TATE UNIFORMIZATION OF DRINFELD MODULES

AYAN NATH

Abstract. We give an account of Tate uniformization of Drinfeld modules.

1. Introduction

Let us fix the following notations:

- K a local field with integer $\operatorname{ring}(\mathscr{O}, \mathfrak{m}, k)$.
- $A=\mathbb{F}_{q}[T], F=\mathbb{F}_{q}(T), F_{\infty}=\mathbb{F}_{q}\left[T^{-1}\right] \llbracket T \rrbracket$
- \mathbb{C}_{∞} the completed algebraic closure of \mathbb{F}_{∞}.
- for any characteristic p ring R, the skew-polynomial ring $R\{\tau\}$ is defined as the endomorphism ring End $\mathbb{G}_{a, R}$ where τ denotes the Frobenius endormorphism.
- similarly, $R\{\{\tau\}$ is the skew-power-series ring.

Definition 1.1. Let \mathbf{E} be a Drinfeld module over \mathscr{O}. A lattice of rank d in \mathbf{E} is an injective A-module homomorphism $v: \Lambda \rightarrow \mathbf{E}\left(K^{\mathrm{sep}}\right)$, where Λ is a free A-module of rank d, whose image is discrete and invariant under the action of $\operatorname{Gal}\left(K^{\text {sep }} / K\right)$.

Definition 1.2. A Tate datum of $\operatorname{rank}\left(d_{1}, d_{2}\right)$ over \mathscr{O} is a pair (\mathbf{E}, Λ), where \mathbf{E} is a Drinfeld module of rank d_{1} over \mathscr{O} and $\Lambda=(\Lambda, v)$ is a lattice in \mathbf{E} of rank d_{2}. For Tate data (\mathbf{E}, Λ, v) and $\left(\mathbf{E}^{\prime}, \Lambda^{\prime}, v^{\prime}\right)$ of same rank, a morphism is a commutative square

where Φ is a A-module map and φ is a morhpism of Drinfeld \mathscr{O}-modules.

The main theorem of Tate uniformization is the following
Theorem 1.3. Let d be a positive number. The category of Tate data (\mathbf{E}, Λ) where \mathbf{E} is a rank r Drinfeld \mathfrak{O}-module with good reduction and Λ is a rank d lattice is equivalent to the full subcategory of Drinfeld modules of rank $r+d$ over \mathscr{O} with stable reduction of rank r.

2. Quotienting by a lattice

For $\omega \in \mathbb{Q}_{p}$ with $|\omega|<1$, the Tate curve is a rigid analytic elliptic curve defined as $\mathbb{Q}_{p} / \omega^{\mathbb{Z}}$. We will try to imitate this construction in the case of Drinfeld modules. Let $\phi: A \rightarrow K\{\tau\}$ be a Drinfeld module and Λ
be a lattice. Define

$$
\exp _{\Lambda}(x)=x \prod_{\lambda \in \Lambda \backslash\{0\}}\left(1-\frac{x}{\lambda}\right) .
$$

This is an \mathbb{F}_{q}-linear entire function with coefficients in K because Λ is discrete and Galois stable. Let $\Lambda^{\prime}=\phi_{a}^{-1} \Lambda \subset \mathbb{C}_{K}$. Note that Λ^{\prime} is not necessary free because $\phi[a] \subset \Lambda^{\prime}$. The following exact sequence is easily checked

$$
\begin{equation*}
0 \rightarrow \phi[a] \rightarrow \Lambda^{\prime} / \Lambda \rightarrow \Lambda / \phi_{a} \Lambda \rightarrow 0 . \tag{1}
\end{equation*}
$$

