of OY mod-

ules (as in (2.13)). For any two objects F•, G• in CΓ,−
• , morphisms in CΓ,−

• are
defined as:

HomΓ,−(F•, G•) = {φ : F → G : φ(Fi) ⊂ Gi for all 0 ≤ i ≤ n}.

Let CΓ,+
• be the category whose objects are the same as in CΓ,−

• , and morphisms
between two objects F•, G• are defined as

HomΓ,+(F•, G•) = HomC(F,G)/HomΓ,−(F•, G•).

Both these categories CΓ,±
• are abelian categories with enough injectives and

Hom
Γ,±(F•,−) are both left exact covariant functors. Let Exti

Γ,±(F•,−) be the

right derived functors of Hom
Γ,±(F•,−).

We have a long exact sequence (cf. [9, page 49])

(2.14) · · · �� Exti
Γ,−(F•, G•) �� Exti

Γ
(F•, G•) �� Exti

Γ,+
(F•, G•) �� · · ·

3. Rss
α is irreducible for small α

3.1. A description of Rss
α . We briefly recall the construction of semistable

sheaves over X. For details see ([9, Chapter 4]). Let H = OX(−m)p for some m
and p. Let

(3.1) Q := Quot(H, P )

be the Quot scheme which parametrizes quotients of H with fixed Hilbert polyno-
mial P given by

(3.2) P (n) := n2H2 + n(c1 ·H −KX ·H) +
c21 − c1 ·KX

2
− c2 + 2χ(OX),

where KX is the canonical line bundle and the ci are the Chern classes of the
sheaves which we wish to parametrize.

For fixed Chern classes c1 and c2, it is known that rank 2 semistable sheaves F
with ci(F ) = ci can be realized as quotients of a fixed H = OX(−m)p for suitably
chosen m and p. Let Rss ⊂ Q (resp. Rs ⊂ Q) consist of points [H → F ] ∈ Q
such that the quotients F are semi-stable (resp. stable) torsion-free sheaves and the

12
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quotient mapH → F induces an isomorphism Cp = H0(X,H(m)) ∼= H0(X,F (m)).
Let Rs ⊂ Rs (resp Rss ⊂ Rss) denote the open subschemes parametrizing locally
free sheaves.

In [13] the Donaldson-Uhlenbeck moduli space has been constructed as the
closure of the moduli space Ms of the moduli space of stable locally free sheaves in
the scheme Mss together with the reduced scheme structure. The scheme Mss is
realized as the image of a PGL(m)-invariant mapping

π : Rss → M
ss

Furthermore, the scheme Mss is projective. Note that Mss is not a GIT quotient
but it maps Rs to an open subset Ms ⊂ Mss and π |Rs is the GIT quotient
Rs//PGL(m). The closure MDU of Ms in Mss with the reduced scheme structure
is the precise algebro-geometric analogue of the differential geometric construction
due to Donaldson. The key property of the moduli space MDU is that the boundary
of Ms is describable in terms of locally free polystable sheaves with lower c2 and
certain zero cycles.

Lemma 3.2. Rss is irreducible for large c2, for a fixed c1.

Proof. Observe thatRs is a dense open subset inRss for large c2 ([9, Theorem
9.1.2, page 200]). So irreducibility of Rss is equivalent to the irreducibility of Rs.
Now Ms is a geometric quotient of Rs for the action of PGL(m). By [9, Theorem
9.4.3, page 203] the scheme Ms is irreducible for large c2. Since the quotient map
f : Rs → Ms is an open map with both base and fibre being irreducible, it follows
that Rs is irreducible (see Lemma 3.3 below) . �

Lemma 3.3. If f : X → Y is a morphism of schemes such that f is an open
surjective morphism and each closed fibre is irreducible, then

Y irreducible =⇒ X irreducible .

Proof. Let U and V be two nonempty open sets in X. Since f is an open
surjective map and Y is irreducible, f(U) and f(V ) are open nonempty subsets of
Y such that f(U) ∩ f(V ) �= ∅. Let y ∈ f(U) ∩ f(V ) be a closed point and x1 ∈ U
and x2 ∈ V such that y = f(x1) = f(x2). Clearly, U ∩ f−1(y) and V ∩ f−1(y) are
two nonempty open subsets of f−1(y). Since f−1(y) is irreducible it implies that
U ∩ V ⊃ U ∩ V ∩ f−1(y) �= ∅. Hence Y is irreducible. �

3.4. The small weight case. Since our final aim in this paper is to show that
the Donaldson-Uhlenbeck spaces constructed in [3] are asymptotically irreducible,
we will assume for the rest of the paper that the sheaves that we consider in the
Quot scheme are locally free. Recall that the scheme Rss (resp. Rs) parametrizes
semistable (resp. stable) locally free quotients. We will stick to these assumptions
and notations in the paper from here onwards.

