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Abstract. The aim of this paper is to begin a study of the cohomology modules Hi(X(w),Lλ)
for non-dominant weights λ on Schubert varieties X(w) in G/B. The aim is to set-up a
combinatorial dictionary for describing the cohomology modules and give criteria for their
vanishing. Here Lλ denotes the line bundle on X(w) corresponding to the 1-dimensional
representation of B given by the character λ.

1. Introduction

The following notations will be maintained throughout this paper.
Let k be an algebraically closed field of characteristic zero and G a semi-simple,

simply connected algebraic group over k. We fix a maximal torus T of G and let X(T )
denote the set of characters of T , W = N(T )/T denote the Weyl group of G with
respect to T . Let R denote the set of roots of G with respect to T , B ⊇ T the Borel
subgroup of G with respect to the set of negative roots R− ⊆ R and S = {α1, . . . , αl}
denote the set of simple roots in R+. Here l is the rank of G. For β ∈ R+ we also
use the notation β > 0. Since G is simply connected it is well known that X(T ) is the
same as the weight lattice Λ. The element of the Weyl group corresponding to αi is
denoted by sαi . The positive definite W -invariant form on the weight lattice induced
by the Killing form of the Lie algebra of G is denoted by ( , ). We use the notation 〈 , 〉
to denote 〈ν , α〉 = 2(ν,α)

(α,α) . Let xα, yα, α ∈ R+, hαi , αi ∈ S, denote a Chevalley basis of
the Lie algebra of G. We denote by Λ+ the set of dominant weights (also sometimes
referred to as positive weights) i.e. the set of weights λ ∈ Λ, such that 〈λ , α〉 ≥ 0 for
all α ∈ R+. If 〈λ , α〉 > 0 for all α then we say λ is regular dominant. For w ∈ W let
l(w) denote the length of w. Let w0 ∈W denote the longest element of the Weyl group.

For w ∈W let X(w) denote the Schubert variety in G/B corresponding to w.
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The aim of this paper is to begin a comprehensive study of the cohomology modules
Hi(X(w),Lλ) for non-dominant weights λ. The aim broadly is to set-up a combinatorial
dictionary for describing the cohomology modules and give criteria for their vanishing.
Here Lλ denotes the line bundle on X(w) corresponding to the 1-dimensional represen-
tation of B given by the character λ.

In the case when λ is dominant this problem has been well studied for a number of
years. When λ is non-dominant, the cohomology modules were studied by Bott (cf [1])
when X(w) ' G/B and we have in particular the celebrated Borel-Weil-Bott theorem.
Again in the non-dominant case one can still have the Demazure character formula which
in particular will give the Euler characteristic of the line bundle Lλ on X(w). (cf [5,
II.14.8]). Our work arose out of an attempt to understand the individual cohomology
modules of Schubert varieties for non-ample line bundles and their structures as B-
modules and to examine whether there was an analogue of the Borel-Weil-Bott theorem
for Schubert varieties. In particular, it was of interest to understand the character of
the individual cohomology modules as well.

Recall the Borel-Weil-Bott theorem; if λ is a weight such that (w · λ) ∈ Λ+ then
we have, Hi(G/B,Lλ) = 0 for i 6= l(w), and H l(w)(G/B,Lλ) = H0(G/B,Lw·λ). (See
[1] and [3]). Here (w · λ) is the usual dot action of w on weights and is given by
w · λ = w(λ + ρ) − ρ. In the case when λ + ρ is singular, the theorem states that all
cohomology modules vanish.

We have the following results which relate the combinatorics of the Weyl group
to the cohomology vanishing of Schubert varieties. We have primarily stuck to the
characteristic zero case but we believe that the alcove type generalization in positive
characteristics due to Andersen for the Borel-Weil-Bott theorem should carry over to
provide some very interesting theory. The standard results on the combinatorics of the
Weyl group that are used in this paper can be found in (cf [5, II, 1.5]).

We consistently use the following terminology in this paper. A weight λ is said to be
generic if for all simple roots α one has |〈λ , α〉| � 0. For a generic weight λ it is well
known that there is a unique element φ ∈ W such that the weights φ(λ) and φ · λ are
dominant weights (cf [4, Th. 10.3 (a)]). We then say that λ is a generic weight in the
φ–chamber. All the results mentioned below hold for generic λ. The precise genericity
assumptions for each result is given in the statement of the corresponding theorem.

We have the following (cf Theorem 3.3):
Theorem Let X(w) be a Schubert variety and λ a generic weight in the φ–chamber.
Let R+(w) = {α ∈ R+ | w(α) ∈ R−}.

(1) H0(w, λ) 6= 0 if and only if R+(w) ∩R+(φ) = ∅.
(2) H l(w)(w, λ) = 0 if and only if R+(w) 6⊆ R+(φ).

The first part of this theorem is due to P.Polo (cf [10] and also the paper of Dabrowski
[2] and Remark 3.4).

We also have the following related results for λ a generic weight in the φ–chamber :

(1) Hj(w, λ) = 0 for j > min(l(w), l(φ)).
(2) Hj(w, λ) = 0 for j ≤ l(w)− l(w0) + l(φ)− 1.
(3) (Cohomological characterization of the Bruhat order)

φ ≤ w if and only if H l(φ)(w, λ) 6= 0.
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We call a Schubert variety X(w) a Schubert variety of distinct type if the w is a
product of the l simple reflections each occurring exactly once, but appearing in any
order.

Let X(w) be a Schubert variety of distinct type in G/B, for general G. We fix a
reduced expression for w = silsil−1 . . . si1 and denote by wj the suffix sij . . . si1 of w.
We are interested in studying the cohomology modules Hi(w, λ), 0 ≤ i ≤ l(w), for
generic λ.

For 1 ≤ j ≤ l define Aj = {τ−1(αij ) | τ ≤ wij−1}.
We say λ(Aj) > 0 (respectively, λ(Aj) < 0)) if ∀α ∈ Aj , 〈λ , α〉 > 0 (respectively,

∀α ∈ Aj , 〈λ , α〉 < 0). If there are roots α, β ∈ Aj such that 〈λ , α〉 < 0 and 〈λ , β〉 > 0
then we write it as λ(Aj) ≷ 0. Let a(w) := a(w, λ) =

∣∣{i|λ(Ai) < 0}
∣∣ and b(w) :=

b(w, λ) =
∣∣{i|λ(Ai) ≷ 0}

∣∣. Then for λ generic we have the following:
Theorem Hi(w, λ) 6= 0, for all i, a(w) ≤ i ≤ a(w) + b(w). Hi(w, λ) = 0, for all
i < a(w) and all i > a(w) + b(w).

An interesting feature of the work is the isolation of certain Weyl chambers associated
to Schubert varieties different from the dominant and the anti-dominant ones which we
term the diagonal and anti-diagonal chambers (cf. Def 7.1). Their cohomology carries
some very natural and precise information some of which we have brought out in this
paper (cf. §2). Indeed, as an illustration of the failure of the Borel-Weil-Bott theorem
for Schubert varieties we have the following cohomological characterization of G/B in
terms of the cohomology of line bundles from the diagonal and anti-diagonal chambers.
For precise genericity conditions see Th 7.2.
Theorem Let w ∈W be such that sα ≤ w (in the Bruhat order) ∀α ∈ S.

(1) Let λ be a generic weight in the w–chamber. i.e. λ is a generic weight in the
diagonal chamber with respect to w. Suppose that

#{j | Hj(X(w),Lλ) 6= 0} = 1.

Then H l(w)(X(w),Lλ) 6= 0 and X(w) = G/B , i.e w = w0 and λ is negative
dominant.

(2) Let µ be a generic weight in the w0w–chamber. i.e. µ is a generic weight in the
anti-diagonal chamber with respect to w. Suppose that

#{j | Hj(X(w),Lµ) 6= 0} = 1.

Then H0(X(w),Lµ) 6= 0 and X(w) = G/B, i.e w = w0 and µ is dominant.
In the course of the work it was realized that for a uniform theory we will have to

assume certain genericity assumptions for the non-dominant weights and these in most
situations can be made very specific to the problem at hand. The case when the weights
are somewhat special, situated essentially near the walls of some Weyl chambers, the
behaviour can be erratic and seems to involve very complicated combinatorics. We have
avoided addressing these issues in this paper.

The broad strategy can be termed as a delicate use of the Bott-Samelson inductive
machinery, both in its ascending approach as well as the descending approach. One of
the key ingredients that we need is a generalization of a lemma due to D. N. Verma (cf.
[8] and §9 of this paper).
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The layout of the paper is as follows: In §3 we describe the relationship between
the vanishing of cohomology modules and the combinatorics of the Weyl group. In
§4 we give upper and lower bounds on j for the vanishing of the cohomology modules
Hj(X(w),Lλ). In §5 we state our key lemma and discuss our broad strategy for com-
puting cohomology. In §6 we study explicitly the cohomology modules for Schubert
varieties of distinct type. In §7 we prove the main results of this paper which gives a
cohomological characterization of G/B. In §8 we state a conjecture on the cohomologi-
cal non-triviality of certain Schubert cohomology modules and we conclude with some
remarks. In the appendix we give a self-contained proof of our key lemma.

Acknowledgments: We thank Parameswaran Sankaran for pointing out to us the result due
to Verma. We thank C.S.Seshadri for his constant encouragement. We also thank the referees
for their detailed comments and suggestions and for pointing out some errors in the earlier
version of this paper.

2. Preliminaries

Throughout this paper we are concerned with Schubert varieties in G/B.
We denote by U the unipotent radical of B. We denote by Pα the minimal parabolic

subgroup of G containing B and sα. Let Lα denote the Levi subgroup of Pα containing
T . We denote by Bα the intersection of Lα and B. Then Lα is the product of T and a
homomorphic image of SL(2) in G (cf. [5, II.1.1.4]). We denote this copy of SL(2) in G
by SL(2, α).

Given a w ∈ W the closure in G/B of the B orbit of the coset wB is the Schubert
variety corresponding to w, and is denoted by X(w). We recall some basic facts and
results about Schubert varieties. A good reference for all this is the bok by Jantzen. (cf
[5, II, Chapter 14 ]).

Let w = sα1sα2 . . . sαn be a reduced expression for w ∈W . Define

Z(w) =
Pα1 × Pα2 × . . .× Pαn

B × . . .×B
,

where the action of B × . . . × B on Pα1 × Pα2 × . . . × Pαn is given by
(p1, . . . , pn)(b1, . . . , bn) = (p1 · b1, b−1

1 · p2 · b2, . . . , b−1
n−1 · pn · bn), pi ∈ Pαi , bi ∈ B.

Note that Z(w) depends on the reduced expression chosen for w. It is well known
that Z(w) is a smooth B variety and is a resolution for X(w). We denote by φw the
birational surjective morphism

φw : Z(w) −→ X(w).

Let fn : Z(w) −→ Z(wsαn) denote the map induced by the projection Pα1 × Pα2 ×
. . . × Pαn −→ Pα1 × Pα2 × . . . × Pαn−1 . Then we observe that fn is a Pαn/B ' P1-
fibration.

