RIBET'S CONVERSE TO HERBRAND'S THEOREM

AYAN NATH

Abstract. In this article, we present an overview of Ribet's proof of the converse to Herbrand's theorem. While Erickson's work [Eri08] provides an excellent exposition on the topic, our focus is on elucidating the scheme-theoretic details found in Ribet's paper [Rib76, §4], particularly his use of finite flat group schemes towards the end of the proof, a facet not covered in Erickson's essay.

1 Introduction

Fix an odd prime number p. Let A be the ideal class group of $\mathbb{Q}(\mu_p)$ where μ_p is the group of all pth roots of unity as usual. Denote $C = A \otimes_{\mathbb{Z}} \mathbb{F}_p$, an \mathbb{F}_p -vector space. If $C \neq 0$ then p is called **irregular**. Define the *n*th Bernoulli number B_n by the exponential generating function

$$\frac{T}{e^T - 1} = \sum_{n \in \mathbb{N}} B_n \frac{T^n}{n!}.$$

1.1. Kummer's criterion. — *p* is irregular if and only if $p | B_2 B_4 \cdots B_{p-3}$.

The \mathbb{F}_p -vector space *C* carries an action of the cyclotomic Galois group $\Delta = \text{Gal}(\mathbb{Q}(\mu_p)/\mathbb{Q})$ for which there is an isomorphism $\chi: \Delta \to \mathbb{F}_p^{\times}$ given by the mod *p* cyclotomic character. Thus, there is a Δ -module decomposition

$$C = \bigoplus_{0 \le i \le p-2} C(\chi^i),$$

where $C(\chi^i)$ is the part of *C* on which $\sigma \in \Delta$ acts as multiplication by $\chi^i(\sigma)$. Herbrand's theorem states that if $C(\chi^{1-k}) \neq 0$ for some even integer $k \in [2, p-3]$ then $p \mid B_k$. The main result of [Rib76] is the following–

1.2. Theorem (Ribet). — Let k be an even integer in [2, p-3]. Then $p \mid B_k$ if and only if $C(\chi^{1-k}) \neq 0$.

By class field theory, the above theorem is implied by–

1.3. Theorem. — Let $k \in [2, p-3]$ be an even integer, and suppose that $p | B_k$. There exists a Galois extension E/\mathbb{Q} containing $\mathbb{Q}(\mu_p)$ such that

(a) The extension $E/\mathbb{Q}(\mu_p)$ is unramified.

- (b) $Gal(E/\mathbb{Q}(\mu_p))$ is a nonzero abelian group killed by p.
- (c) If $\sigma \in \text{Gal}(E/\mathbb{Q})$ and $\tau \in \text{Gal}(E/\mathbb{Q}(\mu_p))$ then $\sigma \tau \sigma^{-1} = \chi(\sigma)^{1-k} \tau$.

Indeed, let $E/\mathbb{Q}(\mu_p)$ be as in Theorem 1.3. Let \mathscr{C} be the idéle class group of $\mathbb{Q}(\mu_p)$ and $\theta : \mathscr{C} \to \operatorname{Gal}(E/\mathbb{Q}(\mu_p))$ be the (Δ -equivariant) reciprocity map. Then θ factors through a surjection $C = \mathscr{C} \otimes_{\mathbb{Z}} \mathbb{F}_p \twoheadrightarrow \operatorname{Gal}(E/\mathbb{Q}(\mu_p))$. Therefore, we have Δ -equivariant surjections $C(\chi^i) \twoheadrightarrow \operatorname{Gal}(E/\mathbb{Q}(\mu_p))(\chi^i)$. When i = 1 - k, we see that the latter group is nonzero from part (c), and consequently $C(\chi^{1-k})$ is nonzero. The above theorem is in turn implied by the following–

Date: 9th September, 2023.

Affiliation: BSc 3rd year, Chennai Mathematical Institute.