We now consider bundles equipped with parabolic structures. The weight
α : = (α1, α2) is called small if it satisfies the condition

(3.3) (α2 − α1)D ·H <
1

2
.

Now a key observation, which is easy to check, is the following.

Lemma 3.5. For small weights α (3.3), for any E ∈ Rs and any quasi-parabolic
structure (2.4), the parabolic bundles E∗ is α-stable and conversely any α-stable
parabolic bundle E∗ has the property that its underlying bundle E is semistable.

13
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Let T̃ be the total family parametrizing quasi-parabolic structures on rank 2
bundles. The notation T̃ is loose since it hides the topological and parabolic data of
its underlying objects. However, we observe that T̃ is independent of the parabolic
weights α, β etc.

Since we do not need to make modifications in the topological datum to prove
asymptotic irreducibility we do not carry it as a part of the notation. Again since the
rank of the bundle is 2 there is not much in terms of the quasi-parabolic structure
except the degree of the subbundle when restricted to the parabolic divisor D. This
will figure in the discussion that follows. It will be mentioned whenever needed and
should cause no confusion.

Let Rα
k,d be the total family for H–stable parabolic bundles with weight α. For

a formal definition of Rα
k,d we direct the reader to [15]. We simplify the notation

and have
Rs

α := Rα
k,d.

By the definition of T̃ we have the obvious morphism, namely forget : T̃ → R
which “forgets” the quasi-parabolic structure. Note however that under this map
the image of Rss

β or Rs
β need not be contained in Rss; similarly, the inverse image

of Rs can fall outside Rs
β for an arbitrary weight β.

In our simple setting of a flag which is only one-step on a rank 2 bundle, when
the weights are small (3.3), the morphism forget : Rs

α → Rss is well-defined and the
inverse image of Rs is contained in Rs

α (this is a consequence of Lemma 3.5). Let

T s and T ss denote the inverse images of Rs and Rss in T̃ . In other words, T ss is
the total family of quasi-parabolic structures on semistable bundles.

The upshot is that, if the weight α is small we have open inclusions:

T s ⊂ Rs
α ⊂ T ss.(3.4)

We now describe the space T ss of quasi-parabolic structures on rank 2 semistable
bundles. Let F be the universal sheaf on X × Rss and let L be the Poincaré line
bundle over D × Picl(D). We have a diagram of various projections:

(3.5) D ×Rss × Picl(D)

p1

��������������
p2

��
p3

���������������

D ×Rss Rss × Picl(D) D × Picl(D).

Let
W := p2∗(Hom(p∗1(F |D×Rss), p∗3(L))),

where we have assumed that l = deg(Lt) is sufficiently large so that

p2∗(Hom(p∗1(F |D×Rss), p∗3(L)))
is locally free ([8, page 288]). Let

Z = Spec Sym(W∗)

be the underlying geometric vector bundle. This scheme parametrizes all morphisms
from (F |D) → L for F ∈ Rss and L ∈ Picl(D). Let

Zsur ⊂ Z

be the open subscheme which parametrizes the surjective morphisms. It is not
hard to show that by choosing l � 0 we can have a non-empty set of surjective
morphisms (see for example [1, Theorem 2, page 426]). By taking kernels of these

14
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morphisms which give line subbundles, we get the quasi-parabolic structures. Thus,
after choosing l suitably, we see that Zsur ⊂ Z is a non-empty open subset. By
the definition of T ss (for suitable l) it is immediate that there is an isomorphism

Zsur
∼−→ T ss.

By Lemma 3.2 the scheme Rss is asymptotically irreducible, being open in Rss;
furthermore, Picl(D) is also irreducible for any integer l. Hence Z and therefore Zsur

is asymptotically irreducible. This implies that T ss is asymptotically irreducible. It
follows by (3.4), that Rs

α is asymptotically irreducible.
Observe that bounds on l in turn give bounds on d = c1(F2

D(F )).D, where the
quasi-parabolic structure F2

D(F ) ⊂ F |D is obtained as the kernel to F |D→ L. We
isolate this key result in the following proposition.

