TATE UNIFORMIZATION OF DRINFELD MODULES

AYAN NATH

Abstract. We give an account of Tate uniformization of Drinfeld modules.

1. Introduction

Let us fix the following notations:

- *K* a local field with integer ring $(\mathcal{O}, \mathfrak{m}, k)$.
- $A = \mathbb{F}_q[T], F = \mathbb{F}_q(T), F_{\infty} = \mathbb{F}_q[T^{-1}] \llbracket T \rrbracket$
- \mathbb{C}_{∞} the completed algebraic closure of \mathbb{F}_{∞} .
- for any characteristic *p* ring *R*, the *skew-polynomial ring* $R{\tau}$ is defined as the endomorphism ring End $\mathbb{G}_{a,R}$ where τ denotes the Frobenius endormorphism.
- similarly, $R{\{\tau\}}$ is the *skew-power-series ring*.

Definition 1.1. Let **E** be a Drinfeld module over \mathcal{O} . A lattice of rank *d* in **E** is an injective *A*-module homomorphism $v: \Lambda \to \mathbf{E}(K^{\text{sep}})$, where Λ is a free *A*-module of rank *d*, whose image is discrete and invariant under the action of $\text{Gal}(K^{\text{sep}}/K)$.

Definition 1.2. A **Tate datum** of rank (d_1, d_2) over \mathcal{O} is a pair (\mathbf{E}, Λ) , where **E** is a Drinfeld module of rank d_1 over \mathcal{O} and $\Lambda = (\Lambda, \nu)$ is a lattice in **E** of rank d_2 . For Tate data $(\mathbf{E}, \Lambda, \nu)$ and $(\mathbf{E}', \Lambda', \nu')$ of same rank, a morphism is a commutative square

$$\begin{array}{ccc} \Lambda & \stackrel{\nu}{\longrightarrow} & \mathbf{E}(K^{\mathrm{sep}}) \\ \downarrow \Phi & & \downarrow \varphi(K^{\mathrm{sep}}) \\ \Lambda' & \stackrel{\nu'}{\longrightarrow} & \mathbf{E}'(K^{\mathrm{sep}}) \end{array}$$

where Φ is a *A*-module map and φ is a morphism of Drinfeld \mathcal{O} -modules.

The main theorem of Tate uniformization is the following

Theorem 1.3. Let *d* be a positive number. The category of Tate data (\mathbf{E}, Λ) where \mathbf{E} is a rank *r* Drinfeld \mathcal{O} -module with good reduction and Λ is a rank *d* lattice is equivalent to the full subcategory of Drinfeld modules of rank r + d over \mathcal{O} with stable reduction of rank *r*.

2. Quotienting by a lattice

For $\omega \in \mathbb{Q}_p$ with $|\omega| < 1$, the Tate curve is a rigid analytic elliptic curve defined as $\mathbb{Q}_p/\omega^{\mathbb{Z}}$. We will try to imitate this construction in the case of Drinfeld modules. Let $\phi: A \to K\{\tau\}$ be a Drinfeld module and Λ

Date: 2nd December, 2023.

Affiliation: BSc 3rd year, Chennai Mathematical Institute

be a lattice. Define

$$\exp_{\Lambda}(x) = x \prod_{\lambda \in \Lambda \setminus \{0\}} \left(1 - \frac{x}{\lambda}\right).$$

This is an \mathbb{F}_q -linear entire function with coefficients in K because Λ is discrete and Galois stable. Let $\Lambda' = \phi_a^{-1} \Lambda \subset \mathbb{C}_K$. Note that Λ' is not necessary free because $\phi[a] \subset \Lambda'$. The following exact sequence is easily checked

$$0 \to \phi[a] \to \Lambda' / \Lambda \to \Lambda / \phi_a \Lambda \to 0. \tag{1}$$

In particular, Λ has finite index in Λ' , and consequently Λ' is discrete. Observe that the zero set of $\exp_{\Lambda} \circ \phi_a$ is Λ' . Thus, $a \exp_{\Lambda'}(x) = \exp_{\Lambda}(\phi_a(x))$ by using the characteristic property of exponential functions and comparing constant coefficients. On the other hand, there exists an \mathbb{F}_q -linear polynomial P_a such that $\exp_{\Lambda'} = P_a \circ \exp_{\Lambda}$ (see [Pap, Lemma 5.1.4]). Denoting $\psi_a(x) = aP_a(x)$, we have

$$\exp_{\Lambda} \circ \phi_a = \psi_a \circ \exp_{\Lambda}$$

Since \exp_{Λ} and ϕ_a are defined over *K*, the same is true for ψ_a . The following is now clear:

Proposition 2.1. With the above notations, the map $\psi \colon A \to K\{\tau\}$, $a \mapsto \psi_a$ is a Drinfeld module over K of rank r + d, where $r = \operatorname{rank} \phi$ and $d = \operatorname{rank} \Lambda$.

