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Abstract

Let X be an irreducible smooth projective algebraic curve of genus
g ≥ 2 over the ground field C, and let G be a semisimple simply con-
nected algebraic group. The aim of this paper is to introduce the notion
of semistable and stable parahoric torsors under a certain Bruhat–Tits
group scheme G and to construct the moduli space of semistable para-
horic G-torsors; we also identify the underlying topological space of this
moduli space with certain spaces of homomorphisms of Fuchsian groups
into a maximal compact subgroup of G. The results give a generaliza-
tion of the earlier results of Mehta and Seshadri on parabolic vector
bundles.

1. Introduction

Let X be a smooth projective curve defined over C of genus g ≥ 2. Let

R ⊂ X be a fixed set of points ofX withm = |R|, and let ni be a set of positive

integers attached to each of the points xi ∈ R. The uniformization theorem

states that there exists a simply connected covering surface q : X̃ → X,

unique up to isomorphism, subordinate to the given signature, i.e., ramified

precisely over the points R = {xi} ⊂ X together with ramification indices ni

at these points. Since g ≥ 2, we may identify X̃ with H the upper half space

(cf. [44, pp. 49–50]). Let π be the subgroup of the discontinuous group of

automorphisms of H such that X = H/π. Note that the action of π is not

free. Let q : H → X be the quotient projection. It is well known that the

isotropy subgroups at the points zi ∈ q−1(R) are cyclic of finite order. Let
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the isotropy subgroups be denoted by

πzi = 〈Ci〉

with Ci as generators. Thus each Ci is an element of order ni.

We fix once and for all the set R and the indices ni. Recall that the group π

is a Fuchsian group generated by 2g+m elements A1, B1, . . . , Ag, Bg, C1, . . .,

Cm, modulo the relations

A1B1A
−1
1

B−1
1

· · ·AgBgA
−1
g

B−1
g

· · ·C1 · · ·Cm = I,(1.0.0.1)

Cni

i
= I, (i = 1, 2, . . . ,m).(1.0.0.2)

Let G be a connected reductive algebraic group over C, and let KG ⊂ G

be a maximal compact subgroup of G.

1.0.1. Definition. The type of a homomorphism ρ : π → G is defined to

be the set of conjugacy classes in G of the images ρ(Ci) and is denoted by

τ = {τ i}. Equivalently, the type of ρ is the set of isomorphism classes of the

local representations ρzi : πzi → G, i = 1, . . . ,m.

1.0.1.1. Notation. Let Rτ (π,KG) denote the space of homomorphisms

ρ : π → KG of type τ = {τ i}.
1.0.2. Definition. A (π,G)-bundle on H is defined to be the trivial G-

bundle H × G on H with the π-structure given by γ(z, g) = (z, ρ(γ).g), with

ρ a homomorphism π → G.

If G = GL(n) is the full-linear group, the (π,G)-bundles on H have an

equivalent description as π-vector bundles on H. We recall ([36], [24]) that if

V � H×Cn is a π-vector bundle onH, the vector bundleW = qπ∗ (V ) (invariant

direct image by q) on X acquires a parabolic structure which consists of the

data assigning a flag to the fiber of W at every ramification point in X for

the covering q together with a tuple of weights.

The invariant direct image functor V 	→ qπ∗ (V ) gives a fully faithful embed-

ding of the category of π-vector bundles on H into the category of parabolic

vector bundles on X (morphisms being taken as isomorphisms). Moreover,

we can realize every parabolic bundle with rational weights as qπ∗ (V ) for a

suitable π and V (cf. [24]).

This translates easily into an equivalent description of (π,GL(n))-bundles

on H as principal GL(n)-bundles on X with parabolic structures. One can

define the concepts of stability (resp. semistability) for π-vector bundles (or

equivalently parabolic bundles on X) and construct the corresponding moduli

space of equivalence classes of semistable objects (fixing some invariants) as

a normal projective variety. As topological spaces these moduli spaces can

be identified with sets of equivalence classes of elements in Rτ (π, U(n)), i.e.,

unitary representations of π (see Mehta and Seshadri [24], Seshadri [36]),
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which generalize the results in Narasimhan and Seshadri [27] and Seshadri

[35].

The purpose of this paper is to generalize the above results when the struc-

ture group G is no longer the full-linear group. Let us suppose hereafter that

the group G is semisimple and simply connected (over C) unless otherwise

stated.

One can again give an equivalent description of (π,G)-bundles on H as cer-

tain intrinsically defined objects on X. However, the picture is more subtle

than the case when G is the full-linear group. For instance, it is not possible,

in general, to associate in a natural manner a principal G-bundle on X to

a (π,G)-bundle on H. The new objects on X, which give an equivalent de-

scription of (π,G)-bundles on H, will be called parahoric bundles or parahoric

torsors. These parahoric torsors are defined as pairs (E , θ), where E is a tor-

sor (i.e., principal homogeneous space) on X under a parahoric Bruhat–Tits

group scheme G, together with a prescription of weights θ, which are elements

of the set of rational one-parameter subgroups of G (see the discussion below

and Definition 6.1.1). We define notions of semistability and stability of such

parahoric torsors and construct moduli spaces of these objects.

The torsors under parahoric group schemes that we consider here have

been studied earlier by Pappas and Rapoport, without however the notion

of weights (see [29] and [30]); in [30] they made some precise conjectures on

the moduli stack of such torsors. Heinloth has since settled many of their

conjectures (see [21]; we note that Heinloth works over arbitrary ground fields

not just C). We were led to the study of parahoric torsors in trying to interpret

(π,G)-bundles on H as objects on X (inspired by A. Weil’s work [44], as was

the case in [24] and [36]). In Section 2 we link explicitly the ideas from the

paper of Weil and Bruhat–Tits theory. This relationship plays a key role in

the rest of the paper. We need to define a few technical terms before we can

state the main results of our paper.

Let Axi
be the completion of the local ring at xi, and let Kxi

(or simply

as K) be its quotient field, xi ∈ R. Let T be a maximal torus of G, and let

Y (T ) := Hom(Gm, T ) be the group of one-parameter subgroups of T . Let E �
Y (T )⊗R and EQ � Y (T )⊗Q. By the general theory of Bruhat and Tits (see [9,

Definition 5.2.6], and 2.1.2 below), one has certain collection of subsets {Θi} ⊂
Em
Q , where m = |R|, and to each subset Θi ⊂ E, one can associate a parahoric

subgroup P
Θi
(K) ⊂ G(Kxi

), i = 1, . . . ,m, and furthermore, associated to

each parahoric subgroup PΘi
(K), there is a smooth group scheme GΘi

over

Dxi
= Spec Axi

, known as a Bruhat–Tits group scheme.

More precisely (see 2.1.2), by fixing a root datum, the theory of buildings

allows us to identify the vector space E with an affine apartment App(G,K)
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in the Bruhat–Tits building, and each parahoric subgroup P
Ωi
(K) ⊂ G(K)

is precisely the stabilizer subgroup of a facet Ωi of the affine apartment for

the natural G(K)-action on the building. We will reserve the symbol Ω for a

facet of the apartment.

It is explained in Section 5 as to how, given any finite subset of points

R ⊂ X and a collection G
Θi

of Bruhat–Tits group schemes over Dxi
, one can

construct a (global) group scheme G
Θ,X

over the projective curve X by gluing

(see Lemma 5.2.2 and Definition 5.2.1) so that

(1.0.2.1) GΘ,X |
X−R

� G× (X −R), GΘ,X |Dxi
� GΘi

, xi ∈ R.

We will call the set R the points of ramifications of G.
Following Pappas and Rapoport ([30]), we will call G

Θ,X
the parahoric

Bruhat–Tits group schemes. However, we wish to emphasize that both

Pappas and Rapoport ([30]) and Heinloth [21] do not make the assumption

that GΘ,X |
X−R

� G × (X −R), i.e., for them the group scheme need not be

generically split.

It can be shown (see Remark 2.1.8) that to every set τ of conjugacy classes

and finite subset R ⊂ X, we can associate a collection θτ = {θi} ∈ Em
Q of

elements of EQ and also a parahoric group scheme G
θτ,X

on X such that the

points of ramifications of G
θτ,X

is R. The content of Theorem 1.0.3 below is

that this correspondence τ 	→ G
θτ,X

extends precisely to give an identification

of moduli spaces of representations with fixed conjugacy classes and that of

torsors under G
θτ,X

.

One of the key features of parahoric groups is that for any interior point θ

of a facet Ωi, we have an isomorphism PΩi
(K) � P

θ
(K) (see the discussion

in 2.1.2 below). In particular, any parahoric Bruhat–Tits group scheme GΩ,X

associated to a collection of facets {Ωi} is isomorphic to a G
θτ,X

for some τ .

Before going to the main results of this paper, we begin by observing that a

collection θτ = {θi} of rational weights entails a choice of ramification indices

di at the points of R (see Remark 6.1.3). Since the genus g ≥ 2, it is well

known (see 2.2.1) that there exists a Galois cover p : Y → X, with Galois

group Γ, ramified precisely at R with the prescribed ramification indices di.

It is shown in Theorem 5.3.1 that there is an isomorphism between the

moduli stack of (Γ, G)-bundles on Y of local type τ and the stack of G
θτ,X

-

torsors on X.

We then define, in Section 6 of this paper, the concept of semistable and

stable G-torsors on X as well as the notion of S-equivalence. Our main re-

sults can be formulated as follows (see Theorem 8.1.11, Theorem 7.3.2, and

Corollary 8.1.12 for notation and details):
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1.0.3. Theorem. Let G
θτ,X

be a parahoric Bruhat–Tits group scheme as-

sociated to τ .

(1) The set M
X
(G

θτ,X
) of S-equivalence classes of semistable G

θτ,X
-torsors

on X gets a natural structure of an irreducible normal projective va-

riety of dimension

(1.0.3.1) dimC(G)(g − 1) +

m∑
i=1

1

2
e(θτ )

In fact, the variety M
X
(G

θτ,X
) is the coarse moduli space for the func-

tor of isomorphism classes of G
θτ,X

-torsors on X.

(2) Let KG = KG/center. There exists a Fuchsian group π and a bijective

correspondence between the space Rτ (π,KG)/KG of conjugacy classes

of homomorphisms ρ : π → KG of local type τ and the set of S-

equivalence classes of semistable G
θτ,X

-torsors.

(3) This correspondence induces a homeomorphism

Rτ (π,KG)/KG � M
X
(G

θτ,X
)

of the underlying topological spaces.

(4) Under this correspondence, the subset of irreducible homomorphisms

gets identified with isomorphism classes of stable G
θτ,X

-torsors.

We make a few clarifying remarks on the paper.

1.0.4. Remark. (1) The moduli stack BunX (G
θτ,X

) has been studied

in detail by Heinloth ([21]).

(2) Parabolic G-bundles. If for a point x ∈ R the parahoric group PΩ(Kx)

gets identified with the distinguished hyperspecial parahoric subgroup

G(Ax) (see 2.1.5 for the definition), the moduli space of parahoric

torsors gets identified with the moduli space of principal G-bundles

on X in the usual sense. In this case, the parahoric structure comes

from the origin of E (see 2.1.2).

If PΩ(Kx) is a proper subgroup ofG(Ax), then under the evaluation

map ev : G(Ax) → G(C), the subgroup PΩ(Kx) is the inverse image

of a standard parabolic subgroup of G, so that in this case a quasi-

parahoric torsor (see Definition 6.1.2) could indeed be called a quasi-

parabolic G-bundle in the familiar sense of the term when G = GL(n)

is the full-linear group, i.e., the data consists of a principal G-bundle

on X together with a parabolic subgroup of G (i.e., a “flag”) for every

x ∈ R. This case corresponds to the situation when the parahoric

subgroups defining the local Bruhat–Tits group schemes come from

the interior of the Weyl alcove. Equivalently, the weights come from



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

6 V. BALAJI AND C. S. SESHADRI

the interior of the Weyl alcove. These are the cases dealt with in

Teleman and Woodward ([40]).

(3) Parahoric torsors which are not principal G-bundles. We now con-

sider parahoric subgroups of G(Kx) which cannot be conjugated to

subgroups of G(Ax). For instance, barring G(Ax), the rest of the

maximal parahoric subgroups of G(Kx) fall under this case (see [9]).

The weights in these cases lie on the walls of the Weyl alcove (cf.

Teleman [39, Section 9]).

It is this case which highlights one of the reasons why we need to

give a subtler description of (Γ, G)-bundles on Y as parahoric torsors

on X which do not support a principal G-bundle on X. Evidence

to this effect was shown using Tannakian considerations in Balaji,

Biswas, and Nagaraj [2], leading to the definition of a ramified bundle

in [3]. More concrete examples were shown in [37] indicating what to

expect in general.

(4) The striking cases which arise out of the present study are the non-

hyperspecial maximal parahoric subgroups where a number of new

phenomena show up. These correspond, on the side of the representa-

tions of the Fuchsian group (see (1.0.0.1)), to those maps ρ : π → KG

such that centralizers of the images of the elements ρ(Ci) are proper

semisimple subgroups of G (see Remark 2.1.8).

(5) After this paper was posted in the archives, we were informed by

P. Boalch of his paper [6] where the parahoric structure is seen in the

setting of regular singular connections.

2. Non-abelian functions and bounded groups

2.1. As the title suggests, the aim of this section is to tie up some ideas

from the classical paper of A. Weil ([44]) and Seshadri ([36]) and Bruhat–Tits

theory ([9]). This section is central to this paper.

2.1.1. Some preliminaries on root data. Let G be a semisimple, sim-

ply connected algebraic group defined over C; we fix a maximal torus T of G.

Let X(T ) := Hom(T,Gm) be the character group and Y (T ) := Hom(Gm, T )

the group of one-parameter subgroups of T . Let R = R(T,G) ⊂ X(T ) be

the root system associated to the adjoint representation of G, and let S be a

system of simple roots.

Denote by ( , ) : Y (T )×X(T ) → Z the canonical bilinear form. The set S

determines a system of positive roots R+ ⊂ R and a Borel subgroup B ⊂ G

with unipotent radical U . We now order the set R+ = {ri}, i = 1, . . . , q. We
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then have a family {u
r
: Ga → G | r ∈ R} of root homomorphisms of groups

such that one gets an isomorphism of varieties,

(2.1.1.1)
∏

r∈R+

ur :
∏

r∈R+

Ga → U.

For every root r ∈ R, we denote by Tr = Ker(r)0, and Zr = ZG(Tr),

the centralizer of Tr in G. The derived group [Zr , Zr ] is of rank 1 and there

exists a unique 1-PS, r∨ : Gm → T ∩ [Zr , Zr ], such that T = Im(r∨).Tr and

(r∨, r) = 2. The element r∨ is the coroot (or 1-PS) associated to r.

For each r ∈ R the root homomorphism

(2.1.1.2) ur : Ga → G

is such that

(2.1.1.3) t.u
r
(a).t−1 = u

r
(r(t).a)

for any C-algebra A, t ∈ T (A), a ∈ A, and such that the tangent map dur

induces an isomorphism

du
r
: Lie(Ga) → (LieG)

r

The functor A 	→ u
r
(Ga) = u

r
(A) gives U

r
(A) ⊂ G(A). This determines a

closed subgroup U
r
of G and is called the root group corresponding to r.