In particular, Λ has finite index in Λ^{\prime}, and consequently Λ^{\prime} is discrete. Observe that the zero set of $\exp _{\Lambda^{\prime}} \circ \phi_{a}$ is Λ^{\prime}. Thus, $a \exp _{\Lambda^{\prime}}(x)=\exp _{\Lambda}\left(\phi_{a}(x)\right)$ by using the characteristic property of exponential functions and comparing constant coefficients. On the other hand, there exists an \mathbb{F}_{q}-linear polynomial P_{a} such that $\exp _{\Lambda^{\prime}}=P_{a} \circ \exp _{\Lambda}$ (see [Pap, Lemma 5.1.4]). Denoting $\psi_{a}(x)=a P_{a}(x)$, we have

$$
\exp _{\Lambda} \circ \phi_{a}=\psi_{a} \circ \exp _{\Lambda}
$$

Since $\exp _{\Lambda}$ and ϕ_{a} are defined over K, the same is true for ψ_{a}. The following is now clear:
Proposition 2.1. With the above notations, the map $\psi: A \rightarrow K\{\tau\}, a \mapsto \psi_{a}$ is a Drinfeld module over K of $\operatorname{rank} r+d$, where $r=\operatorname{rank} \phi$ and $d=\operatorname{rank} \Lambda$.

In summary, we have the exact sequence

$$
0 \rightarrow \Lambda \rightarrow \phi\left(\mathbb{C}_{K}\right) \xrightarrow{\exp _{\Lambda}} \psi\left(\mathbb{C}_{K}\right) \rightarrow 0
$$

which is called the Tate uniformization of ψ if ϕ acquires good reduction.

3. Standard endomorphisms

Lemma 3.1. Let B be an $\mathbb{F}_{q^{-a l g e b r a}}$. Suppose $u=\sum_{i=0}^{n} u_{i} \tau^{i} \in B\{\tau\}$ is such that u_{0} is invertible and u_{1}, \ldots, u_{n} are nilpotent. Then u is invertible.

Proof. Straightforward. Omitted.
Lemma 3.2. Let B be an \mathbb{F}_{q}-algebra and let $d>0$ be an integer. Suppose $f=\sum_{i=0}^{n} f_{i} \tau^{i} \in B\{\tau\}$ is such that $f_{d} \in B^{\times}$and f_{d+1}, \ldots, f_{n} are nilpotent. Then there exists a unique $u=\sum_{j \geqslant 0} u_{j} \tau^{j} \in B\{\tau\}$ such that $u_{0}=1, u_{j}$ are nilpotent for $j \geqslant 1$, and $g=u^{-1} f u=\sum_{i=1}^{d} g_{i} \tau^{i}$ has degree d and $g_{d} \in B^{\times}$. Such polynomials are called standard.

Proof. Let $N=\left(f_{d+1}, \ldots, f_{n}\right)$. There exists some minimal positive integer k such that $N^{k}=0$. We induct on k. If $k=1$ then there is nothing to do. Suppose the result is true for all $k \leqslant s$. By induction hypothesis applied to B / N^{s-1} and the image of f therein, there exists u^{\prime} and g^{\prime} in $B\{\tau\}$ which solve the problem modulo N^{s-1}. It is easy to see that g_{d}^{\prime} is a unit and the ideal $I=\left(g_{d+1}^{\prime}, \ldots, g_{m}^{\prime}\right)$ lies in N^{m-1}. Hence, $I^{2}=0$. Let

$$
f^{\prime}=\left(1-\frac{f_{n}}{f_{d}^{q^{n}-d}} \tau^{n-d}\right) \circ f \circ\left(1-\frac{f_{n}}{f_{d}^{q^{n}-d}} \tau^{n-d}\right)^{-1}
$$

By computing, it can be seen that f^{\prime} has leading term $b \tau^{m}$ where $m<n$. Using induction, this shows the existence of u. If v is another polynomial satisfying the specified conditions, then consider $h=v u^{-1}$. We have $h\left(u f u^{-1}\right)=\left(\nu f v^{-1}\right) h$, from where it is just a matter of comparing coefficients to derive $h=1$.
Lemma 3.3. Let $f \in \mathscr{O}\{\tau\}$ with $d=\operatorname{deg} \bar{f}>0$, where \bar{f} denotes the reduction of f modulo $\mathfrak{m}\{\tau\}$. There exists a unique $u \in R\{\{\tau\}\}$ such that $u=1+\sum_{i \geqslant 1} \alpha_{i} \tau^{i},\left|\alpha_{i}\right|<1, \alpha_{i} \rightarrow 0, g=u^{-1} f u$ lies in $R\{\tau\}$, and $\operatorname{deg} g=\operatorname{deg} \bar{g}=d$, and u is an entire function.

Proof. By applying Lemma 3.2 to to $\mathscr{O} / \mathfrak{m}^{m}, m \geqslant 1$, we can form $u \in R\{\{\tau\}\}$ such that $\partial u=1$ and $g=u^{-1} f u$. It's clear that $\operatorname{deg} g=\operatorname{deg} \bar{g}=d$ and that $\left|\alpha_{i}\right|<1$ because α_{i} is nilpotent modulo \mathfrak{m}^{i+1}, and in particular belongs to \mathfrak{m}. Also, $\alpha_{i} \rightarrow 0$ because $u_{i} \equiv u_{i-1}\left(\bmod \mathfrak{m}^{i-1}\right)$. It remains to show that $u(x)$ is entire. For $m>n$, comparing the coefficient of τ^{m} on both sides of $u g=f u$ gives

$$
\alpha_{m} g_{0}^{q^{m}}+\alpha_{m-1} g_{1}^{q^{m-1}}+\cdots+\alpha_{m-d} g_{d}^{q^{m-d}}=\alpha_{m} f_{0}+\alpha_{m-1}^{q} f_{1}+\cdots+\alpha_{m-n}^{q^{n}} f_{n}
$$

which can be rewritten as

$$
\alpha_{m-d}\left(g_{d}^{q^{m-d}}-f_{d} \alpha_{m-d}^{q^{d}-1}\right)=-\sum_{i=0}^{d-1} \alpha_{m-i} g_{i}^{q^{m-i}}+\sum_{\substack{0 \leqslant j \leqslant n \\ j \neq d}} f_{j} \alpha_{m-j}^{q^{j}}
$$

Here g_{d} is a unit. Taking absolute values and applying triangle inequality,

$$
\left|\alpha_{m-d}\right| \leqslant \max \left\{\left|\alpha_{m-d+1}\right|, \ldots,\left|\alpha_{m}\right|,\left|\alpha_{m-n}\right|^{q^{n}},\left|\alpha_{m-n+1}\right|^{q^{n-1}}, \ldots,\left|\overline{\left.\alpha_{m-d}\right|^{q^{d}}}, \ldots,\left|\alpha_{m}\right|\right\}\right.
$$

where $\mid \overline{\left.\alpha_{m-d}\right|^{q}}$ means that the term has been removed. Since $\left|\alpha_{m-j}\right|<1$ for $0 \leqslant j \leqslant d-1$, we have $\left|\alpha_{m-j}\right|^{q^{j}}<\left|\alpha_{m-j}\right|$. Therefore, for $i>s:=n-d$

$$
\left|\alpha_{i}\right| \leqslant \max \left\{\left|\alpha_{i-s}\right|^{q^{d+s}}, \ldots,\left|\alpha_{i-1}\right|^{q^{d+1}},\left|\alpha_{i+1}\right|, \ldots,\left|\alpha_{i+d}\right|\right\}
$$

Denote the set on the right-hand side of this inequality by S_{i}. Now execute the following iterative process. Initially, put $S:=S_{i}$. If $\left|\alpha_{i}\right|^{q^{\ell}} \in S$ for some $\ell \geqslant 1$, then delete that element from S. Next, replace each $\left|\alpha_{j}\right|^{q^{\ell}} \in S$ with $j>i$ by $S_{j}^{q^{\ell}}$, where $S_{j}^{q^{\ell}}$ denotes the set of elements of S_{j} raised to power q^{ℓ}; call the resulting set S. Repeat the same process for this new S. It is easy to see that with each iteration, either the elements $\left|\alpha_{j}\right|$ appear in S to higher powers of q than before or $\left|\alpha_{j}\right|$ has larger index than the elements in the previous S. At each step of the process we have $\left|\alpha_{i}\right| \leqslant \max S$. On the other hand, since $0 \leqslant\left|\alpha_{j}\right|<1$ for all $j>0$ and $\left|\alpha_{j}\right| \rightarrow 0$ as $j \rightarrow \infty$, the maximum of the elements in S with indices greater than i will tend to 0 . Therefore,

$$
\left|\alpha_{i}\right| \leqslant \max \left(\left|\alpha_{i-s}\right|^{q^{d+s}}, \ldots,\left|\alpha_{i-1}\right|^{q^{d+1}}\right)
$$

If we denote $\beta_{j}=\left|\alpha_{j}\right|^{1 / q^{j}}, j \geqslant 1$, then the above implies $\beta_{i} \leqslant \max \left(\beta_{i-s}, \ldots, \beta_{i-1}\right)^{q^{d}}$. From here, one can show that $\beta_{i+2} \leqslant \max \left\{\beta_{i-s}^{q^{d}}, \beta_{i+1-s}^{q^{d}}, \ldots, \beta_{i-1}\right\}^{q^{d}}$ and so on, eventually obtaining $\beta_{i+j s} \leqslant \max \left\{\beta_{i-s}, \ldots, \beta_{i-1}\right\}^{q^{(j+1) d}}$ for all $j \geqslant 0$. Since $\max \left\{\beta_{i-s}, \ldots, \beta_{i-1}\right\}<1$, it follows that $\beta_{j} \rightarrow 0$.

4. Proof of Theorem 1.3

Let $\phi: A \rightarrow \mathscr{O}_{K}\{\tau\}$ be a Drinfeld module with good reduction with $\phi_{T}=T+g_{1} \tau+\cdots+g_{r} \tau^{r}, g_{r} \in \mathscr{O}_{K}^{\times}$. Then the construction of Proposition 2.1 gives the desired Drinfeld module. Conversely, suppose we are given a Drinfeld module ψ of rank $r+d$ over \mathscr{O}_{K} so that its reduction $\bar{\psi}$ has rank r. By Lemma 3.3, we get a unique $e=1+\sum_{i=1}^{\infty} \alpha_{i} \tau^{i} \in 1+\mathfrak{m}\{\{\tau\}\} \tau$, such that $\phi_{T}=e^{-1} \psi_{T} e \in \mathscr{O}_{K}\{\tau\}$ has degree $r, \bar{\phi}_{T}=\bar{\psi}_{T}$ and e is entire. The roots of u form a lattice Λ in $\psi\left(K^{\text {sep }}\right)$. Indeed, it is easy to see that Λ is discrete. Further, any zero λ must satisfy $|\lambda|>1$, for if $|\lambda| \leqslant 1$, then $e(\lambda) \in 1+\mathfrak{m}$, which cannot be zero. We now have to show that Λ is a lattice of rank d. By comparing ranks of the terms of the exact sequence

$$
0 \rightarrow \phi[a] \rightarrow \psi[a] \rightarrow \Lambda / \phi_{a} \Lambda \rightarrow 0
$$

we get $\Lambda / \phi_{a} \Lambda \cong(A / a A)^{d}$. Choose a ball B centered at 0 of suitable radius such that the map $B \cap \Lambda \rightarrow$ $\Lambda / \phi_{a} \Lambda$ is surjective. Since $|a x|>|x|$ for each nonzero x, it follows that Λ is generated by the LHS. This shows that Λ is A-free of rank d.

Next, let $\psi: \mathbf{E} \rightarrow \mathbf{E}^{\prime}$ be a morphism of Drinfeld modules with stable reduction of same rank. If $\psi \neq 0$ then \mathbf{E} and \mathbf{E}^{\prime} have Tate data (\mathbf{F}, Λ) and $\left(\mathbf{F}^{\prime}, \Lambda^{\prime}\right)$ of the same rank, ψ is defined over \mathscr{O}_{K} and ψ is not $0(\bmod \mathfrak{m})$. Then $\varphi:=\left(u^{\prime}\right)^{-1}(\psi(u))$ defines an isogeny $\mathbf{F} \rightarrow \mathbf{F}^{\prime}$. It is clear that φ induces a morphism $\Lambda \rightarrow \Lambda^{\prime}$. Conversely, let $(\varphi, \Phi):(\mathbf{F}, \Lambda) \rightarrow\left(\mathbf{F}^{\prime}, \Lambda^{\prime}\right)$ be a morphism of Tate data. Put $\psi:=u_{\Lambda}\left(\varphi\left(\left(u_{\Lambda}^{\prime}\right)^{-1}\right)\right)$. It is then a matter of checking that this is a polynomial.

References

[Pap] M. Papikan, Drinfeld Modules, Graduate Texts in Mathematics 296, Springer Cham, 2023