1.4. Theorem. — Let $k \in [2, p-3]$ be an even integer, and suppose that $p | B_k$. There exists a finite field \mathbb{F}/\mathbb{F}_p and a Galois representation $\overline{\rho}$: $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\mathbb{F})$ with the following properties–

- (a) $\overline{\rho}$ is unramfied at all primes $\ell \neq p$.
- (b) The representation $\overline{\rho}$ is reducible in such a way that $\overline{\rho}$ is isomorphic to a representation of the form $\begin{bmatrix} 1 & b \\ 0 & \chi^{k-1} \end{bmatrix}$ where $b: \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \mathbb{F}$.
- (c) Im $\overline{\rho}$ has order divisible by p. That is, $\overline{\rho}$ is not diagonalizable.
- (d) Let D be a decomposition group for p in $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$. Then the image of D has order prime to p. That is, $\overline{p}|_D$ is diagonalizable.

We first show that Theorem 1.4 implies Theorem 1.3 with $\mathbb{Q}(\mu_p)$ replaced by $\mathbb{Q}(\mu_p^{1-k})$. Indeed, the claim is that the fixed subfield of Ker $\overline{\rho}$, say *E*, the Galois number field cut out by $\overline{\rho}$, satisfies the conditions of Theorem 1.3. Then $\overline{\rho}$ induces an injection $\operatorname{Gal}(E/\mathbb{Q}) \hookrightarrow \operatorname{GL}_2(\mathbb{F})$. It is clear that there is a tower $E/\mathbb{Q}(\mu_p^{1-k})/\mathbb{Q}$ since $\mathbb{Q}(\mu_p^{1-k})$ is precisely the fixed subfield of Ker χ^{k-1} . Further, $\operatorname{Gal}(E/\mathbb{Q}(\mu_p^{1-k}))$ is an abelian *p*-group, for the image of $\operatorname{Gal}(E/\mathbb{Q}(\mu_p^{1-k}))$ consists of upper unipotent matrices. Since $\overline{\rho}$ is not diagonalizable, it follows that $E \neq \mathbb{Q}(\mu_p^{1-k})$. It is clear that $E/\mathbb{Q}(\mu_p^{1-k})$ is unramified at the unique prime \mathfrak{p} of $\mathbb{Q}(\mu_p^{1-k})$ above *p*. The inertia group of \mathfrak{p} in $\operatorname{Gal}(E/\mathbb{Q}(\mu_p^{1-k}))$ has order prime to *p* because $\operatorname{Im}(\overline{\rho}|_D)$ has order prime to *p*, so $E/\mathbb{Q}(\mu_p^{1-k})$ is at worst tamely ramified. However, $E/\mathbb{Q}(\mu_p^{1-k})$ is a *p*-extension, hence it must be everywhere unramified. Part (c) of Theorem 1.3 is just a consequence of the matrix identity

$$\begin{bmatrix} a & b \\ 0 & d \end{bmatrix} \begin{bmatrix} 1 & x \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a & b \\ 0 & d \end{bmatrix}^{-1} = \begin{bmatrix} 1 & ad^{-1}x \\ 0 & 1 \end{bmatrix}.$$

Finally, we can just replace *E* by $E(\mu_p)$ to get the result in the desired form.

1.5. Alternative explanation bypassing the construction of *E*. It is easily checked that *b* is a 1-cocycle in $Z^1(\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}), \mathbb{F}(\chi^{1-k}))$, and hence gives a cohomology class in $H^1(\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}), \mathbb{F}(\chi^{1-k}))$. In fact, *b* is nonzero due to (c). The inflation-restriction sequence gives

$$0 \to \mathrm{H}^{1}(\Delta, \mathbb{F}(\chi^{1-k})) \to \mathrm{H}^{1}(\mathrm{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}), \mathbb{F}(\chi^{1-k})) \to \mathrm{H}^{1}(\mathrm{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}(\mu_{p})), \mathbb{F}(\chi^{1-k}))^{\Delta}.$$