In summary, we have the exact sequence

$$0 \to \Lambda \to \phi(\mathbb{C}_K) \xrightarrow{\exp_\Lambda} \psi(\mathbb{C}_K) \to 0,$$

which is called the **Tate uniformization of** ψ if ϕ acquires good reduction.

3. Standard endomorphisms

Lemma 3.1. Let B be an \mathbb{F}_q -algebra. Suppose $u = \sum_{i=0}^n u_i \tau^i \in B\{\tau\}$ is such that u_0 is invertible and u_1, \ldots, u_n are nilpotent. Then u is invertible.

Proof. Straightforward. Omitted.

Lemma 3.2. Let *B* be an \mathbb{F}_q -algebra and let d > 0 be an integer. Suppose $f = \sum_{i=0}^n f_i \tau^i \in B\{\tau\}$ is such that $f_d \in B^{\times}$ and f_{d+1}, \ldots, f_n are nilpotent. Then there exists a unique $u = \sum_{j \ge 0} u_j \tau^j \in B\{\tau\}$ such that $u_0 = 1$, u_j are nilpotent for $j \ge 1$, and $g = u^{-1} f u = \sum_{i=1}^d g_i \tau^i$ has degree *d* and $g_d \in B^{\times}$. Such polynomials are called standard.

Proof. Let $N = (f_{d+1}, ..., f_n)$. There exists some minimal positive integer k such that $N^k = 0$. We induct on k. If k = 1 then there is nothing to do. Suppose the result is true for all $k \le s$. By induction hypothesis applied to B/N^{s-1} and the image of f therein, there exists u' and g' in $B\{\tau\}$ which solve the problem modulo N^{s-1} . It is easy to see that g'_d is a unit and the ideal $I = (g'_{d+1}, ..., g'_m)$ lies in N^{m-1} . Hence, $I^2 = 0$. Let

$$f' = \left(1 - \frac{f_n}{f_d^{q^n - d}} \tau^{n - d}\right) \circ f \circ \left(1 - \frac{f_n}{f_d^{q^n - d}} \tau^{n - d}\right)^{-1}.$$

By computing, it can be seen that f' has leading term $b\tau^m$ where m < n. Using induction, this shows the existence of u. If v is another polynomial satisfying the specified conditions, then consider $h = vu^{-1}$. We have $h(ufu^{-1}) = (vfv^{-1})h$, from where it is just a matter of comparing coefficients to derive h = 1. \Box

Lemma 3.3. Let $f \in \mathcal{O}{\tau}$ with $d = \deg \overline{f} > 0$, where \overline{f} denotes the reduction of f modulo $\mathfrak{m}{\tau}$. There exists a unique $u \in R{\{\tau\}}$ such that $u = 1 + \sum_{i \ge 1} \alpha_i \tau^i$, $|\alpha_i| < 1$, $\alpha_i \to 0$, $g = u^{-1} f u$ lies in $R{\tau}$, and $\deg g = \deg \overline{g} = d$, and u is an entire function.

Proof. By applying Lemma 3.2 to to $\mathcal{O}/\mathfrak{m}^m$, $m \ge 1$, we can form $u \in R\{\{\tau\}\}$ such that $\partial u = 1$ and $g = u^{-1}fu$. It's clear that deg $g = \text{deg }\overline{g} = d$ and that $|\alpha_i| < 1$ because α_i is nilpotent modulo \mathfrak{m}^{i+1} , and in particular belongs to \mathfrak{m} . Also, $\alpha_i \to 0$ because $u_i \equiv u_{i-1} \pmod{\mathfrak{m}^{i-1}}$. It remains to show that u(x) is entire. For m > n, comparing the coefficient of τ^m on both sides of ug = fu gives

$$\alpha_m g_0^{q^m} + \alpha_{m-1} g_1^{q^{m-1}} + \dots + \alpha_{m-d} g_d^{q^{m-d}} = \alpha_m f_0 + \alpha_{m-1}^q f_1 + \dots + \alpha_{m-n}^{q^n} f_n,$$

which can be rewritten as

$$\alpha_{m-d}(g_d^{q^{m-d}} - f_d \alpha_{m-d}^{q^d-1}) = -\sum_{i=0}^{d-1} \alpha_{m-i} g_i^{q^{m-i}} + \sum_{\substack{0 \le j \le n \\ j \ne d}} f_j \alpha_{m-j}^{q^j}.$$

Here g_d is a unit. Taking absolute values and applying triangle inequality,

$$|\alpha_{m-d}| \le \max\{|\alpha_{m-d+1}|, \dots, |\alpha_m|, |\alpha_{m-n}|^{q^n}, |\alpha_{m-n+1}|^{q^{n-1}}, \dots, |\alpha_{m-d}|^{q^d}, \dots, |\alpha_m|\}$$

where $|\widehat{\alpha_{m-d}|^{q^d}}$ means that the term has been removed. Since $|\alpha_{m-j}| < 1$ for $0 \le j \le d-1$, we have $|\alpha_{m-j}|^{q^j} < |\alpha_{m-j}|$. Therefore, for i > s := n-d

$$|\alpha_i| \le \max\{|\alpha_{i-s}|^{q^{d+s}}, \dots, |\alpha_{i-1}|^{q^{d+1}}, |\alpha_{i+1}|, \dots, |\alpha_{i+d}|\}$$