Proposition 3.6. For small α, Rs
α is asymptotically irreducible for suitable

d = c1(F2
D(E)).D.

Remark 3.7. The bounds on l, which in turn give bounds on d, ensure that,
irrespective of the weight α, the bundles E have enough quasi-parabolic structures
on the given divisor D ⊂ X.

4. The density of Ms
α in Mss

α

Let Ms
α = Mα

k,d be the moduli stack of α-stable bundles and Mss
α the moduli

stack of α-semistable bundles on X with topological and parabolic datum as in
§2. The aim of this section is to prove that the open substack Ms

α in the moduli
stack Mss

α is dense for any α. We handle the problem by converting it to the
equivariant Γ-bundle setting. The general set-up is as in §2 and we use the same
notation. Let Y be a Kawamata cover of X. The advantage in doing this is that
the technical complications arising in handling obstruction theory in the parabolic
setting is considerably simplified when we make this shift.

Let H be a Γ-sheaf over Y and P1, P2 are two fixed polynomials. Let
DrapΓ(H, P1, P2) denote the “generalized flag scheme” which parametrizes Γ–sub-
sheaves of H

H∗ := 0 ⊂ H3 ⊂ H2 ⊂ H1 = H
such that the Hilbert polynomial of Hi−1/Hi is Pi−1. These can be defined as
Γ-fixed points of the usual Drap scheme (cf. [3, page 15], [9, Appendix 2.A, page
48]).

Lemma 4.1. The dimension of DrapΓ(H, P1, · · · , Pk) at the point H∗ satisfies
the following inequality

ext0
Γ,+

(H,H) ≥ dimH∗(DrapΓ(H, P1, · · · , Pk)) ≥ ext0
Γ,+

(H,H)− ext1
Γ,+

(H,H).

Proof. The proof of this lemma is a routine equivariant generalization of the
one given in [9, Proposition 2.A.12, page 54] and we omit the details. �

4.2. Parabolic Chern classes Let E∗ be a rank 2 parabolic vector bundle
over X with underlying bundle E. The parabolic Chern classes are defined as (see
[3, Lemma 6.1])

(4.1) par(c1)(E∗) = c1(E) + (α1 + α2) ·D,

(4.2) par(c2)(E∗) = c2(E) + (α1 + α2)c1(E) ·D + α1α2D
2.

15
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Observe that when c1(E) = 0 (which is our base assumption), both par(c1) and
par(c2) differ from the usual c1 and c2 by terms which involve only the parabolic
divisor.

Let V be a Γ–bundle on Y . We have (see [4, Equation 3.11])

(4.3) c1(V ) = p∗(par(c1)({pΓ∗ (V )}∗)),

where {pΓ∗ (V )}∗ is the invariant direct image of V with the canonical parabolic
structure coming from the Seshadri-Biswas correspondence.

For a Γ-bundle F of rank 2 of local type τ (α) (see [3, Definition 2.12] for the
definition) we have the equation in the second Chern classes of the underlying
bundle:

(4.4) c2(p
Γ
∗ (Hom(F, F ))) = c2

[
{pΓ∗ (F )}∨∗ ⊗̂{pΓ∗ (F )}∗

]
= 4 c2((p

Γ
∗ (F ))),

where the last equality follows by a splitting principle argument as in [3, Lemma
6.1] and the assumption that c1((p

Γ
∗ (F )) = 0.

Here and elsewhere, “∨” denotes the parabolic dual and ⊗̂ denotes the parabolic
tensor product. By the naturality of parabolic Chern classes we have

(4.5) par(ci)(E
∨
∗ ) = (−1)ipar(ci)(E∗).

When we work with a Kawamata cover as in our case, then we have the following
relation between the Γ–cohomology and the usual cohomology on Y/Γ = X:

(4.6) Hi
Γ(Y,F) = Hi(X, pΓ∗ (F)), ∀i.

Definition 4.3. For Γ-bundles F and G on Y , define

χ
Γ
(F,G) :=

∑
i

(−1)iextiΓ(F,G).

Let V be a Γ-bundle of rank r on Y . Define the Γ-discriminant of V as:

Δ
Γ
(V ) := 2r c2(p

Γ
∗ (V ))− (r − 1) c1(p

Γ
∗ (V ))2.