Note that $\mathrm{H}^{1}(\Delta, \mathbb{F}(\chi^{1-k})) = 0$ since $|\Delta|$ is prime to p. As $\mathrm{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}(\mu_p))$ acts trivially on $\mathbb{F}(\chi^{1-k})$, b gives rise to a nonzero Δ -equivariant homomorphism h: $\mathrm{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}(\mu_p)) \to \mathbb{F}(\chi^{1-k})$. We have $\overline{\rho}|_{\mathrm{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}(\mu_p))} = \begin{bmatrix} 1 & h \\ 0 & 1 \end{bmatrix}$, and that $h|_{D\cap\mathrm{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}(\mu_p))} = 0$ from (d). Therefore, h is unramified and factors through the class group A by class field theory. Since \mathbb{F} has characteristic p, it further factors through $C = A \otimes_{\mathbb{Z}} \mathbb{F}_p$ and gives a nonzero map $C \to \mathbb{F}(\chi^{1-k})$. Due to Δ -equivariance, this factors through $C(\chi^{1-k})$ and thus implies $C(\chi^{1-k}) \neq 0$.

2 Reductions of *p*-adic representations

Let *K* be a finite extension of \mathbb{Q}_p with integer ring \mathcal{O}_K , uniformizer π , and residue field \mathbb{F} . Let *V* be a two-dimensional *K*-vector space. A lattice Λ is a free \mathcal{O} -submodule of *V* such that $\Lambda \otimes_{\mathcal{O}} K = V$.

2.1. Lemma. — Let *F* be a nonarchimedian local field, *G* a profinite group, and $\rho: G \to GL_d(F)$ a continuous representation. Then ρ stabilizes some lattice. In other words, ρ can be conjugated to a representation with values in $GL_d(\mathcal{O}_F)$.

Proof. Choose a basis and consider the standard lattice $L = \mathcal{O}_F^{\oplus d}$. The stabilizer of *L* is precisely $\operatorname{GL}_d(\mathcal{O}_F)$, which is open in $\operatorname{GL}_d(F)$. Set $H = \rho^{-1}(\operatorname{GL}_d(\mathcal{O}_F))$, an open subgroup. Then G/H is finite and *G* stabilizes $\sum_{g \in G/H} gL$.

Let ρ : Gal($\overline{\mathbb{Q}}/\mathbb{Q}$) \rightarrow GL(V) be a Galois representation. For a stable lattice T, we have the associated **reduction**, $\overline{\rho}$: Gal($\overline{\mathbb{Q}}/\mathbb{Q}$) \rightarrow GL($T/\pi T$). It is a consequence of Brauer-Nesbitt theorem that the semisimplification of the reduction doesn't depend on the choice of T. When $\overline{\rho}$ is reducible, their semisimplification is described by two Galois character φ_1, φ_2 which depend only on ρ .

2.2. Ribet's lemma. — Suppose that the K-representation ρ is simple but that its reductions are reducible. Let φ_1 and φ_2 be the associated Galois characters. Then G leaves stable some lattice $\Lambda \subset V$ for which the associated reduction is of the form $\begin{bmatrix} \varphi_1 & \star \\ 0 & \varphi_2 \end{bmatrix}$ but not semisimple.

Proof. See [Rib76, §2.1] or [Eri08, §5.2].