Denote the set on the right-hand side of this inequality by S_i . Now execute the following iterative process. Initially, put $S := S_i$. If $|\alpha_i|^{q^{\ell}} \in S$ for some $\ell \ge 1$, then delete that element from S. Next, replace each $|\alpha_j|^{q^{\ell}} \in S$ with j > i by $S_j^{q^{\ell}}$, where $S_j^{q^{\ell}}$ denotes the set of elements of S_j raised to power q^{ℓ} ; call the resulting set S. Repeat the same process for this new S. It is easy to see that with each iteration, either the elements $|\alpha_j|$ appear in S to higher powers of q than before or $|\alpha_j|$ has larger index than the elements in the previous S. At each step of the process we have $|\alpha_i| \le \max S$. On the other hand, since $0 \le |\alpha_j| < 1$ for all j > 0 and $|\alpha_j| \to 0$ as $j \to \infty$, the maximum of the elements in S with indices greater than i will tend to 0. Therefore,

$$|\alpha_i| \leq \max\left(|\alpha_{i-s}|^{q^{d+s}}, \dots, |\alpha_{i-1}|^{q^{d+1}}\right).$$

If we denote $\beta_j = |\alpha_j|^{1/q^j}$, $j \ge 1$, then the above implies $\beta_i \le \max(\beta_{i-s}, \dots, \beta_{i-1})^{q^d}$. From here, one can show that $\beta_{i+2} \le \max\{\beta_{i-s}^{q^d}, \beta_{i+1-s}^{q^d}, \dots, \beta_{i-1}\}^{q^d}$ and so on, eventually obtaining $\beta_{i+js} \le \max\{\beta_{i-s}, \dots, \beta_{i-1}\}^{q^{(j+1)d}}$ for all $j \ge 0$. Since $\max\{\beta_{i-s}, \dots, \beta_{i-1}\} < 1$, it follows that $\beta_j \to 0$.

4. Proof of Theorem 1.3

Let $\phi: A \to \mathcal{O}_K\{\tau\}$ be a Drinfeld module with good reduction with $\phi_T = T + g_1 \tau + \dots + g_r \tau^r$, $g_r \in \mathcal{O}_K^{\times}$. Then the construction of Proposition 2.1 gives the desired Drinfeld module. Conversely, suppose we are given a Drinfeld module ψ of rank r + d over \mathcal{O}_K so that its reduction $\overline{\psi}$ has rank r. By Lemma 3.3, we get a unique $e = 1 + \sum_{i=1}^{\infty} \alpha_i \tau^i \in 1 + \mathfrak{m}\{\{\tau\}\}\tau$, such that $\phi_T = e^{-1}\psi_T e \in \mathcal{O}_K\{\tau\}$ has degree $r, \overline{\phi}_T = \overline{\psi}_T$ and e is entire. The roots of u form a lattice Λ in $\psi(K^{\text{sep}})$. Indeed, it is easy to see that Λ is discrete. Further, any zero λ must satisfy $|\lambda| > 1$, for if $|\lambda| \leq 1$, then $e(\lambda) \in 1 + \mathfrak{m}$, which cannot be zero. We now have to show that Λ is a lattice of rank d. By comparing ranks of the terms of the exact sequence

$$0 \rightarrow \phi[a] \rightarrow \psi[a] \rightarrow \Lambda/\phi_a \Lambda \rightarrow 0$$
,

we get $\Lambda/\phi_a \Lambda \cong (A/aA)^d$. Choose a ball *B* centered at 0 of suitable radius such that the map $B \cap \Lambda \to \Lambda/\phi_a \Lambda$ is surjective. Since |ax| > |x| for each nonzero *x*, it follows that Λ is generated by the LHS. This shows that Λ is *A*-free of rank *d*.

Next, let $\psi : \mathbf{E} \to \mathbf{E}'$ be a morphism of Drinfeld modules with stable reduction of same rank. If $\psi \neq 0$ then \mathbf{E} and \mathbf{E}' have Tate data (\mathbf{F}, Λ) and (\mathbf{F}', Λ') of the same rank, ψ is defined over \mathcal{O}_K and ψ is not 0 (mod m). Then $\varphi := (u')^{-1}(\psi(u))$ defines an isogeny $\mathbf{F} \to \mathbf{F}'$. It is clear that φ induces a morphism $\Lambda \to \Lambda'$. Conversely, let $(\varphi, \Phi) : (\mathbf{F}, \Lambda) \to (\mathbf{F}', \Lambda')$ be a morphism of Tate data. Put $\psi := u_{\Lambda}(\varphi((u'_{\Lambda})^{-1}))$. It is then a matter of checking that this is a polynomial.

References

[Pap] M. Papikan, Drinfeld Modules, Graduate Texts in Mathematics 296, Springer Cham, 2023