4.4. Γ-total families. Let Rss
Γ

(resp. Rs
Γ
) parametrize Γ–semistable (resp.

stable) bundles of type τ (α) and fixed topological datum (c1, c2) over Y . In §3 and
§4 of [3] we give the construction of Rss

Γ
which parametrizes Γ-torsion–free sheaves.

We recall that there is an action of Γ on a suitable Quot scheme of quotients on the
Kawamata cover Y of X. The scheme R

Γ
is the subscheme of Γ–fixed points in the

Quot scheme which consists of torsion–free sheaves and Rss
Γ

is an open subscheme of
R

Γ
. We stick to locally free sheaves in this work since we work with the Donaldson-

Uhlenbeck compactifications.

4.5. Cohomological computations. The following lemmas play a key role
in proving that Rs

Γ
is dense in Rss

Γ
.

Lemma 4.6. Let F be a Γ–vector bundle of rank 2 on Y of some type τ (α),
such that

(4.7) c1(p
Γ
∗ (F )) = 0 .

Then

χΓ(F, F ) = −ΔΓ(F ) + 4χ(OX).
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Proof. We have χΓ(F, F ) = χΓ(Y,Hom(F, F ))

= χ(X, pΓ∗ (Hom(F, F ))) (because of (4.6))
= −c2(p

Γ
∗ (Hom(F, F ))) + 4χ(OX) (by Hirzebruch-Riemann-Roch and (4.7))

= −4 c2(p
Γ
∗ (F )) + 4χ(OX) (by (4.4))

= −ΔΓ(F ) + 4χ(OX) (by Definition 4.3). �
Let F ∈ Rss

Γ
− Rs

Γ be a rank 2 strictly Γ-semistable bundle on Y such that

c1(p
Γ
∗ (F )) = 0. Let

0 → F1 → F → F2 → 0

be the Γ-Jordan-Hölder filtration of F . Observe that the F2 is a torsion–free Γ–
sheaves of rank 1, while F1 is locally free.

Let pΓ∗ (F ) = E∗ and pΓ∗ (Fi) = Ei,∗, i = 1, 2. Then

0 → E1,∗ → E∗ → E2,∗ → 0

is the parabolic Jordan-Hölder filtration of E∗ on X. Note that E2,∗ is a parabolic
torsion-free sheaf of rank 1. Further, c1(E) = c1(p

Γ
∗ (F )) = 0. We remark that if the

parabolic line bundle E1,∗ has weight α1, then its parabolic dual E∨
1,∗ has weight

1 − α1 (cf. [12, Section 8] where the weight will be simply −αi in the balanced
convention).

Lemma 4.7. Let Ei,∗ be as above with weights αi on X. Then

χ(X,E2,∗⊗̂E∨
1,∗) = χ(X,E2 ⊗ E∗

1 )

E∗
1 being the usual dual of E1.

Proof. By the Hirzebruch-Riemann-Roch theorem (K being the canonical
divisor on X), we see that

χ(X,E2,∗⊗̂E∨
1,∗) =

c1(E2,∗⊗̂E∨
1,∗)

2

2
− c1(E2,∗⊗̂E∨

1,∗) ·K
2

+ χ(OX).

We write c1(E2,∗⊗̂E∨
1,∗) for the Chern class of the underlying bundle (and not its

parabolic Chern class) since it is notationally inconvenient to shed the parabolic
luggage on the tensor product E2,∗⊗̂E∨

1,∗, the reason being that the underlying

sheaf of E2,∗⊗̂E∨
1,∗ is not E2 ⊗ E∗

1 .
Observe that
c1(E2,∗⊗̂E∨

1,∗) = par(c1)(E2,∗⊗̂E∨
1,∗)− (α2 − α1)D

= par(c1)(E2,∗) + par(c1)(E
∨
1,∗)− (α2 + 1− α1)D

= [par(c1)(E2,∗)− α2D] + [par(c1)(E
∨
1,∗)− (1− α1)D]

= c1(E2) + c1(E1
∗) = c1(E2 ⊗ E∗

1 )

and the result follows. �
Let

ξ21 = c1(E2)− c1(E1).

Observe that, by the definition of ΔΓ , we have

(4.8) ΔΓ(F ) = 4c2(E) = 4c1(E1) · c1(E2).

