Mod *p* local Langlands correspondence for $GL_2(\mathbb{Q}_p)$

Ayan Nath

ayannath@cmi.ac.in

Advisor: Prof. Eknath Ghate

Visiting Students' Research Program

22nd June, 2023

1/10

Introduction

We will provide a classification of smooth irreducible representations of $G = GL_2(\mathbb{Q}_p)$ over $\overline{\mathbb{F}}_p$. We then discuss 2-dimensional local Galois representations over $\overline{\mathbb{F}}_p$. Subsequently, we state Breuil's mod p local Langlands correspondence and end by proving the classification theorem.

Notations

 $G = GL_2(\mathbb{Q}_p)$; $K = GL_2(\mathbb{Z}_p)$; $\overline{B} = \{$ lower triangular matrices in $G \}$; η , χ or χ_i always denote smooth characters $\mathbb{Q}_p^{\times} \to \overline{\mathbb{F}}_p$; V always denotes a weight; $\mathcal{H}_G V := End_G(ind_K^G V)$ is the Hecke algebra; Ind denotes smooth induction; ind denotes compact induction.

Admissibility

In what follows, there is a technical notion called "admissibility", but we will ignore it for the sake of clarity and because all our G-representations are admissible anyway.

Classification of irreducible $\overline{\mathbb{F}}_p$ -representations of $GL_2(\mathbb{Q}_p)$

Theorem 1 (Barthel-Livné)

Every irreducible G-representation falls into one of the following disjoint families:

- principal series: $\operatorname{Ind}_{\overline{B}}^{\underline{G}}(\chi_1 \otimes \chi_2), \, \chi_1 \neq \chi_2,$
- **2** smooth characters: $\chi \circ \det$,
- 3 twists of Steinberg: $\operatorname{St} \otimes (\chi \circ \operatorname{det}) \stackrel{\text{def}}{=} (\operatorname{Ind}_{\overline{B}}^{\underline{G}}(\chi \otimes \chi))/(\chi \circ \operatorname{det}),$

supersingular representations.

Thanks to Breuil, we have the following characterisation of supersingular representations which we state without proof.

Theorem 2 (Breuil)

The irreducible supersingular representations of G are exactly

$$\frac{\mathsf{ind}_{\mathcal{K}\mathbb{Q}_p^{\times}}^{\mathcal{G}} \operatorname{Sym}^{r}\overline{\mathbb{F}}_p^2}{(\mathcal{T}_1)} \otimes (\eta \circ \mathsf{det})$$

Fundamental characters

- For ease of notation let us denote Gal(F^{sep}/F) by G_F. Also, Q_{p²} be the unique unramified degree-2 extension of Q_p.
- Let $g \in G_{\mathbb{Q}_{p^2}}$. Set $\pi_2 = \sqrt[p^2-1]{-p}$. Serre's level 2 fundamental character ω_2 is given by composing the map

$$g\mapsto g(\pi_2)/\pi_2,$$

which takes values in μ_{p^2-1} , with the isomorphism $\mu_{p^2-1} \xrightarrow{\sim} \mathbb{F}_{p^2}^{\times}$ (inverse of Teichmüller lift).

• We also have the **mod** p cyclotomic character ω which can be defined as ω_2^{p+1} . It takes values in \mathbb{F}_p^{\times} .

Galois representations

- Put $\sigma = \operatorname{Ind}_{G_{\mathbb{Q}_{p^2}}}^{G_{\mathbb{Q}_p}} \omega_2^h$. It can be easily checked that the determinant of $\sigma|_{G_{\mathbb{Q}_{p^2}}}$ is $(\omega_2^h)^{p+1} = \omega^h$.
- We may twist σ by an unramified character so that its determinant on G_{Q_ρ} is ω^h.
- Denote the resulting representation by $\operatorname{Ind} \omega_2^h$.

Theorem 3

All irreducible 2-dimensional continuous representations of $G_{\mathbb{Q}_p}$ over $\overline{\mathbb{F}}_p$ are of the form $\operatorname{Ind} \omega_2^h \otimes \lambda_a$, where $p + 1 \nmid h$, and λ_a is an unramified character mapping the Frobenius to a^{-1} .

Mod *p* local Langlands correspondence

Theorem 4 (Breuil)

There exists an explicit bijection

 $\begin{cases} \text{irreducible (admissible)} \\ \text{supersingular representations of} \\ \mathsf{GL}_2(\mathbb{Q}_p) \text{ over } \overline{\mathbb{F}}_p \text{ upto isomorphism.} \end{cases} \longleftrightarrow \begin{cases} \text{irreducible continuous} \\ \mathsf{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p) \to \mathsf{GL}_2(\overline{\mathbb{F}}_p) \\ \text{upto isomorphism.} \end{cases}$

Idea of proof. The bijection is the following:

$$\frac{\operatorname{\mathsf{ind}}_{\mathcal{K}\mathbb{Q}_p^{\times}}^{\mathcal{G}}\operatorname{\mathsf{Sym}}^{r}\overline{\mathbb{F}}_p^2}{(\mathcal{T}_1)}\otimes(\eta\circ\operatorname{\mathsf{det}})\longleftrightarrow\operatorname{\mathsf{Ind}}\omega_2^{r+1}\otimes\eta,$$

where on the RHS, η acts on $\overline{\mathbb{F}}_p$ via local class field theory.