3 A congruence between a cusp form and an Eisenstein series

Let ε be a nontrivial character with $\varepsilon(-1) = 1$. We consider modular forms on $\Gamma_1(p)$. Consider

$$G_{2,\varepsilon} = L(-1,\varepsilon)/2 + \sum_{n \ge 1} \sum_{d|n} \varepsilon(d) dq^n$$

$$G_{1,\varepsilon} = L(0,\varepsilon)/2 + \sum_{n \ge 1} \sum_{d|n} \varepsilon(d) q^n,$$

$$s_{2,\varepsilon} = \sum_{n \ge 1} \sum_{d|n} \varepsilon(n/d) dq^n.$$

The first two are Eisenstein series of weights 2 and 1 respectively, and $s_{2,\varepsilon}$ is the unique semicusp¹ eigenform which is not a cusp form. All these are eigenforms away from p and have Nebentypus ε . For any prime \mathfrak{p} of $\mathbb{Q}(\mu_{p-1})$ lying above p there is a Teichmüller lift $\omega \colon \mathbb{F}_p^{\times} \to \mu_{p-1}$. It satisfies $\omega(d) \equiv d \pmod{\mathfrak{p}}$ for each $d \in \mathbb{F}_p^{\times}$.

3.1. Lemma. — Let $k \in [2, p-3]$ be even. Then $G_{2,\omega^{k-2}}$ and $G_{1,\omega^{k-1}}$ have p-integral Fourier expansions in $\mathbb{Q}(\mu_{p-1})$ which are congruent modulo p to E_k .

Sketch. This is easy to see for the nonconstant terms. For the constant coefficient, one easily gets the result by apply known congruences about Bernoulli numbers. Omitted. \Box

3.2. Lemma. — Let $k \in [2, p-3]$ be even. Then there exists a modular form g of weight 2 and type ω^{k-2} whose Fourier coefficients are p-integral and the constant term is 1.

Sketch. We use Lemma 3.1. If $p \nmid B_k$ then take $G_{2,\omega^{k-2}}$. Otherwise, consider the products $G_{1,\omega^{n-1}}G_{1,\omega^{m-1}}$ for even $m, n \in [2, p-3]$ such that $n + m \equiv k \pmod{p-1}$. If none of these work then p divides at least (p-1)/4 many of $B_2, B_4, \ldots, B_{p-3}$. It turns out that this implies that the p-adic valuation of the negative part h_p^- of the class number of $\mathbb{Q}(\mu_p)$ is at least (p-1)/4. This is a contradiction due to size reasons. \Box

¹A semicusp form is a modular form whose constant coefficient is 0.

AYAN NATH

3.3. Proposition. — Suppose $p | B_k$. There exists a normalized cuspidal newform $f = \sum_{n \ge 1} a_n q^n$ of weight 2, level p, and Nebentypus ω^{k-2} , and a prime \mathfrak{p} , lying above p, of the number field K_f generated by the coefficients a_n such that for each prime $\ell \neq p$, the coefficient a_ℓ is \mathfrak{p} -integral and $a_\ell \equiv 1 + \ell^{k-1} \equiv 1 + \omega^{k-2}(\ell)\ell \pmod{\mathfrak{p}}$.

Sketch. Consider $f = G_{2,\omega^{k-2}} - cg$ where *c* is the constant coefficient of $G_{2,\omega^{k-2}}$. Then $f \equiv G_{2,\omega^{k-2}} \equiv E_k \pmod{\mathfrak{p}}$. So *f* is a mod \mathfrak{p} eigenform away from *p* with eigenvalue $1 + \omega^{k-2}(\ell)\ell$ for the Hecke operator T_ℓ , $\ell \neq p$. The *Deligne-Serre lifting lemma* produces a semi cusp form (of level *p*), which we again denote by *f*, satisfying the conditions in the statement of the result. However, we want a cusp form. We know that $s_{2,\omega^{k-2}}$ has eigenvalue $\omega^{k-2}(\ell) + \ell$. Thus, $f \neq s_{2,\omega^{k-2}}$ as ω^{k-2} is nontrivial, and *f* must be cuspidal. Normalize *f*. I claim that *f* must be a newform, and hence an eigenvalue for all Hecke operators. Indeed, if *f* were old, it must come from a modular form on $SL_2(\mathbb{Z})$ since we are working at a prime level. This is not possible because there are no nonzero weight 2 forms on $SL_2(\mathbb{Z})$.