Now

(4.9) [c1(E2)− c1(E1)]
2 = [c1(E2) + c1(E1)]

2 − 4[c1(E2) · c1(E1)]

= −4[c1(E2) · c1(E1)]

since c1(E2) + c1(E1) = c1(E) = 0.
Hence by (4.8) and (4.9)

(4.10) ξ221 = [c1(E2)− c1(E1)]
2 = −ΔΓ(F ).

17
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The Γ-Euler characteristic has the following description for the Γ-line bundles
Fi.

(4.11) χΓ(F1, F2) = χ(X, pΓ∗ (Hom(F1, F2))) = χ(X, pΓ∗ (F2 ⊗ F ∗
1 ))

= χ(X,E2,∗⊗̂E∨
1,∗) =

ξ221
2

− ξ21.K

2
+ χ(OX)

by the proof of Lemma 4.7. Hence

(4.12) χΓ(F1, F2) =
ξ221
2

− ξ21.K

2
+ χ(OX).

Lemma 4.8. Let F ∈ Rss
Γ

−Rs
Γ be as above such that c1(p

Γ
∗ (F )) = 0. Then

ext1
Γ,−(F, F ) ≤ 3

4
ΔΓ(F ) +B

where B is an irrelevant number not involving the Chern classes of the bundles.

Proof. By a Γ-equivariant version of the spectral sequence in [9, 2.A.4] we
have

ext1
Γ,−(F, F ) ≤ ext1

Γ
(F1, F1) + ext1

Γ
(F2, F1) + ext1

Γ
(F2, F2)

= {ext0
Γ
(F1, F1) + ext2

Γ
(F1, F1)− χΓ(F1, F1)} +{ext0

Γ
(F2, F1) + ext2

Γ
(F2, F1)−

χΓ(F2, F1)} +{ext0
Γ
(F2, F2) + ext2

Γ
(F2, F2)− χΓ(F2, F2)}

≤ B1 − {χΓ(F1, F1) + χΓ(F2, F1) + χΓ(F2, F2)} (1)
= B1 + χΓ(F1, F2)− χΓ(F, F )

= B1 +
ξ221
2

− ξ21.K
2

+ΔΓ(F )− 3χ(OX) (by Lemma 4.6 and (4.12))

= 3
4
ΔΓ(F ) +

ξ221
4

− ξ21.K
2

+B1 − 3χ(OX) (by (4.10))

= 3
4
ΔΓ(F ) +

[
ξ21
2

− K
2

]2
+B1 − 3χ(OX)− K2

4

≤ 3
4
ΔΓ(F ) +B.

The last inequality with the irrelevant number B comes by the following rea-
soning. By the Hodge index theorem,

[
ξ21
2

− K

2

]2

≤
([

ξ21
2

− K
2

]
·H

)2
H2

.

Further, by the parabolic semistability of E∗, since Ei,∗ are its parabolic Jordan-
Hölder terms we have

par(c1)(E1,∗) ·H =
par(c1)(E∗) ·H

2
= par(c1)(E2,∗) ·H.

Hence, (c1(E2) − c1(E1)) ·H = ξ21 ·H = (α1 − α2)D ·H is an irrelevant number.

The remaining terms in (
[
ξ21
2 − K

2

]
·H) are clearly irrelevant. �

4.9. The density of Rs
Γ
in Rss

Γ
. In the rest of this section we conclude the

density of Rs
Γ
in Rss

Γ
.

Lemma 4.10. There is an irrelevant number B depending on the rank, X, H,
the parabolic datum αi and D, such that

dim(Rss
Γ

−Rs
Γ
) ≤ endΓ(H) +

3

4
ΔΓ(F ) +B

where F ∈ Rss
Γ

−Rs
Γ

1Since Fi are rank 1 Γ-torsion–free sheaves, the dimensions ext0Γ(Fi, Fj) and ext2Γ(Fi, Fj) are

bounded ∀i, j and the irrelevant number B1 is to take care of these terms.
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Proof. Let {ρ : H → F} ∈ Rss
Γ

−Rs
Γ
with Γ–Jordan-Hölder filtration

0 = F0 ⊂ F1 ⊂ F2 = F(4.13)

such that F1 and F2/F1 are rank 1 torsion–free sheaves with the same μ = μ(F )
and F1 is locally free. The filtration 4.13 induces a Γ-filtration on H

0 ⊂ H0 ⊂ H1 ⊂ H2 = H(4.14)

such that F1 = H1/H0 and F2 = H2/H0.
Let P∗ := (P1, P2) be the Hilbert polynomials of H2/H1 and H1/H0. Since we

fix the topological type of these quotients, we get a bounded family of sheaves with
fixed μ = μ(F ) giving only finitely many choices of P∗. Let Z be the finite union
of DrapΓ(H, P1, P2). There is a morphism f : Z → QΓ (the Γ–fixed points of the
Quot scheme on Y ) sending H0 ⊂ H1 ⊂ H to H0 ⊂ H. It is clear that Rss

Γ
−Rs

Γ
⊂

f(Z) (since every strictly semistable object has a Jordan-Hölder filtration).
We have by Lemma 4.1

(4.15) dim(Rss
Γ

−Rs
Γ) ≤ dimZ ≤ ext0Γ,+(H,H).

The definition of Ext± gives an exact sequence

0 → Ext0Γ,−(H,H) → Ext0Γ(H,H) → Ext0Γ,+(H,H) → Ext1Γ,−(H,H).

Hence

ext0Γ,+(H,H) ≤ endΓ(H)− ext0Γ,−(H,H) + ext1Γ,−(H,H)

≤ endΓ(H)− 1 + ext1Γ,−(F ,F).

The last inequality follows from the fact that a filtration of F canonically
induces a filtration on H, and we also have ext1Γ,−(F ,F) = ext1Γ,−(H,H). Hence,

ext0Γ,+(H,H) ≤ endΓ(H) +
3

4
ΔΓ(F ) +B (by Lemma 4.8).

�
Proposition 4.11. For any {ρ : H → F} ∈ Rss

Γ ,

dimρ(R
ss
Γ
) ≥ endΓ(H) + ΔΓ(F )− 4χ(OX)

Proof. We follow the proof of O’Grady (see [16] and [9, Theorem. 4.5.8,
page. 104]. Let K be the kernel of the morphism ρ. Applying HomΓ(−, F ) to

0 −→ K −→ H −→ F −→ 0,

we get

0 −→ EndΓ(F ) −→ HomΓ(H, F ) −→ HomΓ(K,F ) −→ Ext1Γ(F, F ) −→ 0

Suppose that a positive integer m has been already chosen for which F is m–
regular. Therefore, as we have seen earlier, H0(H(m)) = H0(F (m)). Thus we
have

HomΓ(H, F ) = HomΓ(H
0(H(m)), H0(F (m))) = HomΓ(H,H)

and we have the following equality of dimensions:

homΓ(K,F ) = {endΓ(H)− endΓ(F ) + ext1Γ(F, F )}.
Using this computation we get the following inequality of dimensions:

dimρ(R
ss
Γ ) ≥ homΓ(K,F )− ext2Γ(F, F )

= endΓ(H)− endΓ(F ) + ext1Γ(F, F )− ext2Γ(F, F ) = endΓ(H)− χΓ(F, F )

= endΓ(H) + ΔΓ(F )− 4χ(OX) (by Lemma 4.6). �
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Proposition 4.12. Let B be as in Lemma 4.10. If Δ
Γ
(F ) > 4(B + 4χ(OX)),

then Rs
Γ
is dense in Rss

Γ
.

Proof. We have the following inequalities:
dim(Rss

Γ
−Rs

Γ
) ≤ {endΓ(H) + 3

4
ΔΓ(F ) +B}

< {endΓ(H) + ΔΓ(F )− 4χ(OX)} ≤ min{dim(Xi) : Xi a component of Rss
Γ
}.

Note that the above inequalities show that the dimension of any component is
at least (endΓ(H)+ΔΓ(F )− 4χ(OX)). Hence Rs

Γ
intersects all components of Rss

Γ
.

Hence Rs
Γ
is dense in Rss

Γ
. �

Corollary 4.13. If the second Chern class c2 of the underlying bundles is
large, then Ms

α is dense in Mss
α for any weight α.

Proof. By the Seshadri–Biswas correspondence we see that the moduli stack
Mss

Γ of Γ–semistable bundles (resp. Ms
Γ of Γ–stable bundles) is isomorphic to Mss

α

(resp. Ms
α). Hence by Proposition 4.12, since c2 � 0 it follows that Rs

Γ
is dense in

Rss
Γ
. Since Rss

Γ
(resp. Rs

Γ
) is the atlas of the Artin stack Mss

Γ (resp. Ms
Γ) we have

a surjective morphism Rss
Γ

→ Mss
Γ and the result follows. �

5. Variation of Mss
α and the Main Theorem

Let Mss
α (resp. Ms

α) be the moduli stack of α-semistable (resp. α-stable)
bundles with first Chern class 0. Here we tacitly assume that d is chosen as in
Proposition 3.6 (see Remark 3.7). Now we study these moduli stacks as we vary
weights.

Let N0 = D ·H,

W = {(α1, α2) : 0 < α1 < α2 < 1}
and

δW :=

{
(α1, α2) : 0 < α1 < α2 < 1 such that | α1 − α2 |= k

2N0
, 1 ≤ k ≤ 2N0

}
.

Let W ◦ = W − δW A connected component of W ◦ is called a chamber. Observe
that, if α is a weight within a chamber then Mss

α = Ms
α. Moreover if α and β are

in same chamber then Mss
α = Mss

β and also Ms
α = Ms

β .
We have the following lemma:

Lemma 5.1. If α is in a chamber and ω is on an adjacent wall, then any
ω-stable bundle is α-stable and any α-stable bundle is ω-semistable.

Proof. For 0 ≤ t ≤ 1, let αt denote the vector tα+(1− t)ω in W . Then, αt is
also in the chamber for t �= 0. Suppose that E∗ is ω-stable and suppose that E∗ is
not α-stable. Then, there exists a subbundle E′

∗ of E∗ such that μα(E
′
∗) ≥ μα(E∗).

The continuous function t �→ μαt
(E′

∗)− μαt
(E∗) assumes a negative value at t = 0

and is non-negative at t = 1 and hence takes the value 0 for some 0 < t0 ≤ 1. But
then E∗ is strictly semistable with respect to the weight αt0 contradicting the fact
that αt0 is within the chamber.

Similarly, if E∗ is α-semistable (therefore in fact α-stable) and E∗ is not ω-
semistable, then there exists a subbundle E′

∗ of E∗ such that μω(E
′
∗) > μω(E∗).

Thus, μαt
(E∗)−μαt

(E′
∗) is negative at t = 0 and non-negative at t = 1; this would

imply that with respect to some αt0 within the chamber, E∗ is strictly semistable,
again a contradiction. �

We have the following:
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Corollary 5.2. If α is in a chamber and ω is in a adjacent wall then we have
the following inclusions:

Ms
ω ⊂ Ms

α = Mss
α ⊂ Mss

ω .

Theorem 5.3. Mβ is asymptotically irreducible for all β.

Proof. Recall that the scheme Rs
α is an atlas for the Artin stack Ms

α and we
have a canonical surjective morphism Rs

α → Ms
α. Hence by Proposition 3.6, Ms

α

is asymptotically irreducible for small α.
For any ω in an adjacent wall, by Corollary 5.2 we see thatMs

ω is asymptotically
irreducible being an open substack of Ms

α. Now by Corollary 4.13 it follows that
Mss

ω is asymptotically irreducible.
Now taking β in any chamber with ω in an adjacent wall and different from

the “small” chamber, we see again by Corollary 4.13 that Mss
β is asymptotically

irreducible. We proceed similarly to reach all weights in W using the connectedness
of W and finiteness of the number of walls; since Ms

β surjects onto Ms
β it follows

that Ms
β is asymptotically irreducible.

Now recall that Mβ is by definition the closure of Ms
β (with the reduced scheme

structure) in a certainM
β
k,d. This implies thatMβ is also asymptotically irreducible

and the theorem follows. �

Remark 5.4. The subtle point is that even though we finally need to prove
that Ms

α is asymptotically irreducible, we are forced to go to the semistable bundles
since we need to go over various weight chambers.

Remark 5.5. Observe that the arguments in this paper automatically give as
a consequence the generic smoothness and asymptotic non-emptiness of the moduli
spaceMα. In specific situations, one can use the techniques of this paper to conclude
rationality of certain parabolic moduli.

References

[1] M. F. Atiyah, Vector bundles over an elliptic curve, Proc. London Math. Soc. (3) 7 (1957),
414–452.

[2] V. Balaji, I. Biswas, D. S. Nagaraj, Principal bundles over projective manifolds with parabolic
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