
TATE UNIFORMIZATION OF DRINFELD MODULES

AYAN NATH

Abstract. We give an account of Tate uniformization of Drinfeld modules.

1. Introduction

Let us fix the following notations:

• K a local field with integer ring (O ,m,k).
• A = Fq [T ], F = Fq (T ),F∞ = Fq [T −1]�T �
• C∞ the completed algebraic closure of F∞.
• for any characteristic p ring R, the skew-polynomial ring R{τ} is defined as the endomorphism
ring EndGa,R where τ denotes the Frobenius endormorphism.

• similarly, R{{τ}} is the skew-power-series ring.

Definition 1.1. Let E be a Drinfeld module over O . A lattice of rank d in E is an injective A-module
homomorphism ν : Λ→ E(K sep), where Λ is a free A-module of rank d , whose image is discrete and
invariant under the action of Gal(K sep/K ).

Definition 1.2. A Tate datum of rank (d1,d2) over O is a pair (E,Λ), where E is a Drinfeld module of
rank d1 over O and Λ= (Λ,ν) is a lattice in E of rank d2. For Tate data (E,Λ,ν) and (E′,Λ′,ν′) of same
rank, a morphism is a commutative square

Λ E(K sep)

Λ′ E′(K sep)

Φ

ν

ν′
ϕ(K sep)

where Φ is a A-module map and ϕ is a morhpism of Drinfeld O -modules.

The main theorem of Tate uniformization is the following

Theorem 1.3. Let d be a positive number. The category of Tate data (E,Λ) where E is a rank r Drinfeld
O -module with good reduction and Λ is a rank d lattice is equivalent to the full subcategory of Drinfeld
modules of rank r +d over O with stable reduction of rank r.

2. Quotienting by a lattice

For ω ∈Qp with |ω| < 1, the Tate curve is a rigid analytic elliptic curve defined as Qp /ωZ. We will try to
imitate this construction in the case of Drinfeld modules. Let φ : A →K {τ} be a Drinfeld module and Λ
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be a lattice. Define
expΛ(x) = x

∏
λ∈Λ\{0}

(
1− x

λ

)
.

This is an Fq -linear entire function with coefficients in K because Λ is discrete and Galois stable. Let
Λ′ =φ−1

a Λ⊂CK . Note that Λ′ is not necessary free because φ[a] ⊂Λ′. The following exact sequence is
easily checked

0→φ[a]→Λ′/Λ→Λ/φaΛ→ 0. (1)

In particular, Λ has finite index in Λ′, and consequently Λ′ is discrete. Observe that the zero set
of expΛ ◦φa is Λ′. Thus, a expΛ′(x) = expΛ(φa(x)) by using the characteristic property of exponential
functions and comparing constant coefficients. On the other hand, there exists an Fq -linear polynomial
Pa such that expΛ′ = Pa ◦expΛ (see [Pap, Lemma 5.1.4]). Denoting ψa(x) = aPa(x), we have

expΛ ◦φa =ψa ◦expΛ .

Since expΛ and φa are defined over K , the same is true for ψa . The following is now clear:

Proposition 2.1. With the above notations, the map ψ : A →K {τ}, a 7→ψa is a Drinfeld module over K of
rank r +d , where r = rankφ and d = rankΛ.

In summary, we have the exact sequence

0→Λ→φ(CK )
expΛ−−→ψ(CK )→ 0,

which is called the Tate uniformization of ψ if φ acquires good reduction.

3. Standard endomorphisms

Lemma 3.1. Let B be an Fq -algebra. Suppose u = ∑n
i=0 uiτ

i ∈ B{τ} is such that u0 is invertible and
u1, . . . ,un are nilpotent. Then u is invertible.

Proof. Straightforward. Omitted. □

Lemma 3.2. Let B be an Fq -algebra and let d > 0 be an integer. Suppose f =∑n
i=0 fiτ

i ∈ B{τ} is such that
fd ∈ B× and fd+1, . . . , fn are nilpotent. Then there exists a unique u =∑

jÊ0 u jτ
j ∈ B{τ} such that u0 = 1, u j

are nilpotent for j Ê 1, and g = u−1 f u =∑d
i=1 giτ

i has degree d and gd ∈ B×. Such polynomials are called
standard.

Proof. Let N = ( fd+1, . . . , fn). There exists some minimal positive integer k such that N k = 0. We induct
on k. If k = 1 then there is nothing to do. Suppose the result is true for all k É s. By induction hypothesis
applied to B/N s−1 and the image of f therein, there exists u′ and g ′ in B{τ} which solve the problem
modulo N s−1. It is easy to see that g ′

d is a unit and the ideal I = (g ′
d+1, . . . , g ′

m) lies in N m−1. Hence,
I 2 = 0. Let

f ′ =
1− fn

f qn−d
d

τn−d

◦ f ◦
1− fn

f qn−d
d

τn−d

−1

.

By computing, it can be seen that f ′ has leading term bτm where m < n. Using induction, this shows the
existence of u. If v is another polynomial satisfying the specified conditions, then consider h = vu−1. We
have h(u f u−1) = (v f v−1)h, from where it is just a matter of comparing coefficients to derive h = 1. □

Lemma 3.3. Let f ∈O {τ} with d = deg f > 0, where f denotes the reduction of f modulom{τ}. There exists a
unique u ∈ R{{τ}} such that u = 1+∑

iÊ1αiτ
i , |αi | < 1,αi → 0, g = u−1 f u lies in R{τ}, and deg g = deg g = d ,

and u is an entire function.
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Proof. By applying Lemma 3.2 to to O/mm , m Ê 1, we can form u ∈ R{{τ}} such that ∂u = 1 and g = u−1 f u.
It’s clear that deg g = deg g = d and that |αi | < 1 because αi is nilpotent modulo mi+1, and in particular
belongs to m. Also, αi → 0 because ui ≡ ui−1 (mod mi−1). It remains to show that u(x) is entire. For
m > n, comparing the coefficient of τm on both sides of ug = f u gives

αm g qm

0 +αm−1g qm−1

1 +·· ·+αm−d g qm−d

d =αm f0 +αq
m−1 f1 +·· ·+αqn

m−n fn ,

which can be rewritten as

αm−d (g qm−d

d − fdα
qd−1
m−d ) =−

d−1∑
i=0

αm−i g qm−i

i + ∑
0É jÉn

j ̸=d

f jα
q j

m− j .

Here gd is a unit. Taking absolute values and applying triangle inequality,

|αm−d | É max{|αm−d+1|, . . . , |αm |, |αm−n |q
n

, |αm−n+1|q
n−1

, . . . , á|αm−d |qd , . . . , |αm |},

where á|αm−d |qd means that the term has been removed. Since |αm− j | < 1 for 0 É j É d −1, we have
|αm− j |q j < |αm− j |. Therefore, for i > s := n −d

|αi | É max{|αi−s |q
d+s

, . . . , |αi−1|q
d+1

, |αi+1|, . . . , |αi+d |}.

Denote the set on the right-hand side of this inequality by Si . Now execute the following iterative
process. Initially, put S := Si . If |αi |qℓ ∈ S for some ℓÊ 1, then delete that element from S. Next, replace
each

∣∣α j
∣∣qℓ ∈ S with j > i by Sqℓ

j , where Sqℓ

j denotes the set of elements of S j raised to power qℓ; call
the resulting set S. Repeat the same process for this new S. It is easy to see that with each iteration,
either the elements

∣∣α j
∣∣ appear in S to higher powers of q than before or

∣∣α j
∣∣ has larger index than the

elements in the previous S. At each step of the process we have |αi | É maxS. On the other hand, since
0 É ∣∣α j

∣∣< 1 for all j > 0 and
∣∣α j

∣∣→ 0 as j →∞, the maximum of the elements in S with indices greater
than i will tend to 0 . Therefore,

|αi | É max
(
|αi−s |q

d+s
, . . . , |αi−1|q

d+1
)

.

If we denote β j =
∣∣α j

∣∣1/q j

, j Ê 1, then the above implies βi É max(βi−s , . . . ,βi−1)qd
. From here, one can

show thatβi+2 É max{βqd

i−s ,βqd

i+1−s , . . . ,βi−1}qd and so on, eventually obtainingβi+ j s É max{βi−s , . . . ,βi−1}q ( j+1)d

for all j Ê 0. Since max{βi−s , . . . ,βi−1} < 1, it follows that β j → 0. □

4. Proof of Theorem 1.3

Let φ : A →OK {τ} be a Drinfeld module with good reduction with φT = T +g1τ+·· ·+grτ
r , gr ∈O×

K . Then
the construction of Proposition 2.1 gives the desired Drinfeld module. Conversely, suppose we are given
a Drinfeld module ψ of rank r +d over OK so that its reduction ψ has rank r. By Lemma 3.3, we get
a unique e = 1+∑∞

i=1αiτ
i ∈ 1+m{{τ}}τ, such that φT = e−1ψT e ∈OK {τ} has degree r , φT =ψT and e is

entire. The roots of u form a lattice Λ in ψ(K sep). Indeed, it is easy to see that Λ is discrete. Further,
any zero λ must satisfy |λ| > 1, for if |λ| É 1, then e(λ) ∈ 1+m, which cannot be zero. We now have to
show that Λ is a lattice of rank d . By comparing ranks of the terms of the exact sequence

0→φ[a]→ψ[a]→Λ/φaΛ→ 0,

we get Λ/φaΛ∼= (A/a A)d . Choose a ball B centered at 0 of suitable radius such that the map B ∩Λ→
Λ/φaΛ is surjective. Since |ax| > |x| for each nonzero x, it follows that Λ is generated by the LHS. This
shows that Λ is A-free of rank d .
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Next, let ψ : E→E′ be a morphism of Drinfeld modules with stable reduction of same rank. If ψ ̸= 0
then E and E′ have Tate data (F,Λ) and (F′,Λ′) of the same rank, ψ is defined over OK and ψ is not
0 (mod m). Then ϕ := (u′)−1(ψ(u)) defines an isogeny F → F′. It is clear that ϕ induces a morphism
Λ→Λ′. Conversely, let (ϕ,Φ) : (F,Λ)→ (F′,Λ′) be a morphism of Tate data. Put ψ := uΛ(ϕ((u′

Λ)−1)). It is
then a matter of checking that this is a polynomial. □
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