4 The Galois representation

We retain notations of Proposition 3.3. In addition, let \mathcal{O} be the integer ring of K_f , $K_{f,\mathfrak{p}}$ the completion of K_f at \mathfrak{p} , $\mathcal{O}_\mathfrak{p}$ the integer ring of $K_{f,\mathfrak{p}}$, and \mathbb{F} the residue field at \mathfrak{p} , and χ : $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \mathbb{Z}_p^{\times} \hookrightarrow K_{f,\mathfrak{p}}^{\times}$ be the *p*-adic cyclotomic character. Let *A* be the abelian variety attached to *f*. It is a quotient of the modular Jacobian variety. Define $V_f = T_p(A) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$ where $T_p(A)$ is the *p*-adic Tate module of *A*. It is also dual to the *p*-adic étale cohomology group $H^1_{\acute{e}t}(A, \mathbb{Q}_p)$. Finally, let $V_{f,\mathfrak{p}} = V_f \otimes_{K_f \otimes \mathbb{Q}_p} K_{f,\mathfrak{p}}$ and $\rho_{f,\mathfrak{p}}$: $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}(V_{f,\mathfrak{p}})$ be the *p*-adic Galois representation attached to *f* at \mathfrak{p} . We show that it has a reduction satisfying the conditions of Theorem 1.4.

4.1. Proposition. — The representation $\rho_{f,p}$ is irreducible.

Proof. See [Rib76, §4.1] or [Eri08, §5.5].

4.2. Proposition. — There exists a Galois stable $\mathcal{O}_{\mathfrak{p}}$ -lattice $\Lambda \subset V_{f,\mathfrak{p}}$ for which the action of $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ on $\Lambda/\pi\Lambda$ can be described in terms of matrices as $\begin{bmatrix} 1 & \star \\ 0 & \chi^{k-1} \end{bmatrix}$ and is furthermore not semisimple.

Sketch. By Ribet's lemma 2.2, it suffices to find a Galois stable lattice whose reduction is reducible and whose semisimplication is $1 \oplus \chi^{k-1}$. In fact, we may choose any stable lattice (such lattice exists because a finite dimensional *p*-adic representation of a compact group always stabilizes a lattice). We know that $\text{Trace}(\text{Frob}_{\ell}) = a_{\ell}$ and $\det(\text{Frob}_{\ell}) = \ell \varepsilon(\ell)$ for $\ell \neq p$ by the Eichler-Shimura relations. By Proposition 3.3, these numbers are congruent to $\ell^{k-1} + 1$ and ℓ^{k-1} modulo \mathfrak{p} , respectively. Since Frobenius elements topologically generate the absolute Galois group the trace and determinant must be $1 + \chi^{k-1}$ and χ^{k-1} respectively. By the Brauer-Nesbitt theorem, we are done.

Fix such a lattice Λ and set $M = \Lambda/\pi\Lambda$. This will be our $\overline{\rho}$ of Theorem 1.4. From Proposition 4.2, it is clear that parts (b) and (c) are satisfied. Part (a) is a consequence of the fact that *A* acquires good reduction away from *p*. What remains is to check that the image under $\overline{\rho}$ of a decomposition group, say D', of *p* in $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ has order prime to *p*. Note that $\mathbb{Q}(\mu_p)/\mathbb{Q}$ is totally ramified at *p*. Denote $\mathbb{Q}(\mu_p)^+ := \mathbb{Q}(\mu_p) \cap \mathbb{R} = \mathbb{Q}(\cos 2\pi/p)$. It is a theorem of Deligne-Rapoport [DR72] that *A* acquires good reduction everywhere over $\mathbb{Q}(\mu_p)^+$. Since *p* is prime to $[\mathbb{Q}(\mu_p)^+:\mathbb{Q}]$, it suffices to show that the iamge of $D := D' \cap \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}(\mu_p)^+)$ under $\overline{\rho}$ is of order prime to *p*. We note that *D* is a decomposition group in $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}(\mu_p)^+)$ of the unique prime of $\mathbb{Q}(\mu_p)^+$ lying above *p*. Denote by *E* the completion of $\mathbb{Q}(\mu_p)^+$ at

p. One can identify *D* with the local Galois group $Gal(\overline{E}/E)$. In what follows, all structure morphisms of schemes are finite type.