Let V be a B-module. Let Lw(V ) denote the pull back to X(w) of the homogeneous
vector bundle on G/B associated to V . By abuse of notation we denote the pull back of
Lw(V ) to Z(w) also by Lw(V ), when there is no cause for confusion. Then, for i ≥ 0,
we have the following isomorphisms of B-linearized sheaves

Rifn∗Lw(V ) = Lwsαn (Hi(Pαn/B,Lw(V ))).
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This together with easy applications of Leray spectral sequences is the constantly used
tool in what follows. We term this the descending 1-step construction.

We also have the ascending 1-step construction which too is used extensively in what
follows sometimes in conjunction with the descending construction. We recall this for
the convenience of the reader.

Let the notations be as above and write τ = sαw, with l(τ) = l(w) + 1, for some
simple root α. Then we have an induced morphism

g1 : Z(τ) −→ Pα/B ' P1,

with fibres given by Z(w). Again, by an application of the Leray spectral sequences
together with the fact that the base is a P1, we obtain for every B-module V the
following exact sequence of Pα-modules

0 −→ H1(Pα/B,Ri−1g1∗Lw(V )) −→ Hi(Z(τ),Lτ (V )) −→ H0(Pα/B,Rig1∗Lw(V )) −→ 0.

We also recall the following well-known isomorphisms:
• φw∗OZ(w) = OX(w).
• Rqφw∗OZ(w) = 0 for q > 0.

This together with [5, II. 14.6] implies that we may use the Bott-Samelson schemes
Z(w) for the computation and study of all the cohomology modules Hi(X(w),Lw(V )).
Henceforth in this paper we shall use the Bott-Samelson schemes and their cohomology
modules in all the computations.

If V is a B-module and Lw(V ) is the induced vector bundle on Z(w) we denote the
cohomology modules Hi(Z(w),Lw(V )) by Hi(w, V ).

In particular if λ is a character of B we denote the cohomology modules Hi(Z(w),Lλ)
by Hi(w, λ).

Some constructions from Demazure’s paper. We recall briefly two exact sequences that
Demazure used in his short proof of the Borel-Weil-Bott theorem [3]. We use the same
notation as in Demazure. In the rest of the paper these sequences are referred to as
Demazure exact sequences

Let α be a simple root and let λ ∈ X(T ) be a weight such that 〈λ , α〉 ≥ 0. For such
a λ, we denote by Vλ,α the module H0(Pα/B, λ) . As B-modules we have the following
exact sequences: (to obtain the second sequence we need to assume that 〈λ , α〉 ≥ 2).

Demazure Exact Sequences 2.1.

0 −→ K −→ Vλ,α −→ Lλ −→ 0.
0 −→ Lsα(λ) −→ K −→ Vλ−α,α −→ 0.

A consequence of the above exact sequences is the following crucial lemma, a proof
of which can be found in [3].

Lemma 2.2.
(1) Let τ = wsα, l(τ) = l(w) + 1. If 〈λ , α〉 ≥ 0 then for all j, Hj(τ, λ) =

Hj(w, Vλ,α).
(2) Let τ = wsα, l(τ) = l(w) + 1. If 〈λ , α〉 ≥ 0 then Hi(τ, λ) = Hi+1(τ, sα · λ) and

if 〈λ , α〉 ≤ −2 then Hi(τ, λ) = Hi−1(τ, sα · λ).
(3) If 〈λ , α〉 = −1 then Hi(τ, λ) vanishes for all i (cf. Prop 5.2(b) [5]).
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Definition 2.3. A finite dimensional B-module V is said to be dual-cyclic if its dual
V ∗ is cyclic as a B-module, i.e, there exists a linear form f ∈ V ∗, which generates V ∗

as a B-module.

3. Cohomology vanishing - combinatorial conditions based on roots

In this section we state combinatorial conditions on when the cohomology modules
Hi(w, λ) vanish, for a generic λ belonging to the φ–chamber. These combinatorial
conditions are based on how the elements w and φ act on roots. We begin with two
lemmas which describe the weights occurring in H l(w)(w, λ) for w ∈W and λ a weight
such that w0(λ+ ρ) is regular dominant. Note that for such a w and λ it follows from
the Borel-Weil-Bott theorem that H l(w)(w, λ) is non-zero.

Lemma 3.1. Let λ be a weight such that w0(λ + ρ) is regular dominant. Then for all
w, every weight in H l(w)(w, λ) is in the convex hull of the weights τ · λ, τ ≤ w.

Proof. We prove this by ascending induction on l(w). The base case when w = 1 is
trivial. Let l(w) = r > 0. Let w = sατ with l(w) = l(τ) + 1. We may assume by
induction that every weight in H l(τ)(τ, λ) is of the form Στ ′≤τ cτ ′τ ′ · λ with cτ ′ ≥ 0
and Σcτ ′ = 1. Since H l(w)(w, λ) = H1(sα, H l(τ)(τ, λ)) it is clear that every weight ν of
H l(w)(w, λ) is of the form ν = aµ+ (1− a)sα · µ, for some weight µ of H l(τ)(τ, λ) with
0 ≤ a ≤ 1. Observe that sα · Στ ′≤τ cτ ′τ ′ · λ = Σcτsα · τ ′ · λ = Σcτsατ ′ · λ. Since τ ′ ≤ τ
implies sατ ′ ≤ w the lemma follows.

Lemma 3.2. If λ is a weight such that w0(λ + ρ) is regular dominant then for any
w ∈W , the highest weight of H l(w)(w, λ) is w · λ.

Proof. We prove this by ascending induction on l(w). The base case when w = 1 is
trivial. Let l(w) = r > 0. Let w = sατ with l(w) = l(τ) + 1. We may assume by
induction that the highest weight of H l(τ)(τ, λ) is τ ·λ. Since 〈τ · λ , α〉 ≤ −2, it follows
that sα · τ · λ = w · λ is a weight of H1(sα, H l(τ)(τ, λ)) = H l(w)(w, λ). From Lemma 3.1
any weight µ of H l(w)(w, λ) is of the form µ = Στ ′≤wcτ ′τ ′ · λ. Since λ is negative
dominant if follows that τ ′ · λ ≤ w · λ for τ ′ ≤ w. This completes the proof.

To state our combinatorial conditions we set up some notation. Given w we denote
by R+(w) the set of positive roots sent to negative by w i.e. R+(w) = {α ∈ R+|w(α) ∈
R−}. Then we have

Theorem 3.3.

(i) Let λ be a weight such that φ(λ) is regular dominant. Then H0(w, λ) 6= 0 iff
R+(w) ∩ R+(φ) = ∅. Furthermore when H0(w, λ) 6= 0 then it is a dual-cylic
module with lowest weight w(λ).

(ii) Let λ be a weight such that φ(λ+ ρ) is regular dominant. Then H l(w)(w, λ) 6= 0
iff R+(w) ⊆ R+(φ). Furthermore when H l(w)(w, λ) 6= 0 it is a cyclic module
with highest weight w · λ.

Proof. Proof of (i). The first case of this theorem can also be found in P.Polo (cf [10,
Cor. 2.3] ) and Dabrowski (cf [2]).

The weight computation is also not hard to check.
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Proof of (ii). The same technique of proof can be be used to give a proof of (i)
different from that in [10], [2].

Let w, φ be a pair of elements in the Weyl group. Let α be a simple root such that
φ(α) and w(α) are both positive or both are negative. For such an α it can be easily
checked that R+(w) ⊆ R+(φ) iff R+(wsα) ⊆ R+(φsα).

The proof proceeds by ascending induction on w. The base case when w is 1 is clear.
Let us assume that R+(w) ⊆ R+(φ) and assume the statement has been proved for

all Schubert varieties of dimension strictly less that of X(w). Let λ be a weight such
that φ · λ is dominant. For a simple root α such that w(α) < 0 consider the long exact
sequence of cohomology modules

· · · −→ H l(w)−1(wsα, Vsα·λ,α) −→ H l(w)−1(wsα, sα · λ) −→ 0.

Now wsα has length one less than w and φsα(sα · λ + ρ) is dominant. From the hy-
pothesis and the discussion above it follows that R+(wsα) ⊆ R+(φα). So by induction
H l(w)−1(wsα, sα · λ) is non zero. Hence so is H l(w)−1(wsα, Vsα·λ,α) = H l(w)(w, λ).

Interchanging the roles of the pairs (w, φ) and (wsα, φsα) and using a sequence similar
to the above, we can prove the converse by descending induction.

To conclude that H l(w)(w, λ) is a cyclic module with highest weight w ·λ we proceed
as follows.

We first show that if λ is a weight such w0(λ+ρ) is regular dominant then H l(w)(w, λ)
is a cyclic module with highest weight w · λ. That the highest weight is w · λ follows
from Lemma 3.2. We need to show cyclicity.

Let Kw denote the dualizing class of X(w). Then Kw = −ρ− ∂X(w), where ∂X(w)
denotes the boundary of X(w). Then by Serre duality H l(w)(w, λ)∗ ' H0(X(w),−λ−
ρ − ∂X(w)). Note that this isomorphism is a U–equivariant map. Consider the short
exact sequence of U–sheaves

0 −→ (−λ− ρ− ∂X(w)) −→ (−λ− ρ) −→ (−λ− ρ)|∂X(w) −→ 0.

From this we get a U–equivariant inclusion

0 −→ H0(w,−λ− ρ− ∂X(w)) −→ H0(w,−λ− ρ) −→ · · ·

Since w0(λ+ ρ) is regular dominant it follows that −λ− ρ is regular dominant. So the
dual of the second module H0(w,−λ−ρ) is a Demazure module, which is cyclic. Hence
H0(w,−λ−ρ−∂X(w))∗, being a quotient of a cyclic module is also cyclic. This proves
that H l(w)(w, λ) is cyclic in this case.

To complete the proof we need to show that for w, φ, λ satisfying the hypothesis of
the theorem, H l(w)(w, λ) is a cyclic module with highest weight w · λ. We show this
by induction on l(w0) − l(φ). The base case when φ = w0 follows from the discussion
above.

If φ is different from w0 there is a simple root α such that φ(α) > 0. Since R+(w) ⊆
R+(φ) it follows that w(α) > 0. Hence l(wsα) = l(w) + 1 and l(φsα) = l(φ) + 1.
Furthermore we note that R+(wsα) ⊆ R+(τsα).

From the short exact sequence

0 −→ K −→ Vλ,α −→ λ −→ 0,
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we get
−→ H l(w)(w, Vλ,α) −→ H l(w)(w, λ) −→ 0.

Now H l(w)(w, Vλ,α) = H l(w)(wsα, λ) = H l(w)+1(wsα, sα · λ). Now φsα((sα · λ) + ρ) is
also regular dominant. So by induction, we may assume that H l(w)+1(wsα, sα · λ) is a
cyclic module with highest wsα · sα · λ = w · λ. Since H l(w)(w, λ) is a quotient of this
module it follows that H l(w)(w, λ) is also a cyclic module with highest weight w · λ.