6/10

Proof of Theorem 1

Let π be an irreducible representation and let V be a weight of π .

- The (finite-dimensional!) weight space Hom_K(V, π|_K) contains a common Hecke eigenvector f: V → π|_K with eigenvalues given by some algebra homomorphism X': H_GV → F_p.
- If X'(T₁) = 0 for all V, then π is *defined* to be supersingular. So, let us assume X'(T₁) ≠ 0.
- By Frobenius reciprocity applied to *f*, we get a nonzero (and hence, surjective) map ind^G_K V → π, which factors as ind^G_K V ⊗_{H_GV} X' → π.

There are now several possibilities...

Case 1 If dim V > 1, then one can prove that

$$\operatorname{\mathsf{ind}}\nolimits^{\mathsf{G}}_{\mathsf{K}}\mathsf{V}\otimes_{\operatorname{\mathcal{H}}\nolimits_{\mathsf{G}}\mathsf{V}} {\boldsymbol{\chi}}'\cong\operatorname{\mathsf{Ind}}\nolimits^{\operatorname{\underline{G}}}_{\overline{B}}{\boldsymbol{\chi}}_1\otimes{\boldsymbol{\chi}}_2$$

for some choice of characters χ_1, χ_2 (Atharva's talk). Hence, π is either an irreducible principal series or a twist of Steinberg.

Proof of Theorem 1

Case 2 If dim V = 1 and $\chi'(T_1^2 - T_2) \neq 0$, then we have $\operatorname{ind}_{K}^{G} V \otimes_{\mathcal{H}_{G}V} \chi' \cong \operatorname{ind}_{K}^{G} V' \otimes_{\mathcal{H}_{G}V} \chi' \qquad (\star)$

for some p-dimensional weight V'.

• Using classification of weights (Sudharshan's talk), one can find maps

$$\varphi^-\colon \operatorname{ind}^G_{K} V' \to \operatorname{ind}^G_{K} V, \qquad \varphi^+\colon \operatorname{ind}^G_{K} V \to \operatorname{ind}^G_{K} V'.$$

- Identifying $\mathcal{H}_G V \cong \overline{\mathbb{F}}_p[T_1, T_2, T_2^{-1}] \cong \mathcal{H}_G V'$, we can view $\varphi^- \circ \varphi^+$ and $\varphi^+ \circ \varphi^-$ as algebra endomorphisms of $\overline{\mathbb{F}}_p[T_1, T_2, T_2^{-1}]$.
- It can be verified by a routine computation that

$$\varphi^+\circ\varphi^-=\varphi^-\circ\varphi^+=T_1^2-T_2.$$

We have

$$(\varphi^+\circ\varphi^-)\otimes_{\overline{\mathbb{F}}_p[T_1,T_2,T_2^{-1}]}\chi'=\chi'(T_1^2-T_2)\neq 0.$$

Hence, their compositions act invertibly by the nonzero scalar $\chi'(T_1^2 - T_2)$.

One can now proceed as in the previous case.

Proof of Theorem 1

Case 3 If dim V = 1 and $\chi'(T_1^2 - T_2) = 0$, then we may assume $V = \mathbb{1}_K$ simply by twisting by a character of the form $\eta \circ \det$. We may further arrange $\chi'(T_1) = \chi'(T_2) = 1$ by ensuring $\eta(p) = \chi'(T_1)$. One can prove that there is an exact sequence

$$0 \longrightarrow \mathsf{St} \longrightarrow \frac{\mathsf{ind}_{K}^{G} \mathbb{1}_{K}}{(\mathcal{T}_{1} - 1, \mathcal{T}_{2} - 1)} \xrightarrow[\text{ in Bruhat-Tits tree}]{\text{ sum all nodes}} \mathbb{1}_{G} \longrightarrow 0.$$

The middle term is the same as $\operatorname{ind}_{\mathcal{K}}^{\mathcal{G}} \mathbb{1}_{\mathcal{K}} \otimes_{\mathcal{H}_{\mathcal{G}}V} \chi'$. It follows that $\pi \otimes (\eta \circ \det)$ is the trivial character. Twisting back, π is a character of the desired form.

Finally, one shows that the four families discussed above are disjoint by doing an analysis on their weights and Hecke eigenvalues. $\hfill\square$

References

- Spring School towards a mod *p* Langlands correspondence, Essen (2021)
- C. Breuil, *Representations of Galois and of* GL₂ *in characteristic p*, graduate course at Columbia University (fall 2007)
- C. Breuil, *The emerging p-adic Langlands programme*, Proc. Int. Congress of Mathematicians, Hyderabad, India, 2010
- F. Herzig, *p-adic modular representations of p-adic groups*, In: Modular Representation Theory of Finite and *p*-adic Groups, Lecture Notes Series, Institute for Mathematical Sciences National University of Singapore 30, World Scientific Publishing, Hackensack, NJ, pp. 73–108 (2015)