4.3. Definition. Let *R* be a Dedekind domain with fraction field *K* and *A* an abelian variety over *K*. Then a **Néron model** \mathcal{A} is a smooth commutative group over *R* whose generic fiber is *A* which is universal in the following sense: if X_R is smooth over *R* then any *K*-morphism $X_R \times_R K \to A_K$ can be extended to a unique *R*-morphism $X_R \to \mathcal{A}$.

The universal property tells us that if a Néron model exists then it is unique up to unique isomorphism. Néron models of abelian varieties always exist, see [CS86, §VIII].

4.4. Definition. Let *R* be a Dedekind domain with fraction field *K*. Let *G* be a commutative group scheme over *R*. Then $G(K^{\text{sep}})$ is naturally a $Gal(K^{\text{sep}}/K)$ -module, called the **Galois module attached to** *G*.

4.5. Proposition. — The Gal(\overline{E}/E)-module *M* is the Galois module attached to a finite flat commutative group scheme killed by *p* over the integer ring \mathcal{O}_E of *E*.

Proof. Let *A* be the abelian variety attached to *f* which induces $\rho_{f,\mathfrak{p}}$. There is an inclusion $K_f \hookrightarrow \operatorname{End}_{\mathbb{Q}} A \otimes_{\mathbb{Z}} \mathbb{Q}$ given by the Hecke action on *A*. Change *A* by a \mathbb{Q} -isogeny so that $\mathcal{O}_{K_f} \subseteq \operatorname{End}_{\mathbb{Q}} A$. Indeed, we have

$$\operatorname{Hom}_{\mathbb{Q}}(A,B) \otimes_{\mathbb{Z}} \mathbb{Q} \cong \operatorname{colim}_{\substack{A' \to A \\ \text{isogeny}}} \operatorname{Hom}_{\mathbb{Q}}(A',B)$$

for any abelian Q-varieties *A*, *B*. This is actually a general fact about localization of categories [Stacks, Tag 05Q5]. Then *M* is isomorphic to $A[\mathfrak{p}] = \{a \in A : ha = 0 \text{ for all } h \in \mathfrak{p}\}$, the "kernel of \mathfrak{p} ", as a Galois module. To see this, recall that the *p*-adic Tate module $T_p(A)$ is an $\mathcal{O}_{K_f} \otimes_{\mathbb{Z}} \mathbb{Z}_p$ -module in a Galois-compatible fashion. Since $\mathcal{O}_{K_f} \otimes_{\mathbb{Z}} \mathbb{Z}_p = \prod_{\mathfrak{p}|p} \mathcal{O}_{K_f,\mathfrak{p}}$, it follows that there is a Galois-equivariant decomposition

$$T_p(A) = \bigoplus_{\mathfrak{p}|p} T_{\mathfrak{p}}(A),$$

where $T_{\mathfrak{p}}(A) := T_p(A) \otimes_{\mathcal{O}_{K_f} \otimes_{\mathbb{Z}} \mathbb{Z}_p} \mathcal{O}_{K_f,\mathfrak{p}}$ is an $\mathcal{O}_{K_f,\mathfrak{p}}$ -module. Here, $T_{\mathfrak{p}}(A) \otimes K_{f,\mathfrak{p}}$ is in fact $V_{f,\mathfrak{p}}$. In particular, the lattice Λ of Proposition **4.2** is essentially a "conjugate" of $T_{\mathfrak{p}}(A)$ in $V_{f,\mathfrak{p}}$. Lastly, we obtain that $T_{\mathfrak{p}}(A) = \lim_{n \to \infty} A[\mathfrak{p}^n]$ from