Remark 3.4. We thank the referee for pointing out that the result (ii) in Th 3.3 can
be deduced from (i) using Serre duality. From the hypothesis in (ii), using (i) and
Serre duality one can conclude that the top cohomology is non zero. However, Serre
duality need not be a B-module homomorphism. In fact when sα ≤ w for all simple
roots α, then the isomorphism between H0(w, λ)∗ and H l(w)(w,−λ + Kw) (Kw being
the dualizing class of X(w)) given by Serre duality is a B-module isomorphism only
in the case when w = w0. In all other cases we need to twist by a character of B.
For example, when w = w0(min, PI), ( where I ⊆ S and PI denotes the parabolic
containing B and sα, α ∈ I) then H l(w)(w,Kw) is a one dimensional B-module given by
the character Σα∈i(I)ωα, where i denotes the Weyl involution. In this case the dualizing
class happens to be a line bundle given by a character of B. However, one knows that
in general the dualizing class need not be a line bundle.

So, using Serre duality alone, it is not clear how one can conclude that the highest
weight of H l(w)(w, λ) is w · λ in the statement of (ii) in Th 3.3.

Corollary 3.1. Let w = τφ with l(w) = l(τ) + l(φ).

(1) Let µ be a weight such that wow(µ) is regular dominant. Then H0(φ, µ) 6= 0
and it is a dual-cylic B-module with lowest weight φ(µ).

(2) Let λ be a weight such that w(λ + ρ) is regular dominant. Then H l(φ)(φ, λ) is
non zero and is a cyclic module with highest weight φ · λ.

Proof. The first statement follows from Th 3.3(i). The second follows from Th 3.3(ii).

4. Upper and lower bounds on cohomology vanishing

In this section we give general bounds for vanishing of cohomology. For completeness
we state a result from Joseph(cf [6, Th. 5.7] (see also [10, Prop. 1.4.2]). An alternative
proof of this result can be given along the lines of the proof of Th 4.2.

Theorem 4.1. [Joseph] Let X(w) be a Schubert variety and λ a generic weight in the
φ–chamber. Then Hj(w, λ) = 0 for j > l(φ). In particular, since cohomology vanishes
beyond dimension, we have Hj(w, λ) = 0 for j > min(l(w), l(φ)).

Theorem 4.2. Let X(w) be a Schubert variety and let φ ∈ W . If λ is a generic
weight such that φ(λ) is negative-dominant, then Hj(w, λ) = 0 for j ≤ l(w)− l(φ)− 1.
Equivalently, given λ and φ such that φ(λ) is dominant then Hj(w, λ) = 0 for j ≤
l(w)− l(w0) + l(φ)− 1.

Remark 4.3. The genericity assumption on λ here is: 〈φ · λ, γ〉 > M ∗ l(woφ), where M
denotes the maximum of {〈β, γ〉|β ∈ R+, γ ∈ S}.
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Proof. We prove this by double (descending) induction on l(w) and l(φ).
The base case is when w = w0. Since w0φ takes λ to the dominant chamber it

follows from the Borel-Weil-Bott theorem that Hj(w0, λ) is non-zero except when j =
l(w0)− l(φ), completing the base case of the induction.

Given w of length less than w0, let us assume that the theorem is true for all τ of
length larger than w and all chambers. We now prove it for w by descending induction
on the chamber length l(φ). When φ = w0, we have l(w) − l(φ) − 1 ≤ −1, and the
statement is trivially true in this case. Let l(φ) be less than l(w0) and λ be in the
φ–chamber. We need to show that Hj(w, λ) = 0, for j ≤ l(w)− l(φ)− 1.

Suppose there exists a simple root α such that φ(α) ∈ R+ and w(α) ∈ R−. For such a
root we have 〈λ , α〉 = 〈φ(λ) , φ(α)〉 < 0. From Lemma 2.2 Hi(w, λ) = Hi−1(w, sα · λ).
Moreover the element of the Weyl group which moves sα · λ to the negative dominant
chamber is φsα, and this is of length one more than φ (since φ(α) ∈ R+). By the
inductive hypothesis on chamber length for X(w), Hi−1(w, sα · λ) is zero whenever
i− 1 ≤ l(w)− l(φ)− 1− 1. So the theorem holds in this case.

Since φ 6= w0, there exists a simple root α such that φ(α) > 0. From the discussion
above it remains to prove the theorem in the case that w(α) > 0. If τ = wsα then
τ has length one more than w. Since φ(α) ∈ R+ it is the case that 〈λ , α〉 < 0. Let
µ = sα · (λ− α) = sα(λ). Clearly 〈µ , α〉 � 0.

Consider the two Demazure exact sequences 2.1 of B–modules

0 −→ K −→ Vµ,α −→ Lµ −→ 0,

0 −→ Lsα(µ) −→ K −→ Vµ−α,α −→ 0.

From the first exact sequence we get a long exact sequence

· · · −→ Hi−1(w, Vµ,α) −→ Hi−1(w, µ) −→ Hi(w,K) −→ Hi(w, Vµ,α) −→ · · · .

Because 〈µ , α〉 ≥ 0, Hi(w, Vµ,α) = Hi(τ, µ),∀i. Since τ has length one more than w
we may assume by the inductive hypothesis applied to X(τ) that Hi(τ, µ) vanishes for
i ≤ l(w) + 1− l(φ)− 1− 1. Hence we get Hi−1(w, µ) ' Hi(w,K),∀i ≤ l(w)− l(φ)− 1.

Since sα(µ) = λ, the second Demazure exact sequence above gives us a long exact
sequence

· · · −→ Hi−1(w, Vµ−α) −→ Hi(w, λ) −→ Hi(w,K) −→ Hi(w, Vµ−α) −→ · · · .

Now Hj(w, Vµ−α) = Hj(τ, µ− α),∀j. Furthermore, since τ ends with sα, from
Lemma 2.2, it follows that Hj(τ, µ− α) = Hj+1(τ, λ), since sα · (µ − α) = λ. By
the inductive hypothesis applied to X(τ), the extreme two terms of the above long ex-
act sequence are zero when i + 1 ≤ l(w) + 1 + l(φ) − 1. So when i ≤ l(w) − l(φ) − 1,
we get Hi(w, λ) ≡ Hi(w,K). Combining this with the isomorphism obtained earlier we
get Hi−1(w, µ) ' Hi(w, λ),∀i ≤ l(w) − l(φ) − 1. By the inductive hypothesis on the
chamber length for X(w), the left module vanishes for i− 1 ≤ l(w)− l(φ)− 1− 1 and
so, for i ≤ l(w)− l(φ)− 1, Hi(w, λ) vanishes.

Corollary 4.1. (Analogue of the Kodaira vanishing theorem for Schubert varieties) If
λ is a generic weight which is negative dominant then

Hi(w, λ) =
{

0 if i < l(w).
non-zero if i = l(w).
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Remark 4.4. Over fields of positive characteristics, this of course, is a well-known im-
portant consequence of a theorem of Mehta-Ramanathan on the Frobenius splitting
property of the Schubert varieties in G/B. In the characteristic zero case though, we
can obtain it as an easy consequence of our result on bounds, but only for generic λ.

We now prove a statement similar in spirit to that in Cor 3.1. So it would seem
appropriate that this theorem belongs to the previous section. However its proof uses
Th 4.2 which is why it is here.

Theorem 4.5. ( A cohomological characterization of the Bruhat order)
Let φ,w ∈W . If λ is a generic weight in the φ–chamber, then

φ ≤ w ⇐⇒ H l(φ)(w, λ) 6= 0.

Proof. Assume φ ≤ w. Let w0 = φφ0 be a reduced expression for w0. Then since
X(φ) ⊆ X(w) ⊆ G/B, we have the following commutative diagram (we denote the pull
back of the line bundle Lλ on X(w) to G/B also by Lλ).

H l(w0)(G/B, φ−1
0 · λ) −→ H l(φ)(φ, λ) −→ 0

‖ ↑

H l(φ)(G/B, λ) −→ H l(φ)(w, λ)

Here the map from H l(w0)(G/B, φ−1
0 · λ) to H l(φ)(φ, λ) is a surjection and is

constructed as in the the proof of Th 3.3(ii). That H l(φ)(G/B, λ) is the same
as H l(w0)(G/B, φ−1

0 · λ) follows from the Borel-Weil-Bott theorem. The map from
H l(φ)(G/B, λ) to H l(φ)(w, λ) is the restriction map. We show that the diagram is
commutative by showing that the map from H l(w0)(G/B, φ−1

0 · λ) to H l(φ)(φ, λ) is the
same as the restriction map from H l(φ)(G/B, λ) to H l(φ)(w, λ).

We do this by induction on l(φ0) the case when φ0 = 1 (and so φ = w0) being trivially
true. Now assume φ 6= w0 and let α be a simple root such that φ(α) > 0. Then φsα has
length one more than φ. Since 〈λ , α〉 > 0 we get a surjective map from H l(φ)(φ, Vλ,α)
to H l(φ)(φ, λ). Now H l(φ)(φ, Vλ,α) = H l(φ)(φsα, λ) = H l(φ)+1(φsα, sα ·λ). So we have a
surjective map from H l(φ)+1(φsα, sα ·λ) to H l(φ)(φ, λ). Continuing this process is what
gives us the surjective map H l(w0)(G/B, φ−1

0 · λ) to H l(φ)(φ, λ). Now by induction the
map from H l(w0)(G/B, (φ−1

0 sα) · sα · λ) = H l(w)(G/B, φ−1
0 · λ) to H l(φ)+1(φsα, sα · λ) is

the same as the restriction map from H l(φ)+1(G/B, sα ·λ) to H l(φ)+1(φsα, sα ·λ). Since
H l(φ)+1(G/B, sα · λ) = H l(φ)(G/B, sα · sα · λ) = H l(φ)(G/B, λ) we are done.

Since the diagram is commutative it follows that the map from H l(φ)(w, λ) to
H l(φ)(φ, λ) is also surjective. Since H l(φ)(φ, λ) is non zero from Cor 3.1 we conclude
that H l(φ)(w, λ) is also non zero.

To prove the converse we assume that φ 6≤ w and show that in this case H l(φ)(w, λ) =
0.

We prove the statement by double induction on l(w) and l(φ), in fact by a descending
induction on l(w) and l(φ).

When w = w0, then the statement is vacuously true for every φ, since φ ≤ w0,∀φ ∈
W . This proves the base case of the induction statement.
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Let w 6= w0 be an element of the Weyl group. We prove the statement for w by
descending induction on l(φ).

The base case is when φ = w0. Since w 6= w0 the statement is true in this case, since
cohomology vanishes beyond the dimension of the variety. Let φ 6= w0 be an element of
the Weyl group such that φ 6≤ w and let λ be a generic weight in the φ–chamber. We
show that H l(φ)(w, λ) = 0.

Since φ 6= w0 there exists a simple root α ∈ R+ such that φ(α) ∈ R+. If, for this
α, w(α) ∈ R− then from Lemma 2.2 we have H l(φ)(w, λ) = H l(φ)+1(w, sα · λ). Now,
by our choice of λ, the weight sα · λ is a generic weight in the φsα– chamber since
φsα(sα · λ) = φ(λ) + φ(α), is dominant. Now φsα has length l(φ) + 1. Furthermore,
since φ 6≤ w and w(α) ∈ R− but φ(α) ∈ R+, we also have φsα 6≤ w. So by induction
on the chamber length applied to X(w) we have H l(φ)+1(w, sα · λ) = 0. This completes
the proof in this case. We next consider the case when w(α) ∈ R+. Let τ = wsα. Then
l(τ) = l(w) + 1. Consider the two Demazure exact sequences of B–modules

0 −→ K −→ Vλ,α −→ Lλ −→ 0,

0 −→ Lsα(λ) −→ K −→ Vλ−α,α −→ 0.

From the first exact sequence we get the long exact sequence

· · · −→ H l(φ)(w, Vλ,α) −→ H l(φ)(w, λ) −→ H l(φ)+1(w,K) −→ H l(φ)+1(w, Vλ,α) −→ · · ·

‖ ‖ ‖ ‖

· · · −→ H l(φ)(τ, λ) −→ H l(φ)(w, λ) −→ H l(φ)+1(w,K) −→ H l(φ)+1(τ, λ) −→ · · · .

Since λ is in the φ–chamber the rightmost term in the above sequence vanishes from
Th 4.1. Moreover φ 6≤ τ , for it will otherwise imply that φ ≤ w, since φ(α) ∈ R+.
Since τ has length one more than w, it follows by induction applied to X(τ) that the
leftmost term in the above long exact sequence is also zero. So we get, H l(φ)(w, λ) '
H l(φ)+1(w,K).

From the second Demazure exact sequence we get the long exact sequence

· · · −→ H l(φ)+1(w, sα(λ)) −→ H l(φ)+1(w,K) −→ H l(φ)+1(w, Vλ−α,α) · · ·

‖ ‖ ‖

· · · −→ H l(φ)+1(w, sα(λ)) −→ H l(φ)+1(w,K) −→ H l(φ)+1(τ, λ− α) · · · .

Since we have assumed λ to be a generic weight in the φ–chamber, both λ and λ−α are
moved to the dominant chamber by φ. So the rightmost term in the above long exact
sequence is zero from Th 4.1. Now sα(λ) is in the φsα–chamber. Furthermore φsα 6≤ w,
since φ 6≤ w and φ(α) > 0. Since φsα has length one more than φ, by induction on the
chamber length applied to X(w), the leftmost term in the above long exact sequence is
also zero. Hence so is H l(φ)+1(w,K). Since from the preceding paragraph H l(φ)+1(w,K)
is isomorphic to H l(φ)(w, λ) we are done.
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5. Some remarks on indecomposable Bα–modules

Recall the definitions of Pα, Lα and Bα from §2. We remind the reader that for
a simple root α and a B–module V , the notation Hi(α, V ) refers to the cohomology
module Hi(Pα/B,Lsα(V )). If V is a Bα–module, then L(V ) denotes the associated
vector bundle on Lα/Bα.

We have the following lemma which plays the key role in our inductive procedures.

Lemma 5.1. Let V be a finite dimensional B–module and let res
Bα
V ' ⊕Vi

be its decomposition as indecomposable Bα–modules. Then, the cohomology mod-
ules Hj(Pα/B,Lsα(V )) with its natural Pα–structure is isomorphic to

⊕
iWi ⊗

Hj(Lα/Bα,L(χi)) as an Lα–module.
Here the isomorphisms Vi ' (Wi ⊗ χi) are as in Cor 9.1, and Wi is an irreducible

Lα–module and χi a character of Bα.

Proof. We first note the following isomorphism of homogeneous spaces, namely

Pα/B ' Lα/Bα.

Since V is a B–module, by restricting it to its Bα–structure and denoting the associated
vector bundle on Lα/Bα by L(V ), we have the following identification of the cohomology
modules:

Hj(Pα/B,Lα(V )) ' Hj(Lα/Bα,L(V )) (∗)

Now by Cor 9.1, using the direct sum decomposition of V ' ⊕Wi ⊗ χi, we can take
cohomology on either side by applying the functorHj(Lα/Bα,−) to get the isomorphism
Hj(Lα/Bα,L(V )) '

⊕
iWi ⊗Hj(Lα/Bα,L(χi)) . (We note that since Wi are in fact

Lα–modules, Hj(Lα/Bα,L(Wi ⊗ χi)) ' Wi ⊗Hj(Lα/Bα,L(χi)).) This together with
(∗) proves the Lemma.

Let λ ∈ Λ, w ∈W . Let w = siksik−1 . . . si1 be a reduced expression for w. Let wj de-
note the suffix sijsij−1 . . . si1 . The above Lemma 5.1 gives us an inductive procedure to
compute the cohomology modules Hj(w, λ). At the first step depending upon whether
〈λ , αi1〉 is greater or less than zero, either H0(w1, λ) or H1(w1, λ) (or neither) survives.
As noted above these modules get a B–structure, so in particular a Bαi2 –structure.
In order to compute Hi(w2, λ), we need to understand the decomposition of the coho-
mology modules created in the first step into Bαi2 indecomposable components, and
understand how these various pieces contribute to cohomology at the second step.

The problem thus reduces to understanding, for each Bα–module, its decomposition
into indecomposable Bα-components, and to understand the contribution to cohomology
of a given indecomposable module. The first of these steps gets increasingly complicated
as the length of w increases. We carry it out in a few special cases, in the next section.
The second step is easier and is handled by the lemma given below. (cf §2)

Lemma 5.2. Let V be a finite dimensional indecomposable Bα–module. By Cor. 9.1,
we may assume that V ' Vµ,α ⊗ χ with 〈µ, α〉 = dimV − 1. Let λ = µ + χ. Then we
have:
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(i) If 〈λ , α〉 ≥ 〈µ, α〉 then H0(Lα/Bα,L(V )) is non-zero. It is a highest weight
module and a lowest weight module. The highest weight is λ and lowest weight
is sα(λ).

(ii) If 〈λ , α〉 < 〈µ, α〉 − 1 then H1(Lα/Bα,L(V )) is non-zero. It is a highest weight
module with highest weight sα · (λ− 〈µ, α〉α).

(iii) If 〈λ , α〉 = 〈µ, α〉 − 1 then Hi(Lα/Bα,L(V )) is zero for i = 0, 1.

Proof. The proof follows by observing that the cohomology module Hi(Lα/Bα, V ) is
isomorphic to Vµ,α⊗Hi(Lα/Bα,L(χ)) and that 〈λ , α〉 = 〈µ , α〉+〈χ , α〉. The vanishing
or non-vanishing of the cohomology depends only upon 〈χ , α〉.

6. Cohomology modules for Schubert varieties of distinct type

In this section we prove results about Schubert varieties of distinct type. Recall that
these are products of the l simple reflections each occurring exactly once, but appearing
in any order.

Fix a reduced expression for w = silsil−1 . . . si1 . Denote by wj the suffix sij . . . si1
of w. Note that in this case, the Bott-Samelson resolution coincides with the Schubert
variety X(w). In this case one can give a complete description of all the cohomology
modules Hi(w, λ), 0 ≤ i ≤ l(w). The reason for this is the following simple observation.

Observation 6.1. Assume that V = Hi(wj , λ) is non-zero for some i. Then V is a
direct sum of one-dimensional Bαij+1

–modules.

Proof. Since V is a B module by Prop 9.1 it decomposes into a direct sum of cyclic
Bαij+1

–modules. Now since each simple reflection appears exactly once in w, the reflec-
tion sij+1 does not appear in wj . So if v1 and v2 are two weight vectors in Hi(wj , λ)
with weights µ1 and µ2, the coefficient of αij+1 in the expression µ1 − µ2 is zero. The
observation now follows since every cyclic Bαij+1

–module with dimension greater than
or equal to two will have two weight vectors whose weights differ by a multiple of αij+1 .

This observation gives us a simple inductive procedure to compute the cohomology
modules at each stage. For instance in order to compute Hi(wj , λ) for some i, j we may
assume by induction that we know how to compute Hi(wj−1, λ) and Hi−1(wj−1, λ).
We break up these two modules into one dimensional, indecomposable Bαij modules.
It is then easy to compute and also to conclude which of these various one dimensional
pieces contribute to the i-th cohomology of wj .

We also define a certain weight τ [λ] for each τ ≤ w and λ . When λ is dominant
τ [λ] = τ(λ), is an extremal weight of H0(w, λ). In the case when λ is non-dominant and
generic we show that there is a non negative integer r such that τ [λ] will be a weight
in Hr(w, λ).

To define τ [λ] we define for 0 ≤ k ≤ l weights τk[λ] by the following procedure. Let
τ = sjr . . . sj1 be a reduced expression for τ . Recall that w = sil . . . si1 .

Define τ0(λ) := λ.

For k = 1 to l
if sik ≤ τ then

if 〈τk−1[λ], αik〉 < 0 then
τk[λ] := sik · τk−1[λ].
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else
τk[λ] := sik(τk−1[λ]).

else
if 〈τk−1[λ], αik〉 < 0 then

τk[λ] := τk−1[λ] + αik .
else

τk[λ] := τk−1[λ].
endfor

Set τ [λ] := τl(λ).

Remark 6.2. Starting with λ we can define another sequence of weights τk(λ) using
the same algorithm as above but replacing the term τk−1(λ) + αik with τk−1(λ) and
replacing the term sik · τk−1[λ] with sikτk−1(λ). Define τk to be the product of those
simple reflections sij ≤ τ and sij ≤ wk (naturally this product is taken in the same
order that these reflections appear in wk). Then τk ≤ wk is an element of the Weyl
group and since each reflection appears only once in w, this expression for τk is reduced.
If λ is dominant then for this definition of τk, τk(λ) is an extremal weight of H0(wk, λ)
and τ(λ) = τl(λ) is an extremal weight of H0(wk, λ). Further τ(λ) is independent of
the reduced expression for τ and w.

When λ is a generic non-dominant weight we have statements similar in spirit with
τk[λ] playing the role of τk(λ).

Remark 6.3. Since λ is assumed to be generic, the inequality 〈τk−1[λ], αik〉 < 0 in the
algorithm above can be replaced by 〈τk−1[λ], αik〉 ≤ −2.

Observe that if τ is a product of commuting reflections it is clear from the procedure
outlined above that the weight τ [λ] is independent of the reduced expression for τ .

In fact we observe:

Observation 6.4. For all λ, τ ≤ w, τ [λ] is independent of the reduced expression for
τ .

Proof. We prove the statement by induction on l(τ), the base case when l(τ) = 1 being
trivially true.

Fix a reduced expression for w = sil . . . si1 . Let sjr . . . sj1 and skr . . . sk1 be two
reduced expressions for τ , τ ≤ w.

First suppose that sj1 = sk1 . We may assume w.l.o.g that si1 = sj1 . Further w.l.o.g.
we may also assume that 〈λ , αj1〉 > 0 so that τ1[λ] = si1(λ). Let w′ = sil . . . si2 and
λ′ = si1(λ). Then sjr . . . sj2 and skr . . . sk2 are two reduced expressions for τ ′ = τsj1 ≤
w′. By the induction hypothesis we may conclude that τ ′[λ′] is independent of the
reduced expression of τ ′. Since τ [λ] = τ ′[τ1[λ]] = τ ′[λ′] we are done.

If sj1 6= sk1 it must be the case that these reflections commute. If they do not
commute then since the reflections sj1 , sk1 appear exactly once in both τ and w, τ(αj1) <
0 iff τ(αk1) > 0. This contradicts the fact that τ(αj1) < 0 and τ(αk1) < 0.

We may conclude then that τ has a reduced expression τ = τ ′τ ′′ where τ ′′ is a
product of commuting reflections. Let w′′ be the the smallest suffix of w for which
τ ′′ ≤ w′′ and let w = w′w′′. From the paragraph preceding this observation and the
induction hypothesis applied to the pair τ ′′, w′′, we conclude that τ ′′[λ] is independent of
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the reduced expression of τ ′′. Again by induction applied to the pair τ, w′, we conclude
that τ [λ] = τ ′[τ ′′[λ]] is independent of the reduced expression of τ ′. This concludes the
proof.

Observation 6.5. Let τ ≤ w. Let r = |{k ≤ l|〈τk−1[λ], αik〉 < 0}|. Then τ [λ] is a
weight in Hr(w, λ).

Proof. For t = 1 to l, we prove by induction on t that τt[λ] is a weight of Hrt(wt, λ).
Here rt = |{k ≤ t|〈τk−1[λ], αik〉 < 0}|.

Suppose 〈λ, αi1〉 > 0 (respectively, 〈λ, αi1〉 < 0). Then H0(si1 , λ) (respectively,
H1(si1 , λ) ) is non zero. In the first case λ, λ− αi1 , . . . , si1(λ) are weights of H0(si1 , λ)
and in the other case λ+ αi1 , λ+ 2αi1 , . . . , si1 · λ are weights of H1(si1 , λ). Since τ1[λ]
is either equal to λ or si1(λ) in the first case and since r1 = 0 we are done in this case.
In the other case τ1[λ] is either equal to si1 · λ or λ + αi1 . Further r1 = 1 in this case
and again we are done. This completes the base case of the induction.

Assume by induction that τt−1[λ] is a weight in Hrt−1(wt−1, λ). If 〈τt−1[λ], αit〉 < 0
then, since λ is generic, both sit ·τt−1[λ] and τt−1[λ]+αit are weights of Hrt−1+1(wt, λ).
Since rt = rt−1 + 1 in this case and since τt[λ] is either sit · τt−1[λ] or τt−1[λ] + αit we
are done. The case when 〈τt−1(λ), αit〉 > 0 is handled similarly.

Remark 6.6. From the proof of the above Obs 6.5 it follows that τk[λ] is a weight in
Hrk(wk, λ) for rk as defined in the above proof.

If λ is a generic weight it is easy to see that the sign of 〈τk[λ] , αik+1〉 will be the
same as that of 〈τk(λ) , αik+1〉 where τk(λ) is as defined in Rem 6.2.

So for all practical purposes we may replace the weight τk[λ] in Hrk(wk, λ) by the
weight τk(λ) i.e. in so far as computation is concerned, for λ generic, instead of com-
puting with τk[λ] we may compute with τk(λ).

Next we would like to give exact bounds on the the least and topmost non-vanishing
cohomology module of w. The index of the least and topmost non-vanishing cohomology
module is dictated by some interesting combinatorics. To describe this we set up some
notation. We continue to use the same reduced expression for w.

For 1 ≤ j ≤ l define Aj = {τ−1(αij ) | τ ≤ wj−1}.
We say λ(Aj) > 0 (respectively, λ(Aj) < 0) if ∀α ∈ Aj , 〈λ , α〉 > 0 (respectively,

∀α ∈ Aj , 〈λ , α〉 < 0). If there are roots α, β ∈ Aj such that 〈λ , α〉 < 0 and 〈λ , β〉 > 0
then we say λ(Aj) ≷ 0.

Then we have (assuming λ is generic),

Theorem 6.7.
Let a(w) := a(w, λ) =

∣∣{i|λ(Ai) < 0}
∣∣ and b(w) := b(w, λ) =

∣∣{i|λ(Ai) ≷ 0}
∣∣. Then

(i) Hi(w, λ) = 0, ∀i, i < a(w) and Hi(w, λ) = 0, ∀i, i > a(w) + b(w).
(ii) Hi(w, λ) 6= 0, ∀i, a(w) ≤ i ≤ a(w) + b(w), when G is of type different from D

or E.

Proof. Proof of (i) We continue to use the notation τk[λ], τ [λ] from before.
Let µ be the product of those simple reflections sij ’s (taken in the order in which

they appear in w) for which either λ(Aij ) > 0 or λ(Aij ) ≷ 0. Let ν be the product of
those simple reflections sij ’s (taken in the order in which they appear in w) for which
either λ(Aij ) < 0 or λ(Aij ) ≷ 0.
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We claim that µk[λ] (respectively, νk[λ]) is the lowest weight (respectively, the high-
est weight) in the least non-vanishing cohomology module Hrk(wk, λ) (respectively, in
the topmost non-vanishing cohomology module). Furthermore we show that µk[λ] (re-
spectively, νk[λ] ) is less than (respectively, greater than) every weight appearing in any
non-zero cohomology module Hr(wk, λ), 0 ≤ r ≤ k. We do this by induction on k.

When k = 1, if λ(A1) > 0 then H0(si1 , λ) is non-zero and H1(si1 , λ) vanishes.
Furthermore µ1[λ] = si1(λ) is the lowest weight in H0(si1 , λ) and ν1[λ] = λ is the
highest weight in H0(si1 , λ) as required. On the other hand if λ(A1) < 0 then (assuming
λ is generic) H1(si1 , λ) is non-zero and ν1[λ] = si1 ·λ is the highest weight in H1(si1 , λ)
and µ1[λ] = λ+ αi1 is the lowest weight in H1(si1 , λ). This completes the base case.

By induction we may assume that µk[λ] is the lowest weight of the least non-vanishing
cohomology Hrk(wk, λ) for some rk depending upon µ. We may also assume that νk[λ]
is the highest weight of the topmost non-vanishing cohomology Htk(wk, λ) for some tk
depending upon µ.

Assume λ(Ak+1) > 0. Now since λ is generic, from Rem 6.6, the computation
〈µk[λ] , αk+1〉 has the same sign as 〈µk(λ) , αk+1〉, with µk as defined in Rem 6.2. Since
µk ≤ wk, µ−1

k (αik+1) ∈ Ak+1 and so 〈µk(λ) , αk+1〉 > 0. Hence 〈µk[λ], αik+1〉 > 0.
By the definition of µ, sik+1 ≤ µ. And so µk+1[λ] = sik+1(µk[λ]). Further µk+1[λ]
is now the lowest weight in Hrk(wk+1, λ). Clearly Hi(wk+1, λ) is zero for all i ≤ rk.
Since for every other weight µ′ of Hr(wk, λ), 0 ≤ r ≤ k, µ′ > µk[λ] it follows that
sik+1(µk[λ]) ≤ sik+1(µ′). So µk+1[λ] is the lowest among all weights appearing in any
non-zero cohomology module Hr(wk+1, λ) for 0 ≤ r ≤ k + 1.

Again since λ is generic, from Rem 6.6, the computation 〈νk[λ] , αk+1〉 has the same
sign as 〈νk(λ) , αk+1〉. Here νk ≤ wk is as defined in Rem 6.2. Since νk ≤ wk,
ν−1
k (αik+1) ∈ Ak+1 and so 〈νk(λ) , αk+1〉 > 0. Hence 〈νk[λ], αik+1〉 > 0. By the defini-

tion of ν, sik+1 6≤ ν. And so νk+1[λ] = νk[λ]. Further νk+1[λ] is now the highest weight
in Htk(wk+1, λ) and Hi(wk+1, λ) = 0 for all i > tk. An argument similar to what we
did for µk+1[λ] shows that νk+1[λ] > µ′ for all µ′, where µ′ is a weight of some non-zero
cohomology module Hr(wk+1, λ) 0 ≤ r ≤ k + 1.

The case when λ(Ak+1) < 0 is similar to the above. In this case the index of the least
non-vanishing cohomology increases by one and the index of the topmost non-vanishing
cohomology module also increases by 1. The new lowest weight is the old lowest weight
µk[λ] (follows by induction) plus αik+1 . Since in this case sik+1 6≤ µ, it follows that
the µk+1[λ] = µk[λ] + αik+1 . A similar argument shows that the new highest weight is
sik+1 · νk[λ]. This is exactly what νk+1[λ] is, since sik+1 ≤ ν.

The last case is when λ(Ak+1)〉 ≷ 0. Then we claim that 〈νk[λ], αik+1〉 < 0 and
〈µk[λ], αik+1〉 > 0. We prove that 〈νk[λ], αik+1〉 < 0. The argument for 〈µk[λ], αik+1〉 > 0
is similar.

Assume 〈νk[λ], αik+1〉 ≥ 0. Since νk[λ] is the highest among all weights appearing
in any cohomology module Hr(wk, λ) for any r, it follows that every other weight ν′

occurring in Hr(wk, λ), 0 ≤ r ≤ k, is of the form ν′ = νk[λ]−Σj≤kcjαijwith cj ≥ 0. So
〈ν′, αik+1〉 ≥ 〈ν, αik+1〉 ≥ 0 (we notice that none of the α′ijs in the above sum is equal to
αik+1 since this is the first occurrence of sik+1). Now for every τ ≤ wk, τ [λ] is a weight of
some non-zero cohomology module Hj(wk, λ) for some j. And so 〈τ [λ], αik+1〉 ≥ 0. From
Rem 6.6 it follows that for λ generic, 〈τ(λ), αik+1〉 > 0. So assuming 〈νk[λ], αik+1〉 ≥ 0
we would have λ(Ak+1) ≥ 0 contradicting our assumption that λ(Ak+1)〉 ≷ 0.
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In this case then the index of the topmost non-vanishing cohomology module increases
and the index of the least non-vanishing cohomology module remains the same. It follows
that the new highest (respectively, lowest) weight is sik+1 ·νk[λ] (respectively, sik+1(µk[λ])
. But this is exactly νk+1[λ] (respectively, µk+1[λ]) since sik+1 ≤ ν (respectively, sik+1 ≤
µ).

Since the index of the least non-vanishing cohomology module increases whenever
λ(Ai+1) < 0, and this happens a(w, λ) times it follows that Ha(w)(w, λ) 6= 0 and
Hi(w, λ) = 0, i < a(w).

Since the index of the topmost non-vanishing cohomology module increases every time
λ(Ak+1)〉 ≷ 0 or λ(Ak+1)〉 < 0, and the number of times this happens is a(w) + b(w),
we have Ha(w)+b(w)(w, λ) 6= 0 and Hi(w, λ) = 0, i > a(w) + b(w).

Proof of (ii).
Suppose τ ≤ w and sijτ ≤ w. We say τ [λ] and (sijτ)[λ] are distance d apart in

cohomology if τ [λ] is a weight in Hk(w, λ) and (sijτ)[λ] is a weight in Hj(w, λ) where
|j − k| = d.

Then we have

Observation 6.8. Suppose τ ≤ w and sijτ ≤ w. Then the distance between the weights
τ [λ] and (sijτ)[λ] is at most 2.

Proof. We assume that τ−1(αij ) > 0. W.l.o.g. we fix a reduced expression for w =
sil . . . si1 in such a way that the reflection sαij appears to the left of the reflections
occurring in τ in the fixed reduced expression of w. For k ≤ j − 1, τk(λ) = (sijτ)k[λ].
When the group G is of type different from D and E there are at most two simple
reflections which do not commute with sij . So the number of m > j for which the signs
of 〈τm−1(λ), αim〉 and 〈(sijτ)m−1[λ], αim〉 are different, is at most two.

Remark 6.9. We note that the non-vanishing result i.e (ii) of the above theorem has
been shown here only when the group G is not of type D or E.

We now show that for a generic λ, Hi(w, λ) 6= 0 for a(w) ≤ i ≤ a(w) + b(w).
Given w and λ, for every τ ≤ w we determine that i such that τ [λ] is a weight in

Hi(w, λ). If for every i such that a(w) ≤ i ≤ b(w), there is a τ ≤ w such that τ [λ] is a
weight in Hi(w, λ) we are done.

Defining µ and ν as in the proof of (i) it follows from the proof of (i) ν[λ] is the highest
weight and µ[λ] is the lowest weight among all weights in any non-zero cohomology
module.

Let ν = sβk . . . sβ1 let µ = sγj . . . sγ1 be reduced expressions for ν and µ as
a product of simple reflections. Consider two sequences of weights the first being
[λ], sβ1 [λ], (sβ2sβ1)[λ], . . . , ν[λ] and the second being [λ], (sγ1)[λ], (sγ2sγ1)[λ], . . . , µ[λ].
By the Obs 6.5 these are all weights of some cohomology module Hi(w, λ). Furthermore
µ[λ] is a weight in Ha(w)(w, λ) and ν[λ] is a weight in Ha(w)+b(w)(w, λ). Gluing these
two sequences of weights at [λ] we get a sequence of weights which start at a weight
in Ha(w)(w, λ) and end at a weight in Ha(w)+b(w)(w, λ). By Obs 6.8 above, adjacent
weights in this sequence are at distance at most two apart.

Let r + 1 be an index for which Hr+1(w, λ) has no weight vector of the form τ [λ],
for any τ ≤ w. Since ν[λ] is a weight in Hb(w)(w, λ) and µ[λ] is a weight in Ha(w)(w, λ)
it follows that a(w) < r + 1 < a(w) + b(w). From the sequence constructed above, we
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may conclude w.l.o.g that there are elements of the Weyl group sikφ and φ such that
φ[λ] is a weight in Hr(w, λ) and (sikφ)[λ] is a weight in Hr+2(w, λ) (here either sikφµ
or sikφ ≤ ν). We may also assume w.l.o.g that the simple reflections occurring in φ
appear to the right of sik in the fixed reduced expression of w.

Clearly the weights φj [λ] and (sikφ)j [λ] are the same for all j < k. Moreover the sign
of 〈φk−1[λ], αik〉 determines both φk[λ] and (sikφ)k[λ)]. W.l.o.g φk[λ] = φk−1[λ] and
(sikφ)k[λ] = sik(φk[λ]). Clearly φk[λ] and (sikφ)k[λ] are weights in the same cohomology
module at the k-th stage. We may also assume that (sikφ)k[λ] > φk[λ].

Since the final distance between φ[λ] and (sikφ)[λ] is two, there exist indices m <
n ≤ l for which the distance between the weights φm[λ] and (sikφ)m[λ] (respectively,
φn[λ] and (sikφ)n[λ] ) becomes one (respectively, two). W.l.o.g. 〈φm−1[λ] , αim〉 > 0
and 〈(sikφ)m−1[λ] , αim〉 < 0. Likewise we may assume that 〈φn−1[λ] , αin〉 > 0 and
〈(sikφ)n−1[λ] , αin〉 < 0.

From stage p = k+ 1 to p = m− 1 if 〈(sikφ)p−1[λ] , αip〉 > 0 then 〈φp−1[λ] , αip〉 > 0
since the simple reflection sip commutes with sik . Also since sip commutes with sik for
all p in this range and since sip 6≤ φ it is easy to see that (sikφ)m−1[λ] − (sikφ)k[λ] =
φm−1(λ) − φk[λ]. And this difference is some integral combination of αip , p = k +
1, . . . ,m− 1. From this we get (sikφ)m−1[λ] = φm−1[λ] + 〈φk−1[λ] , αik〉αik .

At the m–th stage we have assumed that 〈(sikφ)m−1[λ] , αim〉 < 0 and that
〈φm−1[λ] , αim〉 > 0. Suppose φm−1[λ] is a weight of Hq(wm, λ) and (sikφ)m−1[λ]
is a weight of Hq+1(wm, λ). Then since for all weights µ ∈ Sm = {φm−1[λ] +
〈φm−1[λ] , αim〉αik , φm−1[λ] + (〈φm−1[λ] , αim〉 − 1)αik , . . . , φm−1[λ]}, 〈µ , αim〉 > 0 the
set of weights in Sm are all weights of Hq(wm, λ) at the m–th stage. By a similar
reasoning the set of weights Tm = {φm−1[λ] + (〈φm−1[λ] , αim〉 + 2)αik + αim , . . .,
(sikφ)m−1[λ] + αim} are all weights of the cohomology module Hq+1(sim . . . si1 , λ) at
the m–th stage.

Since λ is generic, for all subsequent reflections sip in between sim and sin , since sip
commutes with sik by choice of m,n the weights in Sm and Tm remain together (they
may get modified by an additive factor of αip for m < p < n; w.l.o.g we may ignore this
additive factor since it is irrelevant for computation with αin). And so we may assume
that the distance between the set of weights in Sm and Tm remains one. At the n − 1
th stage let the weights in Tm be weights of Hs+1(wn−1, λ) and let Sm be weights of
Hs(wn−1, λ).

Let us analyze what happens when the reflection sin is encountered. At this stage
〈(sikφ)m−1[λ] + αim , αin〉 < 0 and so sin · ((sikφ)m−1[λ] + αim) is now a weight of
Hs+2(wn, λ). Also by assumption 〈φm−1[λ] , αin〉 > 0 and so φm−1[λ] is now a weight
of Hs(wn, λ).

Now if the size of Sm and Tm is at least three either 〈φm−1[λ] + (〈φm−1[λ] , αim〉 +
2)αik + αim , αin〉 > 0 or 〈φm−1[λ] + 〈φm−1[λ] , αim〉αik , αin〉 < 0. So one of these will
be a weight of Hs+1(wn, λ).

And this remains a weight (upto an additive factor of α′ijs, j > n) sandwiched between
the cohomology modules containing the weights φ[λ] and sikφ[λ] in the end.

One can ensure by taking λ generic that the cardinality of Sm and Tm is at least
three. This completes the proof.
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6.1. Chambers for which only one cohomology survives

As is evident Schubert varieties of distinct type are particularly easy to work with. For
such Schubert varieties it seems possible to identify all chambers for which only one
cohomology module is non zero. We prove this in a particular case, in typeAl, when
w = slsl−1 . . . s1, a product of simple reflections such that si is connected to sj iff
|i − j| = 1. For such a w (which we call a chain) we show that there are 2l chambers
for which exactly one cohomology module is non zero.

We first show

Lemma 6.10. Let λ be generic weight such that s1s2 . . . si(λ) ∈ Λ+. Then Hj(w, λ) is
non zero exactly when j = 1.

Proof. Since {α ∈ R+ : 〈λ , α〉 < 0} = {αi, αi + αi−1, . . . , αi + αi−1 + . . . + α1} = Ai,
we have λ(Ai) < 0. For the remaining Aj ’s we have λ(Aj) > 0, since Ai ∩Aj = ∅. The
lemma now follows from Th 6.7.

From the proof of the Th 6.7(i) it is clear that upto the i-th stage the only non-
zero cohomology is H0. At the i-th stage H1(s1 . . . s1, λ) is non-zero and every other
cohomology module vanishes. And from then on upto the l-th stage the only non-trivial
cohomology module is H1, so that finally H1(w, λ) is the only non zero cohomology.

To obtain the other chambers where only one cohomology survives for the chain case
we make use of the above lemma.

For this part of the proof it will convenient to let wi denote s1s2 . . . si. Fix a subset
{i1, i2, . . . , ik} of {1, . . . , l}. W.l.o.g we let l ≥ ik > ik−1 > . . . i1 ≥ 1.

Then we have

Theorem 6.11. Let λ be generic such that wikwik−1 . . . wi1(λ) ∈ Λ+. Then Hj(wl, λ)
is non-zero exactly when j = k. Conversely if λ is a generic weight such that only
Hk(wl, λ) is non zero then there exists a k element subset of {ik, . . . i1} of {1, . . . , l}
such that wikwik−1 . . . wi1(λ) ∈ Λ+.

Proof. The proof is exactly like in the lemma above. It can be checked that

{α ∈ R+ : 〈λ , α〉 < 0} = Ai1 ∪Ai2 ∪Ai3 . . . ∪Aik .

Again since Aj ∩ Ak = ∅ whenever j 6= k, we have λ(Aj) < 0 for j ∈ {i1, . . . , ik} and
λ(Aj) > 0, j 6∈ {i1, . . . , ik}. From the theorem it follows that only Hk(wl, λ) is non
zero.

To prove the converse we observe first that for exactly k of the Aj ’s λ(Aj) < 0, and for
the remaining Aj ’s, λ(Aj) > 0. Denote the k indices for which λ(Aj) < 0 by {ik, . . . , i1}
and assume ik > . . . > i1. Then if φ is an element of W which moves λ to the dominant
chamber, it must be the case that φ sends the positive roots in Ai1 ∪Ai2 . . .∪Aik to R−,
and sends the remaining positive roots to R+. But then φ must be wikwik−1 . . . wi1 .

7. Cohomological characterization of G/B

We now come to the main theorem of this paper which gives a cohomological char-
acterization of G/B. In fact it characterizes G/B as a Schubert variety in terms of its
cohomology.
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Let w ∈ W be such that sα ≤ w (in the Bruhat order) ∀α ∈ S. Let m(w) be
the maximum among the coefficients of the simple roots which occur in the expression
w(λ)− w · λ(= ρ− w(ρ)). Let s(w) denote the cardinality of the set {τ | τ ≤ w}.
Definition 7.1.

Let w ∈ W . Then we say that a weight λ (respectively, µ) is in the diagonal (re-
spectively, anti-diagonal) chamber with respect to w if (w · λ) ∈ Λ+ (respectively,
(−wµ) ∈ Λ+).

Note that if λ is in the diagonal (respectively, anti-diagonal) chamber with respect
to w such that w(λ+ ρ) is regular dominant (respectively, w0w(λ) is regular dominant)
it follows from Cor 3.1 that H l(w)(w, λ) (respectively, H0(w, λ)) is non zero.

Theorem 7.2. Let w ∈W be such that sα ≤ w (in the Bruhat order) ∀α ∈ S. Suppose
that

#{j | Hj(w, λ) 6= 0} = 1,

with λ a generic weight in the w–chamber given by the following condition:

〈wλ , α〉 > m(w)s(w) for all simple roots α.

Then w = w0 or equivalently X(w) = G/B.

We have the following corollary to the above theorem.

Corollary 7.1. Let w ∈W be arbitrary. Suppose that

#{j | Hj(w, λ) 6= 0} = 1,

with λ a generic weight as in Th. 7.2. Then X(w) = Q/B for some parabolic subgroup
Q ⊃ B.

Proof. (Of Cor. 7.1) Let I = {α ∈ S|sα ≤ w}. Let Q be the parabolic defined by this
set of simple roots. Let H be the semi-simple subgroup of Q such that B ∩H is a Borel
subgroup of H (there is a canonical such subgroup H). Note that X(w) is naturally a
sub-variety of H/(B∩H) ' Q/B. Restricting λ to B∩H and observing that it satisfies
the same conditions of the Th. 7.2 for the semi-simple group H, the corollary follows.

Before we come to the proof of the Th 7.2 we establish some combinatorial conditions
on the weights which appear in any cohomology.

For τ an element of the Weyl group we recall that R+(τ) = {α ∈ R+ | τ(α) ∈ R−}.
Then we have

Lemma 7.3. Let w = τφ such that l(w) = l(τ) + l(φ). Then R+(φ) ⊆ R+(w).

Proof. Let w = sαksαk−1 . . . sα1 be a reduced expression for w. Then R+(w) =
{α1, sα1(α2), sα1sα2(α3), . . . , sα1 . . . sαk−1(αk)}. So if w = τφ then R+(φ) ⊆ R+(w)
since one can choose a reduced expression w = sαksαk−1 . . . sα1 such that φ =
sαjsαj−1 . . . sα1 for some j.

Let X (w, λ) denote the following set of weights:

X (w, λ) = ∪i=l(w)
i=0 {chHi(w, λ)}.

Here chHi(w, λ) denotes the set of weights of the i–th cohomology module Hi(w, λ),
regarded as a T module.
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Lemma 7.4. Let µ ∈ X (w, λ) . Then
(i) µ is in the convex hull of {τ(λ)|τ ≤ w}.

(ii) If λ is dominant µ ≥ w(λ) under the usual ordering.
(iii) There exists a unique maximal γ(w, φ) in {τφ|τ ≤ w}.
(iv) There exists a unique minimal element in {τφ | τ ≤ w}.

Proof. (i) We do this by induction on the length of w. When w is equal to a
simple reflection sα then the weights in X (w, λ) are either λ, λ − α, . . . , sα(λ)
or λ+ α, λ+ 2α, . . . , sα · λ. In either case it is clear that the weights are in the
convex hull of {λ, sα(λ)}.
Let us assume that the lemma is true for all φ of length less than w. Say
w = sαφ. Let µ be a weight in X (w, λ) . If µ comes from a weight µ′ ∈ X (φ, λ)
such that 〈µ′ , α〉 ≥ 0 then µ = µ′ − tα, where 0 ≤ t ≤ 〈µ′ , α〉. Clearly µ is in
the convex hull of µ′ and sα(µ′). Now we can write µ′ as a convex combination
of weights γ(λ) where γ ≤ φ i.e. µ′ =

∑
γ≤φ aγγ(λ). Since each such γ ≤ w as

well, µ′ can be written as a convex combination of weights in {γ(λ) | γ ≤ w}.
Now sα(µ′) =

∑
γ≤φ aγsαγ(λ). Since γ ≤ φ, either sαγ ≤ w or sαγ ≤ φ ≤ w.

So sα(µ) is in the convex combination of weights {τ(λ) | τ ≤ w}. Hence µ is in
the convex combination of weights of the desired type.
The proof in the case when µ comes from a weight µ′ ∈ X (φ, λ) such that
〈µ′ , α〉 < 0 is similar.

(ii) This is well known from the identification of the dual H0(X(w), λ)∗ with a
subspace of the Weyl module (cf . [5, II.14.19.3]). We give the proof below since
it follows easily from (i).
Write µ =

∑
γ≤w aγγ(λ). Subtracting w(λ) from this we have

µ− w(λ) =
∑
γ≤w

aγ(γ(λ)− w(λ)).

Since λ is dominant and γ ≤ w each term in the right hand is in the dominant
chamber, completing the proof.

(iii) We do this by induction on the length of w the case when l(w) = 1 being trivial.
If w = sατ with l(w) = l(τ) + 1 then by induction {τ1φ | τ1 ≤ τ}, has a unique
maximal element say γ0φ; i.e γ0φ ≥ τ0φ, ∀τ0 ≤ τ .
We claim that if sαγ0φ > γ0φ then γ(w, φ) = sαγ0φ, otherwise γ(w, φ) = γ0φ.
Suppose it is the case that sαγ0φ > γ0φ. Take w′φ, w′ ≤ w. If w′ ≤ τ then
from the maximality of γ0φ it follows that w′φ < γ0φ < sαγ0φ. If w′ 6≤ τ , then
since w′ ≤ w, it follows that sαw′ ≤ τ . Then we have sαw′φ < γ0φ < sαγ0φ,
where the first inequality follows from the maximality of γ0. From this we get
w′φ ≤ sαγ0φ, completing the induction step in this case.
Suppose on the other hand that γ0φ > sαγ0φ. If w′ ≤ w then if w′ ≤ τ we are
done by induction. Otherwise sαw′ ≤ τ and so sαw

′φ ≤ γ0φ. It follows that
w′φ ≤ γ0φ as well.

(iv) We do this by induction on l(w). If w = sατ , with l(w) = l(τ) + 1, then by
induction {τ1φ | τ1 ≤ τ} has a minimal element, say γ0φ. Then it is easy to see
that either γ0φ or sαγ0φ satisfies the claim. The calculations are exactly as in
part (iii) above.
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7.1. Proof of Theorem 7.2
The proof of Th 7.2 is by contradiction.

Let w and λ be given such that λ belongs to the w -chamber. Let us write w0 =
sβ1sβ2 . . . sβrw, with βi simple roots and l(w0) = l(w) + r. For 1 ≤ i ≤ r, we denote by
τi the element of the Weyl group sβisβi−1 . . . sβ1w0. We show

Claim 7.5. Assume that the conclusion in Th 7.2 is false. Suppose w and λ are such
that Hj(w, λ) is non-zero for only one j. Then in fact j = l(w). Furthermore we claim
that for 1 ≤ i ≤ r, there exists a non-zero weight vector in H l(w)(τi, λ) of weight τi(w·λ).
In particular, w(w · λ) is a weight in H l(w)(w, λ).

Proof. That j = l(w) follows from Cor 3.1(2) and the hypothesis. So Hj(w, λ) is also
non-zero only when j = l(w).

By the Borel-Weil-Bott theorem Hj(w0, λ) vanishes for all j except j = l(w). Hence
it follows that Hj(w0, λ) is created from Hj(w, λ) by a series of H0’s i.e. H l(w)(w0, λ) =
H0(β1, (H0(β2, . . . H

0(βr, H l(w(w, λ)) . . .))).
By the Borel-Weil-Bott theorem we know that H l(w)(w0, λ) is an irreducible module

with highest weight w ·λ and lowest weight w0(w ·λ). Furthermore these weights occur
with multiplicity one. Fix a weight vector of weight w · λ. Denote by v(j) the unique
vector v (upto scalar) of weight τj(w · λ) in H l(w)(w0, λ).

For 0 ≤ j ≤ r − 1 we consider the sequence of evaluation maps

H0(βj+1, H
l(w)(τj+1, λ)) −→ H l(w)(τj+1, λ). (1)

These maps are all non-zero. Since H1(βj+1, H
l(w)−1(τj+1, λ)) = 0, the left hand side

is precisely H l(w)(τj , λ). Composing such maps we get, for 1 ≤ j ≤ r, a non-zero map
fj ,

fj : H l(w)(wo, λ) −→ H l(w)(τj , λ). (2)

We prove by induction on j that the image of v(j), fj(v(j)) is non-zero. This gives
us the desired vector of weight τj(w · λ) in H l(w)(τj , λ).

Moreover we also show that, yβj+1(fj(v(j))) is zero, implying that fj(v(j)) is an
extremal weight vector in the Bβj+1 indecomposable piece containing it.

For the base case (i.e. j = 1) we consider the cohomology module H l(w)(τ1, λ) as
a Bβ1 module and look at its Bβ1 indecomposable components. The map f1 is Bβ1–
equivariant. The vector of weight w0(w ·λ) is in a unique Bβ1 indecomposable summand
W in H l(w)(wo, λ). It is the lowest weight in that W and the highest weight in W is v(1)
of weight sβ1w0(w · λ). If V is the indecomposable Bβ1–summand in H l(w)(τ1, λ) such
that H0(β1, V ) ⊇ W it is clear that the image f1(v(1)), of v(1) under the evaluation
map, H0(β1, V ) 7→ V is non zero.

If yβ2f1(v(1)) were non zero, the map f1 being B–equivariant, yβ2v(1) would be non
zero and there would be a vector of weight τ1(w · λ) − β2 in H l(w)(w0, λ). But then
τ−1
1 (τ1(w · λ) − β2) would be a weight in H l(w)(w0, λ). Since τ−1(β2) < 0, τ−1

1 (τ1(w ·
λ)− β2) > w · λ contradicting the fact that w · λ is the highest weight of H l(w)(w0, λ).
This completes the base case of the induction.

Assume that the statement has been proven for j = k. We will prove it for j = k+ 1.
We may assume by induction that fk(v(k)) is non-zero and it is a weight vector of weight
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τk(w · λ) in H l(w)(τk, λ) = H0(βk+1, H
l(w)(τk+1, λ)). Furthermore it is killed by yβk+1 .

So in the Bβk+1–equivariant map in (1) above (with j = k) it follows that fk(v(k)) is
the lowest weight vector in the indecomposable Bβk+1 summand containing it. Now
〈τk(w · λ) , βk+1〉 ≤ 0. Since H l(w)(τk, λ) is a Pβk+1 module, sβk+1τk(w ·λ) = τk+1(w ·λ)
is a weight in H l(w)(τk, λ). It is in fact the highest weight vector in the indecomposable
summand containing fk(v(k)). It follows like in the base case that the image of the
vector of weight τk+1(w · λ) and, so also, of v(k + 1) is non zero. So fk+1(v(k + 1)) is a
vector of weight τk+1(w · λ) in H l(w)(τk+1, λ).

If yβk+2fk+1(v(k+1)) were non zero like in the base case of the induction, this would
give us a vector of weight τk+1(w · λ) − βk+2 in H l(w)(w0, λ). Applying τ−1

k+1 to this
would contradict the fact that w ·λ is the highest weight in H l(w)(w0, λ). This completes
the proof.

In particular, the above proof implies that if H l(w)(w, λ) is the only non-zero coho-
mology for the diagonal chamber then w(w · λ) is a weight in H l(w)(w, λ). This proves
Claim 7.5.

Claim 7.6. Under the hypothesis of Th 7.2, if w(w · λ) is a weight in H l(w)(w, λ) then
∀τ ≤ w, τ(w · λ) is a weight in H l(w)(w, λ).

Proof. Let v be the vector of weight w(w · λ) in H l(w)(w, λ). As in the proof of Th. 4.5
we have a surjective B-map

H l(w)(w0, λ) −→ H l(w)(w, λ) −→ 0. (3)

Dualizing the above, we get a B-map

0 −→ H l(w)(w, λ)
∗ −→ H l(w)(w0, λ)

∗
. (4)

We identify H l(w)(w0, λ)
∗

with H0(w0, w · λ)∗ = V (−w0(w · λ)), the Weyl module with
highest weight −w0(w · λ).

Consider the vector v∗ of weight −w(w · λ) dual to v in H l(w)(w, λ)
∗
. From the

fundamental theorem of Demazure on Schubert modules, the B-span of the image of v∗

in V (−w0(w · λ)) is precisely H0(w,w · λ)∗. Since the above map ( 4) is an injection, it
follows that we have an inclusion

0 −→ H0(w,w · λ)∗ −→ H l(w)(w, λ)
∗
. (5)

By the above mentioned theorem one knows that all weights of the form {−τ(w ·λ), τ ≤
w} are in H0(w,w · λ)∗, and hence these weights are all in H l(w)(w, λ)

∗
, and this

completes the proof.

Recall that m(w) is the maximum among the coefficients of the simple roots which
occur in the expression w(λ)−w ·λ. Let s(w) denote the cardinality of the set {τ | τ ≤
w}. Then we have the following Proposition.

Proposition 7.7. Let w ∈W such that sα ≤ w, for all simple roots α. Let λ be in the
w–chamber such that 〈wλ , α〉 > m(w)s(w), for all simple roots α. Then there exists a
τ0 ≤ w such that τ0(w · λ) is not in the convex hull of the set of weights {τλ | τ ≤ w}.
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Proof. Consider the two sets of elements of the Weyl group C = {τw−1 | τ ≤ w} and
D = {τ | τ ≤ w}. Since w is not equal to w0, there is a simple root α such that
w(α) > 0. Hence sαw

−1 has length one more than w and so cannot belong to D.
However the hypothesis that a reduced expression of w involves all the simple roots
implies that sαw−1 ∈ D. Since D and C have the same cardinality it follows therefore
that there is an element in τ0 ∈ D which is not in C. We claim that τ0(w · λ) is not in
the convex hull of weights in the set {τ(λ) | τ ≤ w}.
Assume to the contrary that it does. Then there is an expression τ0(w · λ) =∑
τ≤w cττ(λ), with 0 ≤ cτ ≤ 1,

∑
τ≤w cτ = 1. Rewriting this as

τ0(w · λ) =
∑
τ≤w

cττw
−1(w(λ)),

we get

w · λ =
∑
τ≤w

cττ
−1
0 τw−1(w(λ)) =

∑
φ6=id

cφφ(w(λ))

=
∑
φ 6=id

cφ(w(λ)−
∑
α

mφ,αα)

= w(λ)−
∑
φ6=id

cφ(
∑
α∈S

mφ,αα).

Given that there are at most s(w) terms in the last summation above and the sum of
the coefficients cφ is 1, there is a term such that cφ0 ≥ 1

s(w) . Isolating this term we get

cφ0

∑
α∈S

mα,φ0α ≤ w(λ)− w · λ.

By the genericity of λ it can be seen that each of the coefficients mα,φ0 is at
least m(w)S(w). So there is an α on the left hand side whose coefficient is at least

1
s(w)m(w)s(w) contradicting the fact that the maximum coefficient of an α occurring in
an expression of w(λ)− w · λ is bounded by m(w).

Theorem 7.8. Let w ∈ W be such that sα ≤ w (in the Bruhat order) ∀α ∈ S. Let λ
be a generic weight in the anti-diagonal chamber with respect to w. Suppose that

#{j | Hj(w, λ) 6= 0} = 1.

Then w = w0 or equivalently X(w) ' G/B.

Again we have the following corollary whose proof is similar to that of Cor. 7.1.

Corollary 7.2. Let w ∈ W such that X(w) 6= Q/B for any parabolic subgroup Q ⊃ B
in G. Let λ be a generic weight in the anti-diagonal weight with respect to w. Then
there are at least two values of j for which Hj(w, λ) 6= 0.

Proof. (Of Th. 7.8) The proof of this theorem is broadly along the same lines as the
previous theorem although there is a duality phenomenon which is involved. We skip
the proof.
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8. Concluding remarks and a conjecture

In this section we conclude with some conjectures which we believe are interesting
and non trivial. We also describe some related ongoing work.

Our main conjecture is what we call cohomological non triviality. It appears to be
true in some examples in small dimensions. A proof of this conjecture would for instance
imply Theorems 7.2 and 7.8. Many other results in this paper can also be deduced from
this conjecture. We are working on this.

Conjecture (Cohomological non-triviality of Schubert cohomology mod-
ules) Let w ∈ W be an element of the Weyl group and let α ∈ S be a simple root
such that l(sαw) = l(w) + 1. Let λ be any generic weight. If the cohomology module
Hi(w, λ) is non zero then it is cohomologically non-trivial when considered as a
Bα-module. More precisely, if Hi(w, λ) is non zero then both the H0(α,Hi(w, λ)) and
H1(α,Hi(w, λ)) cannot simultaneously vanish.

Remark 8.1. Assume that we are working in type Al. Let α denote the middle root in
the Dynkin diagram corresponding to Al. Let Pα denote the minimal parabolic subgroup
corresponding to the root α. Let wo(Pα) denote the longest element ofW/WPα . Suppose
w0 = w0(min, Pα)wo(Pα) is a reduced expression for w0. For small values of l it can be
shown that Schubert varieties X(w0(min, Pα)) realize the precise cohomology bounds
given by Th 4.1 and Th 4.2. So the bounds in these theorems appear to be tight.

Remark 8.2. The results in this paper hold for Schubert varieties in G/P , for other
parabolic subgroups.

Remark 8.3. In the rank 2 case the study of the cohomology modules for all λ and all
w is part of the doctoral thesis of K.Paramasamy (cf. [9]).

Remark 8.4. In the Kac-Moody set-up, many of the above results have been extended
(cf. [7]). There is also a natural generalization of the notion of LS-paths for such
cohomology modules and this is work in progress by the second and third authors.

9. Appendix

In this appendix we give a self-contained proof of a key lemma (this is a generalization
of a result attributed to D. N. Verma, (cf. [8]). In this appendix alone we use the
following notation: Let Lα be the Levi subgroup of the parabolic subgroup Pα as in §1
and Bα ⊂ Lα the Borel subgroup containing T ; let U ⊂ Bα be the unipotent radical.

Proposition 9.1. If V is a finite dimensional Bα–module then V is direct sum of cyclic
Bα–modules each of them generated by weight vectors.

Proof. Since we are over fields of characteristic 0, we work with the Lie algebra modules.
The proof proceeds by induction on dimV .

Denote by yα the nilpotent Lie algebra operator corresponding to the unipotent
radical of Bα. Let n be the least positive integer for which ynα = 0. Therefore,
yn−1
α 6= 0. Hence, there exists a weight vector v ∈ V such that yn−1

α (v) 6= 0. Let
V1 = 〈v, yα(v), . . . , yn−1

α (v)〉. Then, clearly V1 is a cyclic Bα–submodule generated by a
weight vector v.

Let W be a maximal Bα–submodule of V with the property that V1 ∩W = (0).
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We claim that V = W⊕V1. Then using induction we may assume that W decomposes
into a direct sum of cyclic Bα submodules and complete the proof.

It remains to prove that V = W ⊕ V1. Clearly it suffices to show that every weight
vector in V is in W ⊕ V1. We show this by contradiction. Let z be a weight vector,
z 6∈W ⊕ V1.

Denote by yα, as above, the nilpotent Lie algebra operator corresponding to the
unipotent radical of Bα. Since 0 = ynα(z) ∈ W ⊕ V1 and since z 6∈ W ⊕ V1, there is a
smallest integer k for which ykα(z) ∈W ⊕ V1. Clearly k ≥ 1 and yk−1

α (z) 6∈ V1⊕W . We
proceed to get a contradiction to this assumption.

Let ykα(z) = w1 + v1 for w1 ∈ W, v1 ∈ V1. Since ykα(z) is a weight vector and the
sum W + V1 is a direct sum, it follows that w1, v1 are both weight vectors with same
weight as that of ykα(z). By the definition of V1, we may rewrite the above expression
as ykα(z) = w1 + c.ysα(v) for some s ≥ 0 and some c ∈ C.

Case 1: c 6= 0.
We claim that in fact s ≥ 1. For otherwise we would have ykα(z) = w1 +c.v. Applying

the operator yn−kα to both sides we get 0 = yn−kα (w1) + c.yn−kα (v). Since yn−1
α v 6= 0

and since k ≥ 1 it follows that 0 6= c.yn−kα (v) = −yn−kα (w1), contradicting the fact that
W ∩ V1 = (0).

So we have ykα(z) = w1 + c.ysα(v), with both k and s ≥ 1. So we may write w1 =
yα(yk−1

α (z)− c.ys−1
α (v)). Let us denote the difference (yk−1

α (z)− c.ys−1
α (v)) by d.

Both terms of this vector namely yk−1
α (z) and ys−1

α (v) are weight vectors since z
and v are also weight vectors. Further, applying yα to both of them, we get vectors
ykα(z), ysα(v) both of which have the same weight by an earlier remark. So in fact
d = yk−1

α (z)− c.ys−1
α (v) is a weight vector.

Observe that the vector d 6∈ W , in fact, d 6∈ V1 ⊕ W , otherwise we would have
yk−1
α (z) ∈ V1 ⊕W , contradicting the definition of k.

Now consider the subspace W ⊕C.d. Since yαd = w1 ∈ W and since d is a weight
vector, it follows that W ⊕C.d is a Bα–submodule of V . Since d 6∈ W it follows that
(W ⊕C.d) % W . By our choice of W this forces that (W ⊕C.d) ∩ V1 6= (0) and hence
there are non-zero vectors w ∈ W ,and x ∈ V1 such that w + c1.d = x ∈ V1. Note that
c1 6= 0 since W ∩ V1 = (0). But this is a contradiction since we observed above that
d 6∈W ⊕ V1.

Case 2: If c = 0, following the same argument as above, we see that ykα(z) = w1, i.e
ykα(z) ∈ W1. Since k ≥ 1 we may express ykα(z) = yα(yk−1

α (z)). Let yk−1
α (z) = d. Then

by assumption d /∈ V1 ⊕W .
The rest of the argument is exactly as above.

Corollary 9.1. Let V be an indecomposable Bα–module. Then, there exists a character
χ : Bα −→ Gm such that V 'W ⊗ χ, with W an irreducible Lα–module.

Proof. By the above Proposition, V is a cyclic Bα–module generated by a weight vector
v. Therefore, V is the module 〈v, yα(v), . . . , yn−1

α (v)〉 where n = dim(V ). Let µ be the
highest weight (i.e weight of v) and ν be the lowest weight of V . Then we see that
ν = µ− (n− 1)α. Let m = 〈µ, α〉 and let χ = (m− n+ 1)ωα. Let W = H0(Lα/Bα, λ)
where λ = µ− χ. Note that by the argument in the proposition above, the weight λ is
a weight for the maximal torus of Bα (or equivalently B).

Then, W is an irreducible Lα–module with highest weight λ. Also, as a Bα–module,
W , is isomorphic V ⊗−χ. This proves the corollary.
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