Denote by {α∗ | α ∈ S} the coroots dual to {α ∈ S}, i.e., (α∗, r) = δα,r.

Define

E := Y (T )⊗Z R,(2.1.1.4)

E′ := X(T )⊗Z R.(2.1.1.5)

Most often in fact we work with X(T )⊗Z Q and Y (T )⊗Z Q.

2.1.2. Parahoric subgroups. LetK be the field C((z)) of Laurent power

series in z, and let A = C[[z]] be the ring of integers with residue field C.

For the notion of Bruhat–Tits buildings and their behaviour under field

extensions, see J. Tits [41, p. 43].

Once we fix a root datum for G, we see that we have a choice of an affine

apartment; the choice of the maximal torus T then identifies E with an affine

apartment App(G,K) in the Bruhat–Tits building B(G,K).

A subset M ⊂ G(K) is said to be bounded if for any regular function

f ∈ K[G], the values v(f(m)) for the valuation v on A, are bounded below

when m runs over all elements of M . In particular, we may talk of bounded

subgroups. A subgroup M ⊂ G(K) is therefore bounded if the “order of poles”

of elements of M is bounded. This can be made precise by taking a faithful

representation G ↪→ GL(n) so that elements of M are represented by matrices

with entries in K.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

8 V. BALAJI AND C. S. SESHADRI

Let Θ ⊂ E be a nonempty subset which is a facet. Denote by P
Θ
(K) ⊂

G(K) the subgroup generated by T (A) and the groups Ur(z
mrA) for all the

roots r ∈ R, where

(2.1.2.1) mr = mr(Θ) = −[ inf
θ∈Θ

(θ, r)],

where [h] stands for the biggest integer smaller than or equal to h.

The group P
Θ
(K) is a bounded subgroup, more precisely it is a parahoric

subgroup of G(K) in the sense of Bruhat–Tits and conversely, any parahoric

subgroup is bounded in the above sense (cf. Bruhat and Tits [9]).

The choice of a root datum identifies a parahoric subgroup PΩ(K) ⊂ G(K)

as the stabilizer subgroup of G(K) of a facet Ω of the affine apartment

App(G,K) for the natural G(K)-action on B(G,K). By Tits [41, Section

3.1, p. 50], since we work with a semisimple and simply connected group G,

we could in turn take any point in general position, i.e., an interior point in

the facet, and consider the parahoric subgroup as the stabilizer of that point.

Thus one can make an identification PΩ(K) � P
θ
(K) for an interior point θ

in the facet Ω.

By the main theorem of Bruhat and Tits ([9]), there exist smooth group

schemes G
Ω
over Spec A such that the group G

Ω
(A) = P

Ω
(K) and, moreover,

since A is a complete discrete valuation ring, the group scheme is uniquely

determined up to unique isomorphism by its A-valued points (see [9, Section

1.7]).

Let θ ∈ E. Thus,

(2.1.2.2) mr = mr(θ) = −[(θ, r)].

In other words, we have

(2.1.2.3) P
θ
(K) = 〈T (A), Ur(z

mr(θ)A), r ∈ R〉.

To summarize, since we work with a semisimple and simply connected

group G, all parahoric groups are, up to conjugacy by elements of G(K),

precisely the collection of groups {P
θ
(K)}θ∈E (see [41, Section 3.1, p. 50]),

and as such we will work with these groups. In fact, we may choose these θ to

be in EQ = Y (T )⊗Q. Again by [41, p. 51], the conjugacy classes of maximal

parahoric subgroups of G(K) are the stabilizers of the vertices of the building,

and they are precisely l + 1 in number, where l = rank(G). In particular,

associated to the “origin” 0 ∈ E, we have the group P0(K), which is nothing

but the maximal bounded subgroup G(A) ⊂ G(K).

Note that if θ lies in the lattice Y (T ) itself, then there exists t ∈ T (K) such

that

(2.1.2.4) P
θ
(K) = t.P

0
(K).t−1.
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2.1.3. Remark. Again we note that if mr(θ) < 1 for all r ∈ R, then

P
θ
(K) ⊂ G(A). These parahoric subgroups then correspond to the standard

parabolic subgroups of G.

2.1.4. Remark. In this remark we make some comments on the parahoric

groups when we make the assumption that the group G is simple. Let α
max

denote the highest root. Then we can express it as

(2.1.4.1) α
max

=
∑
α∈S

cα · α

with cα ∈ Z+.

One can have a nicer choice of the points whose stabilizers give the maximal

parahorics (see the last paragraph in [42, p. 662]), now that G is simple. For

every α ∈ S, if we define

(2.1.4.2) θα =
α∗

cα
∈ E,

then in fact, the groups {P
θα
(K)}

α∈S
∪P

0
(K) represent the conjugacy classes

under G(K) of all maximal parahoric subgroups of G(K). In other words,

these are indexed precisely by the vertices of the extended Dynkin diagram.

2.1.5. Hyperspecial parahorics. In Bruhat–Tits theory, we encounter

the so-called hyperspecial maximal parahorics which have the following char-

acterizing property: each parahoric group P
Ω
(K) is identified with G

Ω
(A), the

A-valued points of a certain canonically defined smooth group scheme G
Ω
de-

fined over A. It is a fact that the parahoric subgroup P
θα
(K) is hyperspecial

if and only if cα = 1 in the description of the long root αmax . The hyperspecial

parahorics are listed at the end of [41].

2.1.6. The Weyl alcove. We now recall the description of the set of

conjugacy classes in a compact semisimple and simply connected group in

terms of the affine Weyl group W
aff
.

Let KG ⊂ G be a maximal compact subgroup. For an arbitrary group S,

let Torsion(S) denote the subset of elements of finite order in S. We then

have the following identifications:

Torsion(KG)/conjugation � Torsion(T )/W,

(Y (T )⊗Q/Z)/W � (Y (T )⊗Q)/W
aff
.

Further, if the group G is assumed to be simple, then (Y (T ) ⊗ Q)/W
aff

gets

identified with the simplex (the (rational) Weyl alcove)

A := {x ∈ Y (T )⊗Q | (x, αmax) ≤ 1, (x, αi) ≥ 0, ∀ positive roots αi}.
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2.1.7. Remark. In fact, the set of conjugacy classes of an element in KG

gets identified with T/W which is the Weyl alcove since any element of KG is

conjugate to an element in the maximal torus up to an element of the Weyl

group (cf. [25, p. 151]).

2.1.8. Remark. Recall that vertices of the alcove A correspond to the

vertices of the extended Dynkin diagram. Furthermore, to each point of A one

can associate a parahoric subgroup of G(K) and hence a canonically defined

parahoric Bruhat–Tits group scheme. Thus, for each tuple τ = {τ i}mi=1 of

conjugacy classes of elements of finite order in KG, we have a point θτ =

{θi}mi=1 ∈ Am, where m = #{of conjugacy classes} and hence an associated

parahoric Bruhat–Tits group scheme G
θτ
.

More can be said. Let α ∈ S be a simple root, and let G
θα

be the Bruhat–

Tits group scheme associated to the maximal parahoric P
θα
(K). Let gα be

an element in KG of finite order corresponding to θα. Then the centralizer

Z
G
(gα) can be obtained from the closed fiber of the group scheme G

θα
; indeed,

Z
G
(gα) �

(
G

θα

)
x
/{unipotent radical}. When θ

α
is hyperspecial, then G

θα

is in fact a semisimple group scheme, and therefore Z
G
(gα) = G. On the

other hand, when θα is nonhyperspecial, the ZG(gα)’s are precisely those

subgroups of G which are proper semisimple subgroups of maximal rank in G

corresponding to the classical Borel–de Siebenthal list (see [7]).

2.1.9. Remark. In the case when G is assumed to be simple and simply

connected, by the description of the (rational) Weyl alcove A (see Definition

2.1.7) and the fact that the parahoric subgroups are determined by interior

points of E, it follows that up to conjugacy by G(K), every parahoric subgroup

of G(K) can be identified with a P
θ
(K) for a suitable θ ∈ A. Moreover, by

Remark 2.1.3, if mr(θ) < 1 for all r ∈ R, then P
θ
(K) ⊂ G(A).

2.1.10. Remark. We remark that even when G is semisimple, we still have

the notion of an alcove A, but it will no longer be a simplex as in the case

when G is simple since there is no unique α
max

, but A will now be a product

of the Weyl alcoves associated to the simple factors of G. Again, parahoric

subgroups will be parametrized by points of the alcove up to conjugacy by

G(K).

2.1.11. Standard parahorics (See Remarks 2.1.3, 2.3.2, and 2.1.9). Fol-

lowing the loop group terminology, the standard parahoric subgroups of G(K)

are parahoric subgroups of the distinguished hyperspecial parahoric subgroup

G(A). These are realized as inverse images under the evaluation map

ev : G(A) → G(k) of standard parabolic subgroups of G. For any I ⊂ S,

let RI denote the set RI = R ∩ ZI. Let UI := U((−R+) \ RI), and let

LI := G(RI). The standard parabolic PI ⊂ G is defined by PI := UILI .
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In particular, the standard Iwahori subgroup I is a standard parahoric, and

indeed I = ev−1(B), with B = U(−R+)T being the standard Borel subgroup

containing the fixed maximal torus T .

Since the standard parahoric subgroups of G(A) = P0(K) are also indexed

by the subsets of the set of simple roots, to avoid any confusion, we will denote

the standard parahoric subgroups of G(A) by Pst
I
(K) := ev−1(P

I
) for every

subset I ⊂ S.

For instance if α ∈ S, let S
α
:= S \ {α}. Then P

Sα
⊂ G is a maximal

parabolic subgroup and ev−1(PSα
) = Pst

Sα
(K) is a standard parahoric which

can be described as

(2.1.11.1) Pst
Sα

(K) = 〈T (A), Ur(A), r ∈ R
Sα

∪ (−R+) \R
Sα

〉.

Note that ev−1(L
Sα

) = 〈T (A), Ur(A), r ∈ R
Sα

〉 and ev−1(U
Sα

) = 〈Ur(A),

r ∈ (−R+) \RSα
〉.

If r ∈ RSα
, the simple root α does not occur in r, in which case (θα, r) = 0.

Hence ev−1(L
Sα

) ⊂ P
θα
(K) ∩ P

0
(K).

Again if r ∈ (−R+)\R
Sα

, say r =
∑

aβ .β, with aβ ≤ 0 and aα �= 0. By the

definition of cα, we have −1 ≤ aα

cα
< 0. It follows that mr(θα) = −[(θα, r)] =

−[aα

cα
] = 1. Hence ev−1(USα

) ⊂ P
θα
(K) ∩ P0(K).

We therefore have the inclusions

(2.1.11.2) I ⊂ Pst
Sα

(K) ⊂ P
θα
(K) ∩ P

0
(K).

These standard parahorics will play a role when we re-examine the Hecke

correspondences.

2.2. Non-abelian functions and the unit group. For the purposes

of working in the setting of algebraic curves instead of H, we make a few

observations. A result due to A. Selberg ([33]) states that if A ⊂ GL(n,C) is

a finitely generated subgroup, then A has a normal subgroup A0 of finite index

with no torsion. It follows from this that the discrete group π ⊂ Aut(H) has

a normal subgroup π0 of finite index such that π0 operates freely on H. Let

Y = H/π0 and Γ = π/π0. Then there is a canonical action of Γ on Y such that

X = Y/Γ. Let p : Y → X be the covering map, and note that Γ = Gal(Y/X).

Conversely, if Y is a Galois cover of X with the given signature (i.e., R and

ramification indices), by the universality of q : H → X for this signature, it

follows that there is a πo ⊂ π acting freely on H such that Y = H/πo.

2.2.1. Remark. In other words, given a finite number of points xi ∈ X

together with signatures or ramification indices ni at these points, there exist

ramified Galois covers p : Y → X, albeit noncanonical, ramified precisely over

the xi with the given ramification indices.
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Let r : H → Y be the simply connected covering projection of Y . By

definition, πo = π1(Y ), and we have the commutative diagram

(2.2.1.1) H

q
��
��

��
��

��
r �� Y

p
����
��
��
��

X

with q = p ◦ r. Let yi be the image of zi in Y , and let R = {xi}, with

{xi = p(yi) | 1 ≤ i ≤ m}.
The map r : H → Y is a local isomorphism. In fact, if z ∈ H maps to

y ∈ Y , then r induces an isomorphism πz
∼−→ Γy of isotropy subgroups of π

and Γ, respectively, as well as an isomorphism of a neighborhood of z onto

that of y, respecting the actions of the isotropy groups.

Since the action of πo is free on H, by using the invariant direct image

functor rπo
∗ , the study of (Γ, G)-bundles on Y reduces to the study of (π,G)-

bundles on H and, thus, the study of (π,G)-bundles on H reduces to an

algebraic problem since Y is a compact Riemann surface and hence a smooth

projective curve.

2.2.2. Remark. By local data we mean, the subset R ⊂ X, together with

the ramification indices or signatures ni and local cyclic coverings of order ni

in formal neighborhoods of the ramification points. It is obvious from the above

discussion that constructions that involve only the local data are independent

of the choice of Y , since in principle one could have used the universal cover

H. This could also be seen by using orbifold stacks constructed from the local

data. In the course of this work, however, we will work with a fixed Y .

2.2.3. Definition. A (Γ, G)-bundle over Y is a principal G-bundle E (with

a right G-action) together with a lift of the action of Γ on the total space of

E as bundle automorphisms preserving the action of G.

2.2.4. Remark. Note that the actions of G and Γ on the total space

of E commute, which is equivalent to the above condition that Γ acts as

automorphisms preserving the action of G.

Now a (Γ, G)-bundle E on Y is locally a (Γy, G)-bundle at y. Recall that

this (Γy, G)-bundle is defined by a representation; i.e., if N
y
is a sufficiently

small Γy-stable formal neighborhood of y, then this bundle is isomorphic to

the (Γy, G)-bundle N
y
× G, for the twisted Γ

y
-action on E × G given by a

representation ρy : Γ
y
−→ G, defined as

(2.2.4.1) γ · (u, g) = (γu, ρy(γ)g), u ∈ Ny , γ ∈ Γy

(see for example Grothendieck [17, Proposition 1, p. 6], and in the setting of

formal neighborhoods, see the more recent paper of Teleman and Woodward

[40, Lemma 2.5]).



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

PARAHORIC BUNDLES 13

2.2.5. Observation. It is easily seen that these (Γy, G)-bundles given by

representations are isomorphic as (Γy, G)-bundles if and only if the defining

representations are equivalent. We call ρy the local representations associated

to a (Γ, G)-bundle.

2.2.6. Definition. Let E be a (Γ, G)-bundle on Y . The local type of E

at y is defined as the equivalence class of the local representation ρy and is

denoted by τy.

By τ we denote the set {τy | y ∈ p−1R)} (see Definition 1.0.1). Let us

denote by

(2.2.6.1) Bunτ
Y
(Γ, G) =

{
the set of isomorphism classes of

(Γ, G) bundles with local type τ

}
.

Let Dx = Spec A. Similarly, for y ∈ p−1(R), let Ny = Spec B, where B

is the integral closure of A in L = K(ω), where ω is a primitive dth-root of

z, d = |Γy| and z is the uniformizer of A. Let p : N
y
→ D

x
� N

y
/Γ

y
be the

totally ramified covering projection. Let E be the (Γ, G)-bundle on Y and

y ∈ p−1(R). Consider the restriction of E to Ny . Then as we have seen above

in (2.2.4.1), as a (Γy , G) bundle we can identify E|Ny
with the trivial bundle

Ny ×G together with the twisted Γy -action.

2.2.7. Definition. Define
⋃

y to be the group

(2.2.7.1)
⋃
y

= Aut
(Γy ,G)

(E|
Ny

)

of (Γ
y
, G) automorphisms of E over N

y
. We call

⋃
y the unit group (or more

precisely the local unit group at y ∈ Y ) associated to E.

We work with notations fixed above. Let ρy : Γ
y
→ G be a representation.

Let � = rank(G), and we represent the maximal torus T ⊂ G in the diagonal

form as

(2.2.7.2) T =

⎡
⎢⎢⎣

t1 0

.

.

0 t�

⎤
⎥⎥⎦ ,

where {t1, . . . , t�} is a basis of X(T ).

Since Γ
y
is cyclic, we can suppose that the representation ρy of Γ

y
in G

factors through T (by a suitable conjugation).

The action of Γy on Ny canonically determines a character as follows. The

action determines an action of Γy on the tangent space Ty to Ny at y. Since

the tangent space to Ny is one-dimensional, this action is given by a character

which we denote by χy (which is of order d). Fix a generator γ in Γy . The
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character χ
y
is given by

(2.2.7.3) χ
y
(γ).ω = ζ.ω,

where ζ is a primitive dth-root of unity.

2.2.8. Lemma. Let Γy be a cyclic group of order d acting on Ny as above.

Then we have a canonical identification

(2.2.8.1) Hom(Γy , T ) �
Y (T )

d.Y (T )
.

Proof. This can easily be seen as follows. Observe that X(Γy) � Z/dZ by

the canonical choice of the character χy as in (2.2.7.3). Then, we see that

Hom(Γy, T ) = Hom(X(T ), X(Γy)) = Hom(X(T ),Z/dZ) =
Y (T )

d.Y (T )
. �

2.2.9. Remark. This lemma can be seen in the light of Remark 2.1.8. The

equivalence class of a representation in Hom(Γy, T ) is given by the conjugacy

class of the image of γ and hence a point of the Weyl alcove.

We now elaborate this identification for setting up the notations which play

a key role in the next theorem.

Given a representation ρy ∈ Hom(Γ
y
, T ), the image ρy(γ) takes the form

(2.2.9.1) ρy(γ) =

⎡
⎢⎢⎣

χ
y
(γ)a1 0

.

.

0 χy (γ)
a�

⎤
⎥⎥⎦ ,

i.e., ρy(γ) takes the form

(2.2.9.2) ρy(γ) =

⎡
⎢⎢⎣

ζa1 0

.

.

0 ζa�

⎤
⎥⎥⎦ with ai ∈ Z.

We can suppose that |ai| < d for all i (or even 0 ≤ ai < d) and take

(2.2.9.3) ηi = ai/d, so that |ηi| < 1.

Note that the numbers {a1, a2, . . . , a�} are determined uniquely modulo d.

Further, this is independent of the choice of ζ.

In terms of the local coordinates ω and z, we may identify the function ωai

with zηi where z = ωd. Define the rational map Δ : Ny −→ T or equivalently
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a morphism of the punctured disc N
y
− (0) as

(2.2.9.4) Δ = Δ(ω) =

⎡
⎢⎢⎣

ωa1 0

.

.

0 ωa�

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

zη1 0

.

.

0 zη�

⎤
⎥⎥⎦ .

Then we have

(2.2.9.5) Δ(γu) = ρ(γ)Δ(u), u ∈ Ny ,

where Δ can be taken as a rational map Δ : Ny −→ G (through T ↪→ G).

Consider the restriction of Δ to the punctured disc, and view it as a 1-PS

i.e., Δ|Spec L : Gm,L −→ G. This automatically gives a rational 1-PS of G,

i.e., an element θτy ∈ Y (T )⊗Q, and the key point to note is that

(2.2.9.6) d.θτy = Δ, i.e., θτy ∈ Y (T )

d.Y (T )
.

The association ρy 	→ θτy gives explicitly the identification obtained in Lemma

2.2.8. This is precisely what is described in terms of alcoves in Remark 2.1.8.

2.2.10. Remark. Note that a choice of Δ is determined up to (right)

multiplication by an element from G(K).

2.3. The unit group and parahoric groups. The aim of this section

is to prove the following:

2.3.1. Theorem. The unit group
⋃

y (Definition 2.2.7) is isomorphic to a

parahoric subgroup P
θτy

(K) of G(K) associated to the element θτy ∈ Y (T )⊗Q.

Conversely, if P
θ
(K) is any parahoric subgroup of G(K), then there exists a

positive integer d, and a field extension L = K(ω) of degree d over K such

that

(2.3.1.1) P
θ
(K) �

⋃
y

.

Proof. We first give a different description of the elements of
⋃

y. By

(2.2.4.1) a (Γ
y
, G)-bundle on Y gets a Γ

y
-equivariant trivialization; in other

words, the Γ
y
-action on N

y
×G is given by a representation ρ : Γ

y
−→ G

(2.3.1.2) γ · (u, g) = (γu, ρ(γ)g), u ∈ N
y
, γ ∈ Γ

y
.

Let φ0 ∈
⋃

y, i.e., the map

(2.3.1.3) φ0 : Ny ×G −→ Ny ×G

is equivariant for the Γ
y
-action. Equivariance under G (by right multiplica-

tion) implies that

φ0(u, g) = (u, φ(u)g),
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where φ : N
y
−→ G is a regular map satisfying the Γy-equivariance

(2.3.1.4) φ(γ · u) = ρ(γ)φ(u)ρ(γ)−1, u ∈ Ny , γ ∈ Γy.

We may thus identify
⋃

y with

(2.3.1.5)
⋃
y

= {φ : N
y
→ G | (2.3.1.4) holds} = MorΓy (Ny, G).

Since Ny = Spec B, we can view
⋃

y ⊂ G(B) ⊂ G(L).

Let Δ be as in (2.2.9.4). Consider the inner automorphism defined by Δ,

(2.3.1.6) iΔ : G(L) → G(L)

given by i
Δ
(η) = Δ−1.η.Δ. Define

(2.3.1.7)
⋃

′
y := iΔ

(⋃
y

)

Let ψ = i
Δ
(φ) = Δ−1.φ.Δ with φ ∈

⋃
y. Then we observe that

ψ(γu) = ψ(u)

so that ψ ∈ G(L)Γy . That is, it descends to a rational function ψ̃ : D
x
−→ G,

where ψ̃(z) := ψ(ω). In other words, we get

(2.3.1.8)
⋃

′
y ⊂ G(K) = G(L)Γy .

Note that
⋃′

y depends on the choice of Δ, and a different choice of Δ gives

a subgroup which is a conjugate of
⋃′

y by an element of G(K) (see Remark

2.2.10).

Then we claim the following:

(2.3.1.9)
⋃

′
y = P

θτy
(K),

where θτy ∈ Y (T )⊗Q is as in (2.2.9.6). Recall that

(2.3.1.10) P
θτy

(K) = 〈T (A), Ur(z
mr(θ)A), r ∈ R〉.

Let ψ ∈
⋃′

y, and let ψ = iΔ(φ), with φ ∈
⋃

y. Thus,

φ = ΔψΔ−1.

Consider the map φ : Ny → G. Let Go ⊂ G denote the big cell determined

by the roots R (i.e., the inverse image in G of a dense B-orbit in G/B).

Let us assume for the moment that φ(Ny) ∈ Go. In other words, φ can be

described uniquely as a tuple
(
{φr}r∈R , φt

)
, with φr(u) ∈ Ur and φt(u) ∈ T

for u ∈ Ny.

We first consider the tuples
(
φr(u)

)
r∈R

and the corresponding tuple for ψ,

namely,
(
ψr(u)

)
r∈R

, where the φt : Ny → T and

{φr, ψr : Ga,L → G | r ∈ R}.
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The uniqueness of the decomposition of elements in the big cell and the in-

variance property of φ translates into invariance for each of the φr and φt. In

other words, we have

(2.3.1.11) φr(ω) = Δψr(ω)Δ
−1,

i.e.,

(2.3.1.12) φr(ω) = ψr(ω)ω
r(Δ).

In terms of ψ̃, this gives

(2.3.1.13) φr(ω) = ψ̃r(z)z
r(Δ)

d .

Now interpreting the condition that the φ’s are regular functions in the vari-

able ω at ω = 0, we see that the order of pole for ψr(z) at z = 0, is bounded

above by [ r(Δ)
d ] (the biggest integer smaller than or equal to r(Δ)

d ). In other

words ∀r ∈ R,

(2.3.1.14) ψ̃r(z) ∈ Ur(z
−[r(θ

Δ
)]A) = Ur(z

mr(θΔ )A),

and hence ψ̃ ∈ P
θτy

(K).

Now, towards completing the proof of the claim (2.3.1.9), since φt(u) ∈ T ,

by (2.3.1.4) it follows that φt is Γy-invariant and hence ψ̃t ∈ T (A).

We now take a closer look at the map φ : Ny → G. In general, the image

φ(Ny) need not be contained in the big cell Go. So we consider the image φ(y)

of the point y ∈ Ny. Let φ(y) = go ∈ G. Since the point y ∈ Ny is Γy-fixed, it

implies that go ∈ GΓy . Thus, by (2.3.1.4), the point go lies in the centralizer

CG(ρ(γ)), of ρ(γ) in G; the group CG(ρ(γ)) is a Levi subgroup Lθ of the

standard parabolic subgroup of G determined by the coroot θ = θτy . The Levi

subgroup can be described in terms of the ur : Ga → G given as in (2.1.1.2),

namely C
G
(ρ(γ)) = Lθ = 〈T, ur(C) | r ∈ R, and mr(θ) = (θ, r) = 0〉 (see

also section 2.1.11).

Furthermore, by the equation (2.2.9.4), which defines the function Δ :

Gm → T , it is immediate from (2.1.1.2) that Δ−1.ur.Δ = ur if mr(θ) =

(θ, r) = 0. The same obviously holds for the elements of the maximal torus.

Hence the elements that commute with ρ(γ) also commute with Δ. This

implies immediately that go = iΔ(go) and therefore go is an element of the

parahoric subgroup P
θτy

(K).

Now define φ1 : Ny → G by φ1(u) = g−1
o φ(u). Then, φ1(y) = 1, and

hence it lies in Go. Hence by the openness of Go and the fact that Ny is

a formal neighborhood of y, it follows that φ1(Ny) ⊂ Go. Also, clearly φ1

satisfies (2.3.1.4) and hence by the earlier argument together with the fact

that iΔ(go) ∈ P
θτy

(K), we see that iΔ(φ) = ψ is an element in P
θτy

(K). This

completes the proof of the claim (2.3.1.9) without any assumptions.
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Conversely, we show that any parahoric subgroup of G(K) can be identified

(up to conjugation by G(K)) with a unit group
⋃

y. Let θ ∈ EQ, and let

P
θ
(K) be a parahoric subgroup. We would like to modify θ to a θτy for a

suitable Δ ∈ Y (T ) (as in (2.2.9.6)) so that, interpreted as unit groups, we get

P
θ
(K) � P

θτy
(K) �

⋃
y.

Expressing θ in terms of generators and clearing denominators, we see that

there exists a positive integer d so that d.θ ∈ Y (T ). Then the obvious choice

for Δ is simply d.θ, which therefore forces Δ ∈ Y (T ). The choice of the least

such d makes the choice of the local ramification index canonical.

Now we view Δ as a “rational” map Δ : Ny → T and hence Δ can be

expressed as in (2.2.9.4), the ai’s being determined by the following consider-

ations: for r ∈ R any root we define

r(Δ) = d.(θ, r).

By the discussion following Lemma 2.2.8, we have a θ = θτy ∈ Y (T )
d.Y (T ) , and

the identification of Lemma 2.2.8 gives the representation ρ : Γy → T ⊂ G.

The representation ρ gives the action on the root groups Ur(B) ⊂ G(B) which

are given by (see (2.1.1.3))

(2.3.1.15) ρ(γ).Ur(B).ρ(γ)−1 = Ur(ζ
r(Δ)B).

Retracing the steps in the first half of the proof, it is easy to see that

P
θ
(K) �

⋃
y, completing the proof of the theorem. �

2.3.1.1. Notation. Let θ ∈ Y (T ) ⊗ Q. Let Δ = d.θ as above. Then

we identify θ with θτy and denote by ρ
θ
the homomorphism ρy : Γ

y
→ T

associated to θ by Lemma 2.2.8. Note that ρ
θ
acts on the root groups as

in (2.3.1.15).

2.3.2. Remark. In the notations used above, if mr(θτy ) < 1 for all r ∈ R,

such elements θτy in EQ = Y (T ) ⊗ Q are precisely the points in the interior

of the alcove A (see Remarks 2.1.3 and 2.1.10).

2.3.3. Remark. The first half of Theorem 2.3.1 can be seen as a conse-

quence of general results on Galois fixed points in Bruhat–Tits buildings and

a theorem of Rousseau ([41, 2.6.1], [16]; see also [29, Section 7]). For the

converse in Theorem 2.3.1 considered in the general setting of Bruhat–Tits

theory, we refer the reader to the papers by Gille ([14, Lemma I.1.3.2]), Larsen

([23, Lemma 2.4]), and Serre ([34, Proposition 8, p. 546]). The point of view

presented here in terms of unit groups has its origins in the paper of Weil [44]

and Seshadri [36], where completely analogous phenomena are studied in the

setting of the general linear group. The striking fact is that when carried out

for semisimple simply connected groups, they yield all parahoric groups when

the residue field is of characteristic 0.
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2.3.4. Example. Let us now take G = GL(m). We invite the reader to

compare this discussion with the one in Weil ([44, p. 56]). Then we can write

φ = ||φij(ω)||, ψ̃ = ||ψ̃ij(z)||, 1 ≤ i, j ≤ m (as matrices). Then the equation

(2.3.1.13) takes the form

φij(ω) = ψ̃ij(z)z
αi−αj .(2.3.4.1)

We can suppose that 0 ≤ α1 ≤ α2 ≤ · · · ≤ αm < 1. Since |αi − αj | < 1, we

deduce easily that ψ̃ij are regular i.e.,
⋃

y ⊂ G(A). (To see this, suppose that

ψ̃ij is not regular. Then considered as a function in ω (z = ωd), ψij has a pole

of order ≥ d, whereas zαi−αj could have only a pole of order d (as a function

in ω). But φij(ω) is regular, which leads to a contradiction).

2.3.5. Remark. It is remarked in [37, Case III, Page 8] that it was not

clear whether the unit group in the situation considered there is a parahoric

subgroup at all. In fact, this is indeed the case as can be seen from Theorem

2.3.1. Moreover, it is not too hard to check by some elementary computations

that the unit group considered in [37, Case III, Page 8] does contain the

standard Iwahori subgroup but only after a conjugation by a suitable element

of G(K) .

3. The adèlic picture of (Γ, G)-bundles

3.1. We work with the notations of Section 2. In this section we give a

description of (Γ, G) bundles analogous to the classical adèlic description as

in Weil [44]; however, it plays no direct role in the subsequent sections.

Let E be a (Γ, G)-bundle on Y , and let Bunτ
Y
(Γ, G) be as in (2.2.6.1).

Since the action of Γ on Y − p−1(R) is free, there is a principal G-bundle P

on X − R such that then E|
Y −p−1(R)

� p∗(P ). Since G is semisimple, by

the theorem of Harder [20], P is trivial. Hence, E|
Y −p−1(R)

is also trivial as a

(Γ, G)-bundle.

Recall that around each point yi ∈ p−1(R), we have formal neigbourhoods

Nyi
= Spec Byi

with Γyi
-equivariant trivializations of E|Nyi

(see (2.2.4.1)).

Note that by Beauville and Laszlo ([5]) any (Γ, G)-bundle of local type τ can

be obtained by patching E|
Y −p−1(R)

with the E|Nyi
’s (see Remark 5.2.6).

For simplicity of notation, we assume that R = {x}. Two (Γ, G) bundles

on Y are said to be locally isomorphic at x if they are isomorphic as (Γ, G)-

bundles over p−1(Dx) = V1, Dx a formal neighborhood of x as above. We

can suppose that V1 is a disjoint union of Γy -invariant neighborhood Ny of

y, with y being a point of Y lying over x. We see that two such bundles are

locally isomorphic at x if and only if their restrictions to Ny are isomorphic
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as Γ
y
-bundles. Observe that two (Γ, G)-bundles on Y are locally isomorphic

at x if they are locally isomorphic in a formal neighborhood of any one point

y ∈ p−1(x). Let

(3.1.0.1) X1 = X − x and Y1 = p−1(X1).

Recall (2.2.4.1), the (Γy, G)-bundle N
y
× G given by the twisted Γy action

given by a representation ρy : Γy → G.

(3.1.0.2)
Let E1 := Ny ×G with the (Γy, G)-structure given by

γ · (u, g) = (γu, ρy(γ)g), u ∈ Ny , γ ∈ Γy

and

(3.1.0.3)
Let E2 := Y1 ×G with the (Γ, G)-structure given by

γ · (u, g) = (γ u, g), γ ∈ Γ and u ∈ Y1.

Thus giving a (Γ, G)-bundle on Y of local type τ (see Definition 2.2.6) is

giving a transition function, i.e., a (Γy, G)-isomorphism

(3.1.0.4) Θ : E2|Ny∩Y1
−→ E1|Ny∩Y1

.

We denote by EΘ the (Γ, G)-bundle given by the transition function Θ.

Observe that any transition function Θ can be viewed as a function Δ

as in (2.2.9.5). In particular, if we take Δ as in (2.2.9.5), then viewed as a

transition function, Δ defines a (Γ, G)-bundle, which we denote by EΔ . We

fix this bundle E
Δ
as a basepoint.

By Theorem 2.3.1, this choice of Δ further identifies each unit group
⋃′

y,

y ∈ p−1(R), with a parahoric group P
θi
(Kxi

), xi ∈ R. We fix such an

identification.

3.1.1. Proposition. For each xi ∈ R, fix a point yi ∈ p−1(xi). Further,

fix at each yi local data as in (3.1.0.2) and (3.1.0.3) and Δ := {Δi} as in

(2.2.9.5). Let Kx be the quotient field of the complete local rings Ax at x ∈ R,

and let k[X − R] be the ring of functions on the affine curve X − R. Then

we have a well-defined set-theoretic identification

(3.1.1.1) Bunτ
Y
(Γ, G) �

[ ∏
x∈R

P
θi
(Kxi

)\
∏

x∈R G(Kx)/G(k[X −R])
]
,

where the basepoint E
Δ

given by the transition functions Δi’s gets identified

with the double coset represented by 1 ∈
∏

x∈R G(Kx).

Proof. For simplicity of notation, we assume again that R = {x}. Let

EΘ and EΥ be two (Γ, G)-bundles given by the transition functions Θ and

Υ. Then E
Θ
is (Γ, G)-isomorphic to E

Υ
if and only if there exist a (Γy, G)-

automorphism φ of E1 and a (Γ, G)-automorphism μ of E2 such that

(3.1.1.2) φ Θ μ = Υ.
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We now proceed to give a description of φ and μ which we base on the

fixed choice of the function Δ.

Observe that by (3.1.0.3) the map μ is given by a morphism

(3.1.1.3)
μ : Y1 ×G −→ Y1 ×G,

(u, g) → (u, μ(u)g),

where μ(γ · u) = μ(u), γ ∈ Γ. In other words, the map μ goes down to a

morphism X1 −→ G, and we can view μ as an element in G(X − x).

We now trace the various identifications by restricting the above picture to

N∗
y
= N

y
− (0); note that the (Γ, G)-isomorphism Θ is completely character-

ized by its restriction to N∗
y
.

We observe by (3.1.0.3) that the restriction of E2 to N∗
y

is the (Γ
y
, G)-

bundle N∗
y
×G over N∗

y
with the action of Γy given by

(3.1.1.4)
γ : N∗

y
×G −→ N∗

y
×G, γ ∈ Γ

y
,

γ(u, g) = (γu, g).

The restriction of E1 to N∗
y
is the (Γ

y
, G)-bundle N∗

y
× G on N∗

y
with the

action of Γ
y
given by

(3.1.1.5)
γ : N∗

y
×G −→ N∗

y
×G,

γ(u, g) = (ρu, ρ(γ)g), γ ∈ Γ
y
.

The restriction of Θ|N∗
y
of Θ to N∗

y
(denoted again by Θ) is then a (Γ

y
, G)-

isomorphism of the bundle in (3.1.1.3) with the one of (3.1.1.2). We see easily

that Θ is defined by the map

(3.1.1.6)
N∗

y
×G −→ N∗

y
×G,

(u, g) −→ (u,Θ(u)g),

where Θ : N∗
y
→ G is such that Θ(γ · u) = ρ(γ)Θ(u).

Recall that the map Δ as in (2.2.9.4) is a morphism N∗
y
−→ G and has

similar properties. Thus, we can write

(3.1.1.7) Θ = ΔΘo such that Θo(γu) = Θo(u),

i.e., Θo descends to a regular map D∗
x
−→ G, D∗

x
= D

x
− (0).

The equivalence relation (3.1.1.2) therefore takes the form

(3.1.1.8) φ (ΔΘo) μ = Υ.

Multiplying on either side by Δ−1, we get

(3.1.1.9) (Δ−1φΔ) Θo μ = Δ−1Υ = Υo.
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By the proof of Theorem 2.3.1, φ identifies with an element ψ(= iΔ(φ)) of the

unit group
⋃′

y, and we can write (3.1.1.9) as

(3.1.1.10) ψ Θo μ = Δ−1Υ = Υo.

Therefore, Θo ∈ G(Kx) and ψ ∈
⋃′

y = P
θ
(Kx), and by (3.1.1.3) μ becomes a

regular map X1 −→ G i.e., μ ∈ G(X − x).

From (3.1.1.10), we conclude that Θ and Υ give isomorphic (Γ, G)-bundles

if and only if Θo and Υo are equivalent by the double coset relation; i.e., they

give the same point in the double coset space which we denote by [Θo]. If

Θo ∈ G(Kx) gives [Θo] in the double coset space, by using (3.1.1.7) and the

choice of Δ, we can reverse the process to get Θ and hence E
Θ
. Thus, we get

the following set-theoretic identification:

(3.1.1.11) Bunτ
Y
(Γ, G) �

[
P

θ
(Kx)\G(Kx)/G(X − x)

]
,

where EΘ 	→ [Θo].

Note that the basepoint EΔ given by the transition functions Δ gets mapped

to the identity coset; i.e., it is represented by 1 ∈ G(Kx) in the double coset

space. �

4. Invariant direct image

4.1. In this section we study the torsor-analogue of the sheaf theoretic

invariant direct image defined by Grothendieck [17]. The remarks in this

section owe much to key inputs from Brian Conrad and Pramathanath Sastry.

4.1.1. Definition. Let p : W → T be a finite flat surjective morphism

of normal, integral noetherian schemes such that the field extension of the

function fields is Galois with Galois group Γ := Gal(k(W )/k(T )). Observe

that Γ acts on W as T -automorphisms and T = W/Γ. Such a morphism

p : W → T is called a Galois covering with Galois group Γ.

4.1.2. Remark. The assumptions ensure that the Γ action extends to W .

Observe that since W is normal, it is the integral closure of T in k(W ), the

function field of W . Let φ ∈ Γ, then φ acts as an automorphism of W over

T . To see this, we may assume that W = Spec B and T = Spec A. Then, B

can be taken to be the integral closure of A in k(W ) and hence, φ(B) ⊂ B,

implying that φ is an automorphism of W over T . It also follows that A = BΓ,

since A is also normal. Hence, T = W/Γ in the sense of Mumford.

Following [8], we can define the direct image functor p∗ as the Weil re-

striction of scalars, i.e., we have a group functor p∗(G ) := Res
W/T

(G ) with
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the property that for any T -scheme S, we have a canonical bijection, i.e, the

adjunction

HomT (S, p∗(G ) � HomW (S ×T W,G ),(4.1.2.1)

which is functorial in S and G .

We assume that G is an affine group scheme over W , so that p∗(G ) is

representable by a group scheme (see [8, Theorem 4 and Proposition 6]).

Suppose also that the Γ-action lifts to an action on the group scheme G , in

such a manner that the “multiplication map” and the “inverse map” on G are

equivariant. We will term such a group scheme a Γ-group scheme on W .

Let S be a scheme over T , and f ∈ p∗(G )(S) = Hom
W
(S ×T W,G ), and

let γ ∈ Γ.

There is a left action of Γ on G and a left action on S×T W induced by its

action on W . This induces a natural right action of Γ on p∗(G )(S) given by

(4.1.2.2) (f.γ)([s, w]) := γ−1.f(γ.[s, w]), [s, w] ∈ S ×T W.

We can now take the fixed point subscheme under the action of Γ. The general

results on fixed point subschemes given in [13, Section 3] can be applied to

our situation since we are in characteristic 0 and we get a canonically defined

smooth closed X-subgroup scheme p∗(G )Γ ⊂ p∗(G ). This is representable in

our case since p∗(G ) is representable.

4.1.3. Definition (Invariant direct image). Let p : W → T be as above,

and let Γ = Gal(W/T ). Let G be a smooth affine Γ-group scheme over W .

We define the invariant direct image of G to be

(4.1.3.1) pΓ∗ (G ) := p∗(G )Γ,

i.e., for any T -scheme S, we have pΓ∗ (G )(S) = G (S ×T W )Γ.

More generally, let E be any affine scheme overW with a lift of the Γ action.

Then we define the invariant direct image of E to be pΓ∗ (E) := p∗(E)Γ.

4.1.4. Lemma. Let p : W → T be a finite flat surjective morphism of

noetherien schemes. Let G be a smooth affine group scheme on W , and let E

be a G -torsor on W . Then p∗(E) is a p∗(G )-torsor on T .

Proof. The hypothesis implies that p∗(G ) and p∗(E) exist as smooth

schemes over T . The lemma follows immediately from the property that the

direct image functor p∗ respects fiber products (this is immediate from the

functorial definition of restriction of scalars, see for example [11, Proposition

A.5.2]). Applying p∗ to the action map G ×W E → E, it gives p∗(G ) ×T

p∗(E) → p∗(E). Moreover, we have an isomorphism,

(4.1.4.1) G ×W E � E ×W E.
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Now again apply p∗ to get the desired isomorphism

(4.1.4.2) p∗(G )×
T
p∗(E) � p∗(E)×

T
p∗(E).

This is also given in [11, Corollary A.5.4(3)] but with a more complicated

proof. �
If the Γ-action lifts to an action on a W -group scheme so that the multi-

plication map and the inverse map are equivariant, then we will term such a

group scheme a Γ-group scheme on W .

4.1.5. Lemma. Suppose further that p : W → T is a Galois cover with

Galois group Γ (Definition 4.1.1). Let G be a Γ-group scheme on W , and let

E be a (Γ,G )-torsor on W . Let pΓ∗ (G ) = H , and let pΓ∗ (E) = F . Then, F is

a H -torsor.

Proof. For the first part, apply the fixed point functor to (4.1.4.2), i.e.,

(4.1.5.1) (p∗(G )×T p∗(E))Γ � (p∗(E)×T p∗(E))Γ,

which gives

(4.1.5.2) H ×
T
F � F ×

T
F,

proving that F is a H -torsor on X. The smoothness of F over T holds as

well since we work in char 0 (cf. [13, Section 3]). �
4.1.6. Theorem. Let BunW (Γ,G ) and BunT (H ) denote the stacks of

(Γ,G )-torsors on W and H -torsors on T , respectively. Then the functor

(4.1.6.1) pΓ∗ : Bun
W
(Γ,G ) → Bun

T
(H )

is an isomorphism of stacks.

Proof. Lemma 4.1.5 shows that pΓ∗ gives a functor between the stacks. We

now construct the candidate for the inverse.

Observe that the inclusion pΓ∗ (G ) = H ↪→ p∗(G ) gives by adjunction the

morphism

(4.1.6.2) p∗(H ) → G

of group schemes overW . Let F ∈ BunT (H )(S) be a H -torsor on a T -scheme

S. Let p × IdS = q : W ×T S → S be the induced morphism. Observe that

q∗(F ) becomes a q∗(H )-torsor on W , and via (4.1.6.2) we get the associated

G -torsor

(4.1.6.3) q∗(F )×q∗(H ) G .

We observe that the G -torsor q∗(F ) ×q∗(H ) G is a (Γ,G )-torsor, where the

Γ-action comes from the underlying Γ-action on G . We also get the natural

Γ-equivariant morphism,

(4.1.6.4) q∗(F ) → q∗(F )×q∗(H ) G .
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Now by pushing down this morphism using qΓ∗ , we get

(4.1.6.5) F → qΓ∗ (q
∗(F )×q∗(H ) G ).

To check that this last map is an isomorphism, we can restrict to étale neigh-

borhoods on T where F is trivial (i.e., isomorphic to H as an H -torsor), but

this is obvious. This shows that qΓ∗ (q
∗(F )×q∗(H ) G ) � F .

We need to check that this construction provides an equivalence of cate-

gories.

Suppose that E is a (Γ,G )-torsor on W and F = pΓ∗ (E) is a H -torsor.

Now p∗(F ) is a p∗(H )-torsor. Therefore via (4.1.6.2), taking associated con-

structions, we get a G -torsor p∗(F )×p∗(H ) G .

Again by adjunction applied to the inclusion F = pΓ∗ (E) ↪→ p∗(E), we get

the morphism

(4.1.6.6) p∗(F ) → E

and hence a morphism

(4.1.6.7) p∗(F )×p∗(H ) G → E

of G -torsors.

Claim. The morphism (4.1.6.7) is an isomorphism of (Γ,G )-torsors.

Proof of Claim. Since the map p is finite, a cofinal system of étale neigh-

borhoods of the fiber p−1(t) of a point t ∈ T is given by pullbacks of étale

neighborhoods of t ∈ T . This is a consequence of the compatibility of forma-

tion of strict henselization with respect to finite base change of algebras (cf.

[19, EGA IV.4, 18.8.10]). This allows us to work étale locally on T .

Thus we may assume that F is trivial on T , and by the discussion above we

may assume that E is also a trivial G -torsor on W . This reduces to verifying

that the map p∗(H ) ×p∗(H ) G → G is an isomorphism of trivial G -torsors,

which is obvious. This completes the proof of the theorem. �
4.1.7. Remark. As the referee pointed out to us, the equivalence can also

be deduced from the observation that both the stacks in Theorem 4.1.6 are

gerbes.

4.1.8. Remark. The notion of invariant direct image using Weil restriction

of scalars is implicit in Edixhoven [13] and also in Pappas and Rapoport [29].

4.1.9. Remark. Let OW (G ) be the sheaf of groups on W for the étale

topology associated to the group scheme G . In fact, it is a Γ-sheaf of groups.

The fact used in the argument above, namely étale trivializing neighborhoods

in W , can be chosen as inverse images of étale opens from T shows firstly

that any G -torsor can be trivialized in such étale neighborhoods. In partic-

ular, taking (Γ,G )-torsors, this immediately gives a natural isomorphism of
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cohomology sets,

(4.1.9.1) H1
ét
(W,Γ,OW (G )) � H1

ét
(T,OT (p

Γ
∗ (G )).

This identifies the isomorphism classes of (Γ,G )-torsors on W with isomor-

phism classes of pΓ∗ (G )-torsors on T . The proof given above for the theorem

gives a canonical identification and hence a stronger statement on stacks.

5. Bruhat–Tits group schemes and torsors

5.1. A Γ-group scheme on Y . We now revert to the notations in Section

2, where p : Y → X ramified over R. The following construction plays an

important role in the subsequent sections.

5.1.0.1. Notation. Fix a (Γ, G)-bundle F of local type τ . Let

(5.1.0.2) G
F
:= F ×G G

denote the associated “adjoint” group scheme associated to F , G acting on

itself by inner conjugation.

Recall that any (Γ, G)-bundle of local type τ is locally isomorphic to any

preassigned (Γ, G)-bundle of local type, in particular to the fixed bundle F .

This therefore gives an identification of (Γ, G)-bundles of type τ with those

that are locally modeled after the fixed bundle F . We give a formal shape to

this intuitive picture (see Grothendieck [18, Proposition 4.5.2]).

The bundle F can be viewed as a left GF -torsor, where the action is by

automorphisms. In the sense of Giraud [15], F is a (G
F
, G)-bitorsor.

For any G-torsor E on Y coming with a right G-action, let Eop be the G-

torsor with the induced left action g.x := xg−1. We then have the “contracted

product”

(5.1.0.3) E ∧G F op :=
E ×Y F

(xg, y) ∼ (x, g.y)
.

It is a fact that the sheaf of local sections of E∧GF op is the sheaf Isom(E,F )

of local isomorphisms of E with F . Since we work with affine group schemes,

by usual descent for affine schemes, the contracted product is representable

as a scheme.

Since F is a (G
F
, G)-bitorsor, it follows that F op is a (G,G

F
)-bitorsor. Thus

the contracted product E ∧G F op is a right G
F
-torsor on Y ; in fact we get the

equivalence of stacks,

(5.1.0.4) BunY (G) � BunY (GF )

given by E 	→ E ∧G F op.
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Now let E be a (Γ, G)-bundle of local type τ . Hence E is locally Γ-

isomorphic to F . Since G
F
is a Γ-group scheme, the association E 	→ E∧GF op

in fact induces an identification

(5.1.0.5) Bunτ
Y
(Γ, G) � Bun

Y
(Γ,G

F
),

the identification being obviously dependent on the choice of F .

5.1.1. We now return to the setting in Section 2, i.e., p : Ny → Dx. Recall

that Γy = Gal(Ny/Dx). Let Fy be any (Γy, G)-bundle of local type τy and

therefore given as in (2.2.4.1). Since the underlying G-bundle is trivial, the

associated adjoint group scheme G
Fy

is isomorphic to the product G × Ny.

Hence the sections over Ny = Spec B are given by GFy
(B) � G(B). As has

been observed in (2.3.1.5), the local unit group of (Γy, G)-automorphisms
⋃

y

is a subgroup of G(B).

The content of the first half of Theorem 2.3.1 is that

(5.1.1.1) GFy
(B)Γy � P

θτy
(K).

5.1.2. Proposition. Let G
θτy

be a Bruhat–Tits group scheme defined by

the parahoric group P
θτy

(K). Let Dx = Spec A and Ny = Spec B. Let G
Fy

be the Γ-group scheme on the fixed (Γy, G)-bundle Fy. Then

(5.1.2.1) G
θτy

� pΓy

∗ (GFy
).

In particular, if G
θ
is any Bruhat–Tits group scheme on Spec A, then by

choosing θτy suitably, we can realize G
θ
as pΓy

∗ (GFy
); for a scheme S over C,

we have the identification

(5.1.2.2) MorΓy (Ny × S,G) � Mor(Dx × S,G
θ
).

Proof. First, since G
Fy

is an affine group scheme, it follows that p∗(GFy
)

and pΓy
∗ (G

Fy
) are both representable as affine group schemes over A (see [8,

Theorem 4 and Proposition 6]).

By Bruhat and Tits ([9, Section 1.7]), the smooth group scheme G
θτy

on Dx

is uniquely determined by its A-valued points which is the parahoric group

P
θτy

(K).

By the functorial property of the functor pΓy
∗ , we see (by (2.2.9.1)) that

(5.1.2.3) pΓy

∗ (G
Fy
)(A) = p∗(GFy

)Γy = G
Fy
(B)Γy � P

θτy
(K).

Thus, by the uniqueness of the Bruhat–Tits group scheme, we have an iso-

morphism of Spec A-group schemes: G
θτy

� pΓy
∗ (G

Fy
).

The identification (5.1.2.2) now follows from the functorial properties of

restriction of scalars and fixed point schemes, since

(5.1.2.4) MorΓy (Ny × S,G) = pΓy

∗ (GFy
)(Dx × S) = G

θ
(Dx × S).
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The fact that any Bruhat–Tits group scheme can be realized this way

follows from the converse in Theorem 2.3.1. �
5.2. Bruhat–Tits group schemes and patching. By the main the-

orem of Bruhat and Tits ([9]), there exist smooth group schemes GΩ over

Spec A such that the group GΩ(A) = PΩ(K).

5.2.1. Definition. A smooth group scheme G over X is called a parahoric

Bruhat–Tits group scheme if there is a finite subset R = {xi} of X and formal

neigborhoods Dxi
at the xi together with a collection of subset Θ ⊂ Em such

that

(5.2.1.1) G|
X−R

� G× (X −R), G|Dxi
� G

Θi
, xi ∈ R.

If Ω = {Ωi} is a collection of facets, then we denote a parahoric Bruhat–

Tits group scheme defined by local group schemes G
Ωi

by G
Ω,X

. If θ = {θi} ∈
(Y (T ) ⊗ Q)m are chosen in the interior of the facets Ωi, then we have an

isomorphism GΩ,X � G
θ,X

Conversely, given local Bruhat–Tits groups schemes GΘi
, one can construct

a parahoric Bruhat–Tits group scheme using the following patching result

from [10, Lemma 3.18] attributed to Raghunathan and Ramanathan.

5.2.2. Lemma. Let X be a smooth projective curve, and let k(X) be its

function field. Let x ∈ X, and let Ax be the completion of OX,x and Kx the

completion of k(X). Assume that we are given a triple (G1, G2, f) consisting

of the following:

(a) An affine group scheme G1 over U = X − x of finite type.

(b) An affine and finitely presented group scheme G2 over Ax.

(c) A Kx-group scheme isomorphism f : G1 ×U Kx � G2 ×U Kx.

Then there exists a group scheme G, affine and of finite type over X such that

G ×X U � G1 and G×X Ax � G2, and both isomorphisms are compatible with

f . Furthermore, if Gi are smooth, then so is G.
5.2.3. Remark. The gluing result of Beauville and Laszlo ([5]), which

is more general than the lemma above, shows that any G-torsor E on X

can be obtained by gluing the trivial torsor on some open subset U ⊂ X

and the trivial torsors on the formal completions at the points R = X − U .

Similarly, any (Γ, G)-bundle of local type τ on Y is obtained by patching, as

was explained in the beginning of Section 3.

5.2.4. Remark. The parahoric Bruhat–Tits group schemes defined above

are a little more restrictive than the ones defined by Pappas and Rapoport

[29]; they do not make the assumption that the group schemes are generically

split.
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5.2.5. Remark. Observe firstly that in Lemma 5.2.2 we can take a finite

set of points xi ∈ X for the patching. It follows that given a finite R ⊂ X,

and a collection of subset Θ ⊂ Em together with patching data f = {fi}mi=1

as in the lemma above, we have a parahoric Bruhat–Tits group scheme GΘ,X

with R being the points of ramification of GΘ,X .

5.2.6. Remark. Let F be a fixed (Γ, G)-bundle of local type τ . The group

scheme G
F
constructed in Notation 5.1.0.1 can be viewed as one obtained by

gluing the local group schemes G
Fy
’s on {Ny}y∈p−1(R)

(see section 5.1.1) along

with the constant group scheme G× (Y − p−1(R)), the patching data coming

from the transition functions of the bundle F .

5.2.7. Theorem. Let F be a fixed (Γ, G)-bundle of local type τ on Y . Let

θτ = {θi} ∈ (Y (T ) ⊗ Q)m be the point associated to τ . Then the invariant

direct image pΓ∗ (GF ) is a parahoric Bruhat–Tits group scheme of the form

G
θτ ,X

. Conversely, let G
θτ ,X

be any parahoric Bruhat–Tits group scheme on

X, with R its set of ramifications. Then, there exists a Galois cover p : Y →
X with Galois group Γ, and a (Γ, G)-bundle F of local type τ with its adjoint

Γ-group scheme G
F
on Y , such that pΓ∗ (GF

) � G
θτ ,X

.

Proof. Since the group scheme G
F
is affine over Y , pΓy

∗ (G
F
) is representable

as a smooth affine group scheme over X (see [8, Theorem 4 and Proposition

6]).

Since the action of Γ on Y − p−1(R) is free, there is a principal G-bundle

P on X − R such that then F |
Y −p−1(R)

� p∗(P ). Since G is semisimple, by

the theorem of Harder [20], P is trivial. Therefore, the (Γ, G)-bundle F when

restricted to Y − p−1(R) is trivial as a (Γ, G)-bundle. Hence G
F
is the split

group scheme over Y −p−1(R). The result now follows from Proposition 5.1.2,

the patching data f being the one pushed down from that of GF .

For the converse, observe that locally, the statement in the corollary is

simply the converse in Proposition 5.1.2. The global statement now follows

since the patching data f gives the gluing needed in Remark 5.2.3 which gives

the recipe to construct F globally. �
5.2.8. Remark. An interesting consequence of Theorem 5.2.7 is that any

parahoric Bruhat–Tits group scheme which is generically split is isomorphic

to the invariant direct image of a group scheme GF for a choice of (Γ, G)-

bundle F . Moreover, this characterizes such group schemes. Observe that

in the patching Lemma 5.2.2, one need not assume that the group scheme is

generically split. Using this, one can show that the parahoric Bruhat–Tits

group schemes considered by Pappas and Rapoport can also be realized as

invariant direct images of Γ-group schemes, which however need not be of the

form G
F
for a (Γ, G)-bundle F of type τ .
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5.3. Torsors under Bruhat–Tits group schemes. Let G
θ,X

be a

Bruhat–Tits group scheme given by the local data θ ∈ (Y (T )⊗Q)m.

Let Bunτ
Y
(Γ, G) and BunX (G

θ,X
) be the moduli stacks of (Γ, G)-bundles of

type τ on Y and of G
θ,X

-torsors onX, respectively. We now have the following

key theorem.

5.3.1. Theorem. Let G
θτ ,X

be as above. Let p : Y → X be as in Theorem

5.2.7. Then the stack Bunτ
Y
(Γ, G) is isomorphic to the stack BunX (G

θτ ,X
).

Proof. By Theorem 5.2.7, there exists a (Γ, G)-bundle F of local type τ

on Y such that pΓy
∗ (GF ) � G

θτ ,X
. By (5.1.0.5) we have an isomorphism

Bunτ
Y
(Γ, G) � Bun

Y
(Γ,G

F
). By Theorem 5.2.7 and Theorem 4.1.6, we get the

isomorphism Bun
Y
(Γ,G

F
)

pΓ
∗−→ Bun

X
(G

θτ ,X
). This proves the theorem. �

5.3.2. Remark. By the above theorem, it follows that the stack

BunX (G
θτ ,X

) depends on the local data θτ but not on the patching functions.

5.3.3. Remark. From the arguments and the results in the preceding

pages, it would be clear to the reader that Theorems 5.2.7 and 5.3.1 also hold

when X is P1 or an elliptic curve. Note however that Γ-covers Y will exist

only when we assume that |R| ≥ 3 for X = P1, or R �= ∅, when X is an

elliptic curve. This is so since the upper half space H is the universal ramified

cover with the given signature even in these cases.

5.3.4. Remark. This theorem is the exact analogue of the fact that the

invariant direct image functor pΓ∗ sets up an isomorphism between the functor

of Γ-vector bundles and that of parabolic vector bundles. This is precisely the

point of view in Grothendieck [17], Seshadri [36], and Mehta and Seshadri [24].

6. Stability and semistability

The aim of this section is to introduce the notion of semistability and

stability of torsors under parahoric Bruhat–Tits group schemes introduced in

the last section.

6.1. Parahoric torsors. As before, let GΩ,X be a Bruhat–Tits group

scheme on the curve X associated to a collection of facets Ω = {Ωi}mi=1,

with |R| = m.

6.1.1. Definition. A quasi-parahoric torsor E is a GΩ,X -torsor on X.

6.1.2. Definition. A parahoric torsor is a pair (E , θ) consisting of

(1) a G
Ω,X

-torsor E , i.e. a quasi-parahoric torsor on X, and

(2) weights, i.e., elements θ = {θi} ∈ (Y (T )⊗ Q)m in the interior of the

facets Ωi.
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6.1.3. Remark. Recall that choice of elements θ = {θi} ∈ (Y (T )⊗ Q)m

in the interior of the facets Ωi identifies the group scheme G
Ω,X

with G
θ,X

.

Starting with a tuple of weights θ ∈ (Y (T ) ⊗ Q)m, following the proof of

the converse in Theorem 2.3.1, we get positive integers d1, d2, . . . , dm such

that di.θi ∈ Y (T ). Fix R ⊂ X a finite subset with |R| = m where the

group scheme G
θ,X

is the local Bruhat–Tits group scheme, with weights θi
in the interior of Ωi. By choosing the di to be the least with this property,

we see that a choice of θ entails a choice of ramification indices di at the

points of R. Then by generalities on ramified covers (see Remark 2.2.1), we

can get a covering p : Y → X, ramified over R, with ramification indices di
and with Galois group Γ. Note however, that the local data of {di} and the

ramification points associated to the weights are intrinsic, i.e., depends only

on X (see Remark 2.2.1).

6.1.4. Remark. The weights θ can always be chosen in Am, where A is

the Weyl alcove.

6.1.5. Remark. The notion of weight defined above is the precise analogue

of the classical weight for a parabolic vector bundle with multiplicity when

the weights are rational (cf. [24, Definition 1.5, p. 211]). This can be seen

by considering Example 2.3.4, which is in fact the original motivation for

parabolic weights. In this context, we refer the reader to Boalch [6] where

weights come up in a slightly different context.

6.2. Parabolic line bundles. Fix a finite subset R ⊂ X with |R| = m.

6.2.1. Definition ([24, Definition 1.5, p. 211]). A parabolic line bundle on

(X,R) is a pair (L, {α1, . . . , αm}), where L is a line bundle on X together

with an m-tuple of rational numbers (α1, . . . , αm) with 0 ≤ αi ≤ 1. The

parabolic degree of a parabolic line bundle is defined as

par deg(L) = deg(L) +
m∑
i=1

αi.

6.2.2. Remark. Let p : Y → X be a Galois cover ramified over R ⊂ X

with ramification indices nyi
, i = 1, . . . ,m, at the points yi ∈ Y over R, and

let Gal(Y/X) = Γ.

Let L be a Γ-line bundle on Y of local type τ = {τ i}, where each τ i

acts a character τ i(ζ) = ζayi with |ayi
| < nyi

, ∀i. Then by [36] and [24],

the invariant direct image L � pΓ∗ (L) determines a parabolic line bundle on

(X,R) with parabolic weights (
ay1

ny1
, . . . ,

aym

nym
) and parabolic degree

par deg(pΓ∗ (L)) = deg(pΓ∗ (L)) +

m∑
i=1

ayi

nyi

.
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6.2.3. Remark. In fact, all parabolic line bundles on (X,R) can be re-

alized in this manner, namely as invariant direct images; this is done by

constructing a cover ramified over R with suitable ramification indices.

6.3. Semistability and stability of torsors. Let G
Ω,X

be a Bruhat–

Tits group scheme on the curve X as in Definition 5.2.1. Let (E , θ) be a

parahoric torsor, i.e., the weights θ are such that G
Ω,X

� G
θ,X

.

Let PK ⊂ GK be a maximal parabolic subgroup of the generic fiber GK of

G
Ω,X

. Let χ : PK → Gm,K be a dominant character of the parabolic subgroup

PK . Then one knows that this defines an ample line bundle Lχ on GK/PK .

We see immediately that χ defines a line bundle Lχ on EK(GK/PK) � EK/PK

as well, and by using a reduction section sK , we therefore get a line bundle

s∗K(L
χ
) on X −R.

6.3.1. Proposition. Let GK be the generic fiber of the Bruhat–Tits group

scheme GΩ,X . Let (E , θ) be a parahoric torsor. Let sK be a generic reduction

of structure group of EK to PK . Then the line bundle s∗K(Lχ) on X −R has

a canonical extension Lθ
χ
to X as a parabolic line bundle.

Proof. The choice of θ ∈ Y (T )⊗Q allows us to choose an integer d such that

d.θ ∈ Y (T ). Then we have a ramified cover p : Y → X with Γ = Gal(Y/X)

ramified over x with ramification index d. By Theorem 5.3.1, the parahoric

torsor (E , θ), comes from a (Γ, G)-principal bundle E of local type τ on Y ;

more precisely, E � pΓ∗ (E ∧G F op) for a fixed (Γ, G)-bundle F .

The maximal parabolic subgroup PK ⊂ GK immediately gives a maximal

parabolic Q ⊂ G, and the reduction sK gives in turn a Γ-equivariant reduction

of structure group tL, i.e., a section of EL/QL, where L denotes the quotient

field of B the local ring in Y over x ∈ X. By virtue of the projectivity of

Y , the reduction section tL extends to a Γ-equivariant reduction of structure

group t as a section of E/Q. The dominant character χ gives a dominant

character η of Q and the section t gives a Γ-line bundle t∗(L
η
) on Y .

We observe that the line bundle Lθ
χ
:= pΓ∗ (t

∗(L
η
)) gives the required ex-

tension of s∗K(L
χ
). By the very definition of the invariant direct image (see

Remark 6.2.2), we see that Lθ
χ
= pΓ∗ (t

∗(L
η
)) gets the natural structure of a

parabolic line bundle.

Note that the parabolic line bundle extension Lθ
χ
obtained above depends

only on local data coming from θ (see Remark 6.1.3) and hence is intrinsic on

X, i.e., it does not depend on the choice of Y (see Remark 2.2.2). �
We have the following general definition of stability and semistability for

(Γ, G)-bundles following A. Ramanathan [32, Lemma 2.1].

6.3.2. Definition (Semistability and stability). Let G be a reductive al-

gebraic group. A (Γ, G)-bundle E on Y is called Γ-semistable (resp. Γ-stable)
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if for every maximal parabolic subgroup P ⊂ G, every Γ-invariant reduc-

tion of structure group σ : Y → E(G/P ), and for every dominant character

χ : P → Gm, we have deg σ∗(Lχ) ≤ 0. (resp. < 0).

6.3.3. Remark ([31, Definition 1.1]). Equivalently, E is called Γ-semistable

(resp. Γ-stable) if for every maximal parabolic subgroup P ⊂ G and ev-

ery Γ-invariant reduction of structure group σ : Y → E(G/P ), we have

deg σ∗(E(g/p)) ≥ 0 (resp. > 0), where g (resp. p) is the Lie algebra of G

(resp. P ). Note that E(g/p) can be identified with E(T
G/P

), where T
G/P

is

the relative tangent sheaf to the morphism E(G/P ) → X.

We therefore have the following analogous definition:

6.3.4. Definition. Let G = GΩ,X . A parahoric torsor (E , θ) is called

stable (resp. semistable) if for every maximal parabolic PK ⊂ GK , for every

dominant character χ as above and for every reduction of structure group sK ,

we have

par deg(Lθ
χ
) < 0 (resp. ≤ 0).

The following theorem is immediate from the above discussions together

with Definition 6.3.2.

6.3.5. Theorem. The isomorphism

pΓ∗ : Bunτ
Y
(Γ, G)

∼−→ Bun
X
(G

θ,X
)

given by Theorem 5.3.1 identifies the substacks of stable (resp. semistable)

parahoric torsors with stable (resp. semistable) (Γ, G)-bundles of local type τ

on the ramified cover Y .

6.3.6. Remark. Recall the classical definition of a stable parabolic vector

bundle as given in [24]. Note that the definition in [24, Definition 1.13] is the

one which arises out of interpreting the π-stability of the π-vector for the in-

variant direct image. By Remark 6.1.5 the notion of parabolic weights defined

in [24] is the same as the one given here when G = GL(n). Our definition of

Γ-stability for (Γ, G)-bundles generalizes the one given by A.Ramanathan for

G-bundles, which generalizes the usual notion of stability of vector bundles.

6.3.7. Remark. Following [21, Definition 17] one can define a parabolic

subgroup P ⊂ G
θ,X

of the group scheme G
θ,X

as the flat closure of a parabolic

subgroup of the generic fiber GK of G
θ,X

. Let E be a G
θ,X

-torsor on X.

Then as in ([21, Lemma 23]) one can show that if PK ⊂ GK is a parabolic

subgroup and E is a G
θ,X

-torsor on X, then any choice of a reduction section

sK ∈ EK(GK/PK) defines a parabolic subgroup P ′ ⊂ G
θ,X

together with a

reduction s′ of E to P ′.

In fact, these results in [21] can be deduced by using the invariant di-

rect image concept. Let H ⊂ G be a closed subgroup, and let F be a fixed

(Γ, G)-bundle of type τ with a Γ-invariant reduction of structure to H. Let
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the induced (Γ, H)-bundle obtained from this reduction be denoted by F
H
.

We consider the adjoint group scheme G
F
H

as defined in Notation 5.1.0.1.

Then, G
F
H

⊂ G
F
is a closed subgroup scheme. By [8, Proposition 2, p. 192]

and taking Γ-invariants, it follows immediately by [13, Proposition 3.4] that

pΓ∗ (GF
H
) ⊂ pΓ∗ (GF ) � G

θ,X
is a closed smooth X-subgroup scheme. In partic-

ular, if P is a parabolic subgroup of G, the invariant direct image pΓ∗ (GF
P
)

gives the flat closure P ⊂ G
θ,X

.

6.3.8. Remark (Harder–Narasimhan reduction). With the definition of

semistability in place, it is routine now to define the Harder–Narasimhan re-

duction for a G
θ,X

-torsor by using the identification of Theorem 6.3.5. The

existence of a parahoric Harder–Narasimhan reduction follows from the exis-

tence of a Γ-equivariant parabolic Harder–Narasimhan reduction for a (Γ, G)-

bundle together with Remark 6.3.7. In other words, the canonical Harder–

Narasimhan parabolic subgroup scheme of the parahoric group scheme will

be the invariant direct image of the Γ-invariant Harder–Narasimhan parabolic

subgroup P of G. The well-definedness follows since it is the flat closure of the

generic Harder–Narasimhan parabolic PK ⊂ GK . The Harder–Narasimhan

reduction of structure group for the torsor will be realized as the invariant

direct image of the corresponding (Γ, P )-reduction on Y . The uniqueness of

the Harder–Narasimhan reduction for (Γ, G)-bundles shows the uniqueness of

the Harder–Narasimhan reduction of a parahoric torsor as well.

7. Unitary representations of π

7.1. Manifold of irreducible unitary representations of π. Nota-

tions in this section are as in the Introduction.

Let ρ be a representation of π on a vector spaceband V (over R) such that

d = dimV , and let ρ act unitarily. We now recall the following result from

Weil [45, p. 156], noting that since π acts unitarily, it leaves a nondegenerate

form on V invariant and therefore in Weil’s notation, i = i′ = dimR H0(π, ρ).

7.1.1. Proposition. We have the following equality of dimensions:

(7.1.1.1) dimR H1(π, ρ) = 2d(g − 1) + 2 dimR H0(π, ρ) +
m∑

ν=1

eν ,

where eν is the rank of the endomorphism (I − ρ(Cν)) of V.

Let KG be a maximal compact subgroup of G and Lie(KG) denote the Lie

algebra of KG, which is a real vector space of dimension d, where d = dim(G).

As in the Introduction, we assume that X = H/π, with x ∈ X correspond-

ing to z ∈ H. Let πz be the stabilizer at z (cyclic of order nx), and let γ be
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a generator of πz. Now let ρ : π → KG be a unitary representation of π (see

Definition 1.0.1).

7.2. Explicit computation when G is simple. Let α ∈ S, and let θα
be as in (2.1.4.2). Let ρ

θα
be the local representation as in Notation 2.3.1.1.

Let ρ
θα
(γ) ∈ KG be the image of the generator γ of πz. Note that the choice

of the simple root α and the identification of the representation ρ with ρ
θα

amounts to fixing the local type of the representation ρ : π → KG, i.e., the

conjugacy class of ρ(γ) in KG.

We denote by Ad ρ
θα
, the adjoint transformation on Lie(KG), namely if

M ∈ Lie(KG), M 	→ ρ
θα
(γ)Mρ

θα
(γ)−1, then we have

7.2.1. Proposition. Let e(θα) denote the rank of (Id − Ad ρ
θα
) on

Lie(KG). Then

(7.2.1.1) e(θα) = dimR(KG)− 2μ(α)− 2ν(α)− � = 2.(dim
C
(G/P

α
))−μ(α)),

where Pα is the maximal parabolic subgroup of G associated to α and

μ(α) = #{r ∈ R+ | r = cα.α+
∑
β �=α

xβ.β},(7.2.1.2)

ν(α) = #{r ∈ R− | r involves simple roots �= α},(7.2.1.3)

and � = | S |.
Proof. Make KG operate on itself by inner conjugation. Then the rank of

(Id−Ad ρ
θα
) acting on the Lie algebra Lie(KG) equals the dimension of the

orbit through ρ
θα
(γ) for the action of KG on itself by inner conjugation.

We may assume for the purpose of this computation that ρ
θα
(γ) lies in

the maximal torus. First we compute the number of roots r ∈ R so that

the corresponding root group Ur(B) is centralized by ρ
θα
(γ). Recall from

Notation 2.3.1.1 that the action of ρ
θα
(γ) on Ur is given as

ρ
θα
(γ).Ur(B).ρ

θα
(γ)−1 = Ur(ζ

r(Δα)B),(7.2.1.4)

where as seen earlier, r(Δα) = d.(θα , r). Since ζ is a primitive dth-root of

unity, we need to compute the # {r ∈ R | (θα , r) = ±1 or 0}. It is easy to

see that

(7.2.1.5) {r ∈ R | (θα , r) = ±1 or 0} =

4⋃
i=1

Ai(α),

where for i = 1, 2,

(7.2.1.6) Ai(α) = {r ∈ R± | r = ±cα.α+
∑
β �=α

±xβ .β},

(7.2.1.7) A3(α) = {r ∈ R− | r involves simple roots �= α},
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and

(7.2.1.8) A4(α) = {r ∈ R+ | r involves simple roots �= α}.

Since the maximal torus centralizes ρ
θα
(γ), we see that the dimension of the

centralizer of ρ
θα
(γ) is

(7.2.1.9) #{r ∈ R | (θ
α
, r) = ±1 or 0} + | S | .

Observe that | A4 |=| A3 | and | A1 |=| A2 | . To compute the rank of

(Id−Ad ρ
θα
), we simply subtract the above number (7.2.1.9) from dim

R
(KG)

to get the first expression for e(α). We see that

(7.2.1.10) ν(α) = dim
C
(P

α
/B),

where P
α
is the maximal parabolic subgroup of G defined by the simple root

α ∈ S. Thus,

dim
R
(KG)− 2.ν(α)− � = dim

C
(G)− 2.ν(α)− � = 2. dim

C
(G/P

α
),

since 2. dim(B) − � = dim(G). Hence, e(θα) = 2.(dim
C
(G/P

α
))− μ(α)), and

the proposition now follows. �
7.2.2. Corollary. Let α ∈ S be such that P

θα
(K)hs is a maximal parahoric

subgroup in G(K) which is hyperspecial. Then e(θα) = 0 and conversely.

Proof. By Bruhat–Tits theory, the hyperspecial parahorics are simply the

maximal parahorics {P
θα
(K) | ∀α ∈ S,with cα = 1} up to conjugacy by

G(K). In these cases, the number μ(α) will now be

μ(α) = #{r ∈ R+ | r involves α}

since the largest possible coefficient for such an α in any positive root is 1.

Hence α is hyperspecial if and only if μ(α) = dim(G/Pα) and we are through

by Proposition 7.2.1. �
7.3. The moduli dimension. Let G be semisimple and simply con-

nected.

7.3.1. Corollary. Let θ ∈ E be an arbitrary element in the affine apart-

ment E, and let ρ
θ
be the representation defined in Notation 2.3.1.1. Let e(θ)

denote the rank of (Id−Ad ρ
θ
) on Lie(KG). Then,

(7.3.1.1) e(θ) = dimR(KG)− | S | −#{r ∈ R | (θ, r) = ±1 or 0}.

Proof. The proof is immediate from the above discussion. Note that when

θ = θα, the number e(θ) gets the explicit expression (7.2.1.1). �
Let τ = {τ i} be a set of conjugacy classes, and let θτ = {θi} ∈ Em be

the corresponding set of points of the product of the affine apartments, with

m = |R|.
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7.3.2. Theorem. The subset Ro ⊂ Rτ (π,KG) of irreducible representa-

tions is open and nonempty and is further smooth of real dimension equal

to

(7.3.2.1) (2g − 1) dim(KG) +

m∑
i=1

e(θτ ).

Let KG act on Rτ (π,KG) by inner conjugation. Let KG = KG/center. Then

the equivalence classes of irreducible representations correspond to the quotient

space Ro/KG; further, there is an open subset U of Ro where KG acts freely.

If U is nonempty, then the quotient U/KG has the natural structure of a real

analytic manifold of real dimension

(7.3.2.2) 2. dim
C
(G)(g − 1) +

m∑
i=1

e(θτ ).

Proof. We follow the arguments of Narasimhan and Seshadri [27, Proposi-

tion 9.2] or Seshadri [36, p. 180]. Let W =
∏

W
i
, where W

i
is the conjugacy

class defined by τ i. Observe that the group π is given by generators and

relations as in (1.0.0.1), and the space Rτ (π,KG) can be identified with the

inverse image of identity under the analytic map χ : KG×· · ·×KG×W → KG

given by χ(a1, . . . , ag, b1, . . . , bg, c1, . . . , cm) =
∏
[ai, bi].c1 · · · cm. As in [27] or

[36], the kernel of the differential of χ at ρ is given by Z1(π,Ad ρ). Also the

differential is of maximal rank at ρ if and only if ρ is irreducible. Now using

Proposition 7.2.1, the theorem follows as in loc.cit. �
7.3.3. Remark. It will be shown in Section 8 that the above open subset is

nonempty and gets identified with the Γ-stable bundles whose automorphisms

are trivial. Furthermore (see Corollary 8.1.8), the quotient Ro/KG in fact gets

the structure of a complex analytic orbifold (i.e., with at most finite quotient

singularities) of dimension

(7.3.3.1) dim
C
(Ro/KG) = dim

C
(G)(g − 1) +

m∑
i=1

1

2
e(θτ ).

8. The moduli space of parahoric torsors and the main theorem

The aim of this section is to construct the moduli space of semistable

(Γ, G)-bundles on Y of local type τ (see Definition 6.3.2) or, equivalently, by

Theorem 6.3.5 the moduli space of semistable and stable parahoric torsors.

We essentially follow the strategy of Balaji and Seshadri [4] and Balaji, Biswas,

and Nagaraj [2]. We briefly outline a proof of [2, Theorem 5.8].
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We fix a faithful representation G ↪→ GL(n) and consider the subscheme

of a suitable “Quot”-scheme parametrizing Γ-vector bundles on the curve Y

which are Γ-semistable of local type τ and we denote this scheme by Qτ
(Γ,GL(n))

(see [36] for details where this space is denoted Rτ ,ss). Equivalently, we may

view the points in Qτ
(Γ,GL(n))

as Γ-semistable principal (Γ, GL(n))-bundles of

local type τ .

We then define the scheme Qτ
(Γ,G)

as the space of Γ-equivariant reductions

of structure group of the bundles in Qτ
(Γ,GL(n))

which consists of those (Γ, G)-

bundles which are of local type τ . It is standard to show that Qτ
(Γ,G)

has

the local universal property for families of Γ-semistable (Γ, G)-bundles of local

type.

We now use the results in [36] which show that there is an action of a

certain reductive group H on Qτ
(Γ,GL(n))

, and the good quotient Mτ
Y
(Γ, n) :=

Qτ
(Γ,GL(n))

//H exists and gives a coarse moduli scheme for the functor of equiv-

alence classes of Γ-semistable principal (Γ, GL(n))-bundles on Y of local type

τ .

The map Qτ
(Γ,G)

→ Qτ
(Γ,GL(n))

obtained by taking an extension of structure

groups via the inclusion G ↪→ GL(n) is shown to be affine, and the action

of H lifts to Qτ
(Γ,G)

to give a good quotient Qτ
(Γ,G)

//H, which we denote by

Mτ
Y
(Γ, G) (see [4] and [2]).

When G is semisimple and simply connected, we show in this paper that

the points of the scheme Mτ
Y
(Γ, G) parametrize isomorphism classes of (Γ, G)-

bundles of local type τ which are unitary (Definition 8.0.4 below). Using

this, we show that Mτ
Y
(Γ, G) is normal and projective, and we compute its

dimension.

8.0.1. Remark. We note that the arguments of [2] are not sufficient for

showing the last statement (i.e., the projectivity and dimension computation)

since the local type of the bundles was not fixed in [2]. A key step in the

arguments is the connectedness of the moduli space which fails if the local

type is not fixed.

8.0.2. Remark. Note that, strictly speaking, we do not need the group

G to be semisimple and simply connected, but we need only the reductivity

of G to be able to talk of the space Mτ
Y
(Γ, G).

8.0.3. Definition. A unitary (π,G)-bundle on H is defined to be the trivial

G-bundle H×G on H with the π-structure given by γ(z, g) = (z, ρ(γ).g), with

ρ an element of Rτ (π,KG).

Let V be a unitary (π,G)-bundle defined by ρ : π → KG . Let r : H → Y

be as in (2.2.1.1). Let E(ρ) := rπo
∗ (V ); then E(ρ) is a (Γ, G)-bundle defined

by the twisted action given by (2.2.4.1).
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We observe that the local type τ i of the bundle E(ρ) at yi in the sense of

Definition 2.2.6 is equivalently given by the conjugacy class of ρ(Ci) in G.

Thus if τ = {τ i}, then we have

(8.0.3.1) ρ is of type τ = {τ i} ⇐⇒ E(ρ) is of local type τ .

8.0.4. Definition. A (Γ, G)-bundle E is called unitary if E � E(ρ) for a

homomorphism ρ : π → K
G
.

8.1. Properness of the moduli of (Γ, G)-bundles. Let H = G/Z(G),

the associated adjoint group. Let h = Lie(H). Consider the adjoint represen-

tation ρ : H → GL(h). It is clear that ρ is faithful representation.

Fix the representation ρ : H ↪→ GL(n) (where n = dim h) and a max-

imal compact KH of H such that KH ↪→ U(n). Consider the subscheme

Mτ
Y
(Γ, n)s ⊂ Mτ

Y
(Γ, n) of stable (Γ, GL(n))-bundles.

8.1.1. Lemma. Let φ : Mτ
Y
(Γ, H) −→ Mτ

Y
(Γ, n) be the morphism induced

by the representation ρ and the map of Quot schemes. Let Mτ
Y
(Γ, H)o :=

φ−1(Mτ
Y
(Γ, n)s) be the inverse image of the stable points. Then Mτ

Y
(Γ, H)o

(when nonempty) is open and consists of unitary (Γ, H)-bundles which are

Γ-stable as well.

Proof. We claim that a principal (Γ, H) bundle E is unitary if and only if

the associated (Γ, GL(h))-bundle E(h) is so. If E is unitary, then obviously

so is E(h).

We now show the converse. Let A(h) denote the stabilizer of the GL(h)-

action on the tensor space h∗ ⊗ h∗ ⊗ h at the point [ , ], i.e., the Lie bracket.

Since we have assumed that H is of adjoint type, it implies that A(h) =

Aut(h).

Now assume that E(h) comes from a unitary representation of π. Then

we take the Lie bracket morphism E(h) ⊗ E(h) → E(h). Both E(h) ⊗ E(h)

and E(h) come from unitary representations of π and, by local constancy

([24, Proposition 1.2]), morphisms of such bundles are induced by morphisms

of π-modules. It now follows that E(h) gets a reduction of structure group to

the group A(h) = Aut(h).

Since H is a connected adjoint group, firstly, Ad (H) = H and secondly, it

gets identified with the group of inner automorphisms. Thus we have a short

exact sequence

1 → H → A(h) → F → 1,

where elements of F � A(h)/H are the outer automorphisms. Again we have

a similar exact sequence of compact groups

1 → KH → KA(h) → F → 1.
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The bundle E is therefore such that E(A(h)) is a unitary bundle and comes

from a representation χ̄ : π → KA(h). Furthermore, the extended bundle

E(A(h))(F ) is trivial since it comes with a section (giving E). By composing

the representation χ̄ with the map KA(h) → F , we see that the triviality of

E(A(h))(F ) forces the composite to be the trivial homomorphism, implying

that χ̄ factors via χ : π → KH to give the bundle E (cf. Atiyah and Bott

[1, Lemma 10.12]).

Now using the main theorem of [36] we see that points of Mτ
Y
(Γ, n)s, being

stable bundles, are all unitary. Hence by the claim above the bundles in the

inverse image φ−1(Mτ
Y
(Γ, n)s) are also unitary.

It follows easily from Remark 6.3.3 (cf. [31, Remark 2.2]) that a (Γ, H)-

bundle is Γ-stable if and only if the associated Lie algebra bundle E(h) has

no Γ-invariant parabolic subalgebra bundles of degree ≥ 0. It is now easy to

see that a (Γ, H)-bundle is Γ-stable if the associated Lie algebra bundle is a

Γ-stable vector bundle since E(h) has no Γ-subbundles of degree ≥ 0 and, in

particular, no Γ-invariant parabolic subalgebra bundles of degree ≥ 0. �
8.1.2. Proposition. Assume that H is simple of adjoint type. Let ρ be

the adjoint representation of H. Then the inverse image of Mτ
Y
(Γ, n)s by the

induced morphism φ is nonempty.

Proof. Recall that the Fuchsian group π can be identified with the group

generated by 2g +m elements Ai, Bi, Ci, modulo relations given by (1.0.0.1)

and (1.0.0.2).

So to prove that the inverse image φ−1(Bunτ
Y
(Γ, n)s) is nonempty, we need

to exhibit a representation χ : π → KH such that the composition

(8.1.2.1) ρ ◦ χ : π → U(n) is irreducible.

Choose elements h1, . . . , hm ∈ KH so that they are elements of order ni, where

i = 1, . . . ,m (these correspond to fixing the local type τ of our bundles).

It is a well-known fact that every element of a compact connected real

semisimple Lie group is a commutator. Another well-known fact is that there

exists a dense subgroup 〈α, β〉 ofKH generated by two general elements {α, β}
(see for example [38, Lemma 3.1]). Recall that the genus g ≥ 2, and define

the representation χ : π → KH as

(8.1.2.2) χ(A1) = α, χ(B1) = β, χ(A2) = β, χ(B2) = α,

(8.1.2.3)
χ(Ai) = ai, χ(Bi) = bi, for i = 3, · · · , g,

χ(Cj) = hj , and j = 1, · · · ,m.

It is clear that χ gives a representation of the group π. Since H is simple,

ρ is irreducible, and the image of χ contains a dense subgroup, the composi-

tion ρ ◦ χ gives an irreducible representation of π in the unitary group U(n).
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Therefore, it gives a stable Γ-linearized vector bundle, which comes as the

extension of structure group of a H-bundle. This completes the proof of the

proposition. �
8.1.3. Corollary. There is a nonempty Zariski open subscheme Mτ

Y
(Γ, H)o

of Mτ
Y
(Γ, H) consisting of unitary bundles of local type τ which are also Γ-

stable.

Proof. Corollary 8.1.3 follows from Lemma 8.1.1 and Proposition 8.1.2. We

observe that since H is semisimple of adjoint type, it can be written as a direct

product
∏

Hi of simple groups of adjoint type. Now a (Γ, H)-bundle (resp.

unitary) is the same as a product of (Γ, Hi)-bundles (resp. unitary). Likewise

by [31, Proposition 7.1], a Γ-stable (Γ, H)-bundle is the same as a product of

Γ-stable (Γ, Hi)-bundles. For each factor Hi, Lemma 8.1.1 and Proposition

8.1.2 applies and the result follows. �
We now return to G which is as before a semisimple, simply connected

algebraic group.

8.1.4. Proposition. The subscheme of Mτ
Y
(Γ, G) consisting of stable uni-

tary bundles of local type τ is non-empty and contains a Zariski open subset.

Proof. Let η : Mτ
Y
(Γ, G) → Mτ

Y
(Γ, H) be the morphism induced by the

quotient map G → H. Let Mτ
Y
(Γ, H)o be as in Corollary 8.1.3. We claim

that the required Zariski open subset of Mτ
Y
(Γ, G) is

(8.1.4.1) Mτ
Y
(Γ, G)o := η−1(Mτ

Y
(Γ, H)o).

Let E be a (Γ, G)-bundle in η−1(Mτ
Y
(Γ, H)o). By Corollary 8.1.3, the H-

bundle E(H) comes from a unitary representation ρ : π → KH .

Recall that, by the structure of π described above, there is a central exten-

sion

(8.1.4.2) 1 → Zπ̃ → π̃ → π → 1,

where π̃ is generated by A1, . . . , Ag, B1, . . . , Bg, C1, . . . , Cm together with a

central element J satisfying the extra relation

(8.1.4.3) [A1, B1] · · · [Ag, Bg] · C1 · · ·Cm = J.

It is easy (as in [27]) by adding an extra lasso around a dummy point (other

than the parabolic points) to choose a lift of ρ to a representation ρ̃ : π̃ → KG

so that the associated (Γ, G)-bundle E(ρ̃) also maps to E(H). Thus, both E

and E(ρ̃) give E(H) under the quotient map G → H. Therefore, by twisting

by a central character of π̃, we get a representation π̃ → KG which gives the

(Γ, G)-bundle E (cf. [31, p. 148]).

We observe that this representation π̃ → KG in fact descends to a repre-

sentation π → KG. This follows from the fact that the local type of E at the

dummy point is trivial.
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From this we can now conclude that all bundles in Mτ
Y
(Γ, G)o are unitary

(cf. [1, Lemma 10.12]). Furthermore, since G → H is surjective, it is not hard

to see that a (Γ, G)-bundle is Γ-stable if and only if the associated (Γ, H)-

bundle is so (cf. [31, Proposition 7.1]). It follows that all points of Mτ
Y
(Γ, G)o

are also Γ-stable (Γ, G)-bundles, completing the proof of the proposition. �
We now have a canonical continuous map

(8.1.4.4) ψ : Rτ (π,KG) → Mτ
Y
(Γ, G),

which sends ρ to the class of E(ρ). This map is obtained following [35, p. 334].

First we consider the space Rτ (π,G) of all homomorphisms π → G of local

type τ . Let Rτ (π,G)ss be the subset of Rτ (π,G) consisting of points ρ such

that E(ρ) is Γ-semistable. One can easily construct an analytic family of

(π,G)-bundles on H × Rτ (π,G); the subgroup πo acts freely on H and this

family is easily seen to come down to an analytic family of (Γ, G)-bundles on

Y parametrized by Rτ (π,G)ss.

Further, since a (Γ, G)-bundle is Γ-semistable if and only if the associated

Γ-vector bundle is so (see for example the proof of [2, Proposition 3.2]), it

follows that the subset Rτ (π,G)ss is nonempty and open in Rτ (π,G) and

contains the space Rτ (π,KG) of all unitary representations.

By the local universal property of Qτ
(Γ,G)

, given a ρ ∈ Rτ (π,G)ss, we get an

analytic neighborhood U of ρ together with an analytic map U → (Qτ
(Γ,G)

)ss.

These maps glue to give an analytic morphism ψ : Rτ (π,G)ss → Mτ
Y
(Γ, G).

Restricting this map to Rτ (π,KG) gives the continuous map ψ. The image

of ψ consists of (Γ, G)-bundles which are unitary.

The following irreducibility result is an immediate consequence of Theorem

5.3.1, [21, Theorem 2], and [21, Proposition 1].

8.1.5. Proposition. The moduli stack Bunτ
Y
(Γ, G) of (Γ, G)-bundles on Y

of local type τ is irreducible and smooth when the group G is semisimple and

simply connected.

8.1.6. Remark. We now indicate a different proof of the connectedness

from the picture of Hecke correspondences shown in (8.2.1.2). By Drinfeld and

Simpson [12], the moduli stack BunX (G) is irreducible because G is semisim-

ple and simply connected. Further, the morphism Bun(GI,X
) → Bun

X
(G) is

surjective and has fiber G/B, B being the Borel subgroup. Hence, Bun(GI,X
)

is connected. Now observe that the map Bun(GI,X
) → Bun(G

Ω,X
) given by

(8.2.1.2) is also surjective since it comes from the inclusion I ⊂ PΩ(K). Hence

Bun(GΩ,X ) is connected. The irreducibility follows from the formal smooth-

ness of the functor of torsors (see [21, Proposition 1]); the obstruction to

smoothness vanishes since we work on curves.
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Since we work over char 0, the connectedness of the moduli space of (Γ, G)-

bundles of local type τ could also be carried out following [31] and [1, Propo-

sition 4.2].

We have a morphism f : Bunτ
Y
(Γ, G)ss → Mτ

Y
(Γ, G), namely, the canonical

quotient map obtained by the categorical quotient property of the moduli

space Mτ
Y
(Γ, G). The map f is surjective on points; therefore by Proposition

8.1.5, this implies that Mτ
Y
(Γ, G) is irreducible.

8.1.7. Theorem. The map ψ : Rτ (π,KG) → Mτ
Y
(Γ, G) obtained in

(8.1.4.4) is surjective and hence Mτ
Y
(Γ, G) is compact. Further, the variety

Mτ
Y
(Γ, G) gets a structure of a normal projective variety.

Proof. By the Proposition 8.1.4, the subset Mτ
Y
(Γ, G)o is nonempty

and consists entirely of unitary bundles. Thus it is a subset of the image

ψ(Rτ (π,KG)) in Mτ
Y
(Γ, G), i.e., the image ψ(Rτ (π,KG)) contains a

Zariski open subset of Mτ
Y
(Γ, G). Since Rτ (π,KG) is compact, the image

ψ(Rτ (π,KG)) is therefore the whole of Mτ
Y
(Γ, G), because Mτ

Y
(Γ, G) is irre-

ducible.

This proves that Mτ
Y
(Γ, G) is topologically compact and hence by GAGA

it is a projective variety. The normality follows from the smoothness of the

stack Bunτ
Y
(Γ, G)ss, again by Proposition 8.1.5. �

8.1.8. Corollary. (1) Let g(X) ≥ 2. Then the map ψ : Rτ (π,KG) →
Mτ

Y
(Γ, G) defined above descends to a map

(8.1.8.1) ψ∗ : Rτ (π,KG)/KG → Mτ
Y
(Γ, G),

which gives a homeomorphism of topological spaces. Further, the sub-

set Ro/KG of equivalence classes of irreducible unitary representa-

tions maps bijectively onto the subset of stable (Γ, G)-bundles.

(2) Let g(X) < 2. When X = P1 and |R| ≥ 3 or when X is an elliptic

curve and R �= ∅, the map ψ∗ in (8.1.8.1) is a homeomorphism pro-

vided there exists an irreducible representation ρ : π1(X −R) → KG

with preassigned conjugacy classes of images of lassos around the

points of R.

Proof. The surjectivity of the map ψ∗ : Rτ (π,KG)/KG → Mτ
Y
(Γ, G) fol-

lows from surjectivity statement in Theorem 8.1.7.

For the injectivity of ψ∗, suppose that ψ(ρ1) = ψ(ρ2), i.e., we have an iso-

morphism E
ρ1

� E
ρ2

of the unitary bundles defined by the ρi. Now we follow

Ramanathan [31, Proposition 6.2] and work with our Γ instead of π1(X−xo).

The proof simply goes through, and this implies that the ρi are in the same

orbit of KG. One could also argue as in Lemma 8.1.1 to get the injectivity

statement.
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Since Rτ (π,KG)/KG is compact and Mτ
Y
(Γ, G) is Hausdorff in the usual

topology, the map ψ∗ is a homeomorphism. The fact that irreducible repre-

sentations give stable bundles and vice versa follows exactly as in [31]. The

second part when the genus is 0 or 1 follows from Remark 5.3.3 and Theorem

7.3.2. �
Let G

Ω,X
be a parahoric Bruhat–Tits group scheme associated to a collec-

tion of facets Ω = {Ωi}. Choose τ = {τi} and θτ ∈ (Y (T ) ⊗ Q)m, so that

GΩ,X � G
θτ ,X

. Recall that Theorem 6.3.5 identifies stable (resp. semistable)

families of parahoric GΩ,X -torsors with stable (resp. semistable) (Γ, G)-bundles

of local type τ on the ramified cover Y .

8.1.9. Definition. Say two parahoric GΩ,X -torsors (E, θ) and (F, θ) on X

are S-equivalent if the corresponding (Γ, G)-bundles on Y are S-equivalent.

8.1.10. Remark. Recall that notion of S-equivalence of principal bundles

in [32]. It is routine to extend this notion to (Γ, G)-bundles as well (see [2]

and [40]) . The notions of admissible reduction of structure group is made

with the additional Γ-equivariance property in [2] and [3]. This gives the

analogous definitions of (Γ, G)-polystable bundles and Γ-associated graded of

a (Γ, G)-semistable bundle ([40]). We omit the details.

Let

(8.1.10.1) M(G
θ,X

) :=

{
the set of S-equivalence classes of

semistable parahoric G
Ω,X

-torsors on X

}
,

and let M(G
θ,X

)s ⊂ M(G
θ,X

) denote the subset of stable torsors.

By definition we have the set-theoretic identification

(8.1.10.2) Mτ
Y
(Γ, G) � M(G

θτ ,X
),

and by transport of structure we get the structure of a variety on M(G
θ,X

).

We summarize this discussion in the following theorem which is immediate

from Theorem 8.1.7:

8.1.11. Theorem. The set M(G
θτ ,X

) gets a natural structure of an irre-

ducible normal projective variety with M(G
θτ ,X

)s as an open subset. It gives

a coarse moduli space for the substack Bun(G
θτ ,X

)ss of semistable torsors in

Bun(G
θτ ,X

). Furthermore, we have a homeomorphism

(8.1.11.1) φ∗ : Rτ (π,KG)/KG → M(G
θτ ,X

),

which identifies Ro/KG with M(G
θτ ,X

)s.

The next corollary follows from Theorem 7.3.2 and Theorem 8.1.11.

8.1.12. Corollary. Let θτ = {θi} ∈ Em be the corresponding point in

the product of the affine apartment. Then the dimension of the moduli space
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M(G
θτ ,X

) is given by

(8.1.12.1) dim
C
(G)(g − 1) +

m∑
i=1

1

2
e(θτ ).

8.2. Extension to the case when the structure group is reductive.

We indicate briefly how to extend the construction of the moduli space of

(Γ, H)-bundles to the case when the structure group H is a connected reduc-

tive algebraic group and identify it with the space of homomorphisms from

π to KH . However, the corresponding relationship with parahoric torsors for

reductive G needs a closer analysis of Bruhat–Tits theory for reductive groups.

Let S = [H,H] be the derived group, i.e., the maximal connected semisim-

ple subgroup of H. Let Z0 be the connected component of the center of H

(which is a torus), and one knows that S and Z0 together generate H. Let

G = Z0 × S. Then in fact, G → H is a finite covering map. It is easy to

see (following [31, p. 145]) that (Γ, G)-bundles gives rise to (Γ, H)-bundles

and the stability and semistability of the associated (Γ, H)-bundles follows

immediately from that of the (Γ, G)-bundles.

The problem of handling the reductive group G reduces to the problem

of handling the semisimple group H but which is not simply connected. Let

H̃ be the semisimple, simply connected algebraic group which is the covering

group of H.

We are in the situation of Proposition 8.1.4. Recall the central extension

(8.1.4.2). By adding a dummy point other than the parabolic point, the

theory of (π,H)-bundles is recovered from that of (π̃, H̃)-bundles. Notice

that a homomorphism π → KH has as many liftings π̃ → KH̃ as the order

of the center of H̃ . It follows quite easily, following arguments as in Lemma

8.1.1, that the number of connected components of the moduli space in the

nonsimply connected case is given by the order of the center of H̃. In fact,

Hom(π̃,KH̃) is a union of spaces labeled by elements of the center of H̃ . Let

Z0 = Ker(H̃ → H). Then there is an action ofH1(X,Z0) on a specific labeled

subset of Hom(π̃,KH̃). A component of the moduli space of representations

into KH can be obtained as a quotient of each of these by the action of

H1(X,Z0). Details of these ideas are again found in [31, p. 148], and follow

the ideas of Narasimhan and Seshadri [27], where the data over a dummy

point is called a special parabolic structure.

8.2.1. Hecke correspondences. Recall that for the case of linear groups,

one has the classical Hecke correspondences due to Narasimhan and Ramanan

[26]. In what follows, we consider parahoric subgroups PΩ(K) of G(K) which

contain a fixed Iwahori subgroup I (see subsection 2.1.11 for notation). Using

(2.1.11.2), we get I ⊂ Pst
α
(K) ⊂ P

θα
(K) ∩ P0(K). These maps of parahoric
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groups induce morphisms of the corresponding parahoric Bruhat–Tits group

schemes, GI → Gst
α

and GI → G
θα

and morphisms at the level of stacks and

we obtain the following generalized Hecke correspondences. The dimension

formulae (see Corollary 8.1.12) get reflected accurately in the picture.

(8.2.1.1)

Bun(GI)

Bun(Gst
β
)

Bun(G
θβ
) Bun(G)

Bun(Gst
α
)

Bun(G) Bun(G
θα
)

For instance, we have the following picture of a Hecke correspondence induced

by the morphisms GI → G
Ω
and GI → G

0
(= G×X):

(8.2.1.2) Bun(GI)

�����
���

���
�

G/B

����
���

���
��

Bun(G
Ω
) Bun(G).

8.2.2. Remark. It would be interesting to express these relations as mor-

phisms between moduli spaces M(G
Ω,X

); even the existence of suitable mor-

phisms between the moduli spaces would involve choice of polarization (in the

sense of GIT), which would be needed for an algebro-geometric construction

of the moduli spaces of parahoric torsors.

Acknowledgments

We wish to thank Jochen Heinloth and Michel Brion for many helpful

suggestions on an earlier version of this paper. The first author also thanks

Gopal Prasad for some helpful discussions on Bruhat–Tits theory. The first

author wishes to thank the Isaac Newton Institute for their hospitality during

the semester on “Moduli” where this work was given its final shape. We

wish to thank Pramathanath Sastry and Brian Conrad for their very helpful

comments. Finally, we sincerely thank the referee for the meticulous reading

of the paper and comments and questions which have helped immensely in

clarifying many key issues in the paper.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

PARAHORIC BUNDLES 47

References

[1] M. F. Atiyah and R. Bott, The Yang-Mills equations over Riemann surfaces,
Philos. Trans. Roy. Soc. London Ser. A 308 (1983), no. 1505, 523–615, DOI
10.1098/rsta.1983.0017. MR702806 (85k:14006)

[2] Vikraman Balaji, Indranil Biswas, and Donihakkalu S. Nagaraj, Principal bundles over
projective manifolds with parabolic structure over a divisor, Tohoku Math. J. (2) 53
(2001), no. 3, 337–367, DOI 10.2748/tmj/1178207416. MR1844373 (2002h:14026)

[3] V. Balaji, I. Biswas, and D. S. Nagaraj, Ramified G-bundles as parabolic bundles, J.
Ramanujan Math. Soc. 18 (2003), no. 2, 123–138. MR1995862 (2004i:14035)

[4] V. Balaji and C. S. Seshadri, Semistable principal bundles. I. Characteristic zero, J.
Algebra 258 (2002), no. 1, 321–347, DOI 10.1016/S0021-8693(02)00502-1. Special issue

in celebration of Claudio Procesi’s 60th birthday. MR1958909 (2003m:14050)
[5] Arnaud Beauville and Yves Laszlo, Un lemme de descente (French, with English and

French summaries), C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), no. 3, 335–340.
MR1320381 (96a:14049)

[6] P. P. Boalch, Riemann-Hilbert for tame complex parahoric connections, Trans-
form. Groups 16 (2011), no. 1, 27–50, DOI 10.1007/s00031-011-9121-1. MR2785493
(2012m:14020)

[7] A. Borel and J. De Siebenthal, Les sous-groupes fermés de rang maximum des
groupes de Lie clos (French), Comment. Math. Helv. 23 (1949), 200–221. MR0032659
(11,326d)

[8] Siegfried Bosch, Werner Lütkebohmert, and Michel Raynaud, Néron models, Ergeb-
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istence d’une donnée radicielle valuée (French), Inst. Hautes Études Sci. Publ. Math.
60 (1984), 197–376. MR756316 (86c:20042)

[10] V. Chernousov, P. Gille, and A. Pianzola, Torsors over the punctured affine line, Amer.
J. Math. 134 (2012), no. 6, 1541–1583, DOI 10.1353/ajm.2012.0051. MR2999288

[11] Brian Conrad, Ofer Gabber, and Gopal Prasad, Pseudo-reductive groups, New
Mathematical Monographs, vol. 17, Cambridge University Press, Cambridge, 2010.
MR2723571 (2011k:20093)

[12] V. G. Drinfel′d and Carlos Simpson, B-structures on G-bundles and local triviality,
Math. Res. Lett. 2 (1995), no. 6, 823–829. MR1362973 (96k:14013)
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47-87.
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