$$T_p(A) = \lim_n A[p^n] = \lim_n A\left[\prod_{\mathfrak{p}|p} \mathfrak{p}^{\nu_\mathfrak{p}(p)n}\right] = \bigoplus_{\mathfrak{p}|p} \lim_n A[\mathfrak{p}^{\nu_\mathfrak{p}(p)n}] = \bigoplus_{\mathfrak{p}|p} \lim_n A[\mathfrak{p}^n]$$

and applying $(-) \otimes_{\mathcal{O}_{K_f} \otimes_{\mathbb{Z}} \mathbb{Z}_p} \mathcal{O}_{K_f, \mathfrak{P}}$ to both sides. Of course, here we are using that $A[fg] = A[f] \oplus A[g]$ for $f, g \in \operatorname{End}_{\mathbb{Q}} A$ such that (f, g) = (1). Since $\mathfrak{p} \mid p$, M is a submodule, say M', of the p-torsion subgroup A[p]. We know that there is a Néron model \mathcal{A} for A over \mathcal{O}_E by Deligne-Rapoport's result [DR72]. Therefore, M' is the Galois module attached to the scheme-theoretic p-torsion $\mathcal{A}[p]$, which is a finite flat commutative group scheme over \mathcal{O}_E simply because isogenies are finite flat. Define \mathcal{M} to be the scheme-theoretic closure of M in $\mathcal{A}[p]$. Then \mathcal{M} is a finite flat commutative group scheme, killed by p, over \mathcal{O}_E with attached Galois module M (c.f. Lemma 4.6). Indeed, $M = (\mathcal{M} \times_{\mathcal{O}_E} E)(\overline{E})$ holds because Mis just a finite set of closed points as a subset of A.

4.6. Lemma. — Let *R* be a DVR with fraction field *K*. Let *X* be an *R*-scheme and *Y_K* be a closed subscheme of $X_K = X \times_R K$. Then the scheme-theoretic closure of *Y_K* in *X*, say *Y*, is flat over *R*.

Proof. Without any loss of generality, assume X = Spec A. Suppose X_K is cut out by the ideal I in $A \otimes_R K$. Then the closure is cut out by $I \cap A$ in A. If $A/I \cap A$ has R-torsion, say $ra \in I \cap A$ for some $r \in R \setminus \{0\}$ and $a \in A \setminus (I \cap A)$, then $a \otimes 1 \in I$, which implies $a \in I \cap A$. We are now done because flatness is same as torsion-free for PIDs. **4.7.** *Remark.* Using the notations of the above lemma, if *X* is an *R*-group scheme and Y_K is a closed subgroup of X_K then *Y*, the scheme-theoretic closure of Y_K in *X*, is a closed *R*-subgroup of *X*. This is easily checked affine-locally by rewriting things in terms of Hopf algebras.

4.8. Definition. A commutative group scheme *G* over a base *S* is said to be an \mathbb{F} -module scheme if there is an injection $\mathbb{F} \hookrightarrow \operatorname{End}_S G$. This is same as saying $\operatorname{Mor}_S(-, G)$ is a functor valued in \mathbb{F} -vector spaces.

The \mathcal{M} obtained in the proof of Proposition 4.5 is an \mathbb{F} -module scheme where \mathbb{F} is the residue field of \mathcal{O}_E . Indeed, it follows from the universal property of Néron models that $\mathcal{O}_E \hookrightarrow \operatorname{End}_{\mathcal{O}_E} \mathcal{A}$. The \mathbb{F} -action is then induced from $\mathbb{F} \hookrightarrow \operatorname{End}_{\mathcal{O}_E} \mathcal{A}[p]$. Of course, p-torsion points remain p-torsion under the action of an endomorphism. Thus, there is an action of \mathbb{F} on \mathcal{M} by \mathcal{O}_E -automorphisms. Let us summarise what we have obtained so far–

- (a) \mathcal{M} is a finite flat \mathbb{F} -module scheme over \mathcal{O}_E with the attached Galois module $M = \mathcal{M}(\overline{\mathbb{Q}}_p)$ of dimension 2 as an \mathbb{F} -vector space.
- (b) *D* acts trivially on a 1-dimensional subspace *X* of *M* and via the character χ^{k-1} on the quotient Y = M/X.

4.9. Theorem. — The image of D in Aut M has order prime to p.

We will need the following two results in the proof of Theorem 4.9:

4.10. Theorem (Raynaud [Ray74]). — Suppose E/\mathbb{Q}_p is an extension of local fields with ramification index less than p-1. Let G be a finite flat commutative group scheme over E which is killed by a power of p. Then there is at most one finite flat extension of G to \mathcal{O}_E .

Proof. See [Ray74, Theorem 3.3.3], [CSS97, Chapter 5, §4], [Sno], or [Ed92, §5]. □

4.11. Lemma. — Let E/\mathbb{Q}_p be a finite extension of local fields and X a finite étale scheme over \mathcal{O}_E . Then the $\operatorname{Gal}(\overline{E}/E)$ -action on $X(\overline{\mathbb{Q}}_p)$ is unramified.

Proof. Indeed, the Gal(\overline{E}/E)-action on $X(\overline{\mathbb{Q}}_p)$ factors through a finite quotient of $\pi_1^{\text{ét}}(\operatorname{Spec}\mathcal{O}_E) = \operatorname{Gal}(E^{\operatorname{unr}}/E)$ by the very definition of the étale fundamental group.

4.12. Proof of Theorem **4.9**. Let \mathscr{X} be the scheme-theoretic closure of X in \mathscr{M} . Then X is the Galois module attached to \mathscr{X} . By Theorem **4.10** and Lemma **4.6**, it follows that \mathscr{X} is a (nonzero) constant group scheme over \mathscr{O}_E . In particular, \mathscr{X} is a proper, nontrivial étale subgroup. Hence, \mathscr{M} cannot be connected. The *connected-étale sequence* [CSS97, §V.3.7] states

$$0 o \mathcal{M}_E^{ ext{o}} o \mathcal{M}_E o \mathcal{M}_E^{ ext{et}} o 0,$$

where \mathcal{M}_E° is the (geometrically) connected component of \mathcal{M}_E containing 0 and $\mathcal{M}_E^{\acute{e}t}$ the largest étale quotient. It is not hard to see that the above sequence is an exact sequence of \mathbb{F} -module schemes and the maps therein are defined over *E*. Taking $\overline{\mathbb{Q}}_p$ -points, we get a sequence of *D*-representations

$$0 \to M^{\circ} \to M \to M^{\text{\acute{e}t}} \to 0.$$

Now, M° cannot be all of M because \mathcal{M} is not connected. Further, $M^{\circ} \neq 0$ because $M^{\text{ét}}$ is unramified as a Galois module (Lemma 4.11) but M is not. Therefore, $\dim_{\mathbb{F}} M^{\circ} = \dim_{\mathbb{F}} M^{\text{ét}} = 1$. Since $M^{\text{ét}}$ is unramified and Y isn't, the image of M° in M must be distinct from X. Hence, D stabilizes X and the image of M° . It is easily verified that any element of order p in Aut M leaves stable a unique line. This completes the proof.

References

[CSS97]	G. Cornell, J. H. Silverman, and G. Stevens, Modular forms and Fermat's Last Theorem, Springer-Verlag, New
	York, 1997
[DR72]	P. Deligne and M. Rapoport, Les schémas de modules de courbes elliptiques, International Summer School on
	Modular Functions, Antwerp 1972
[Ed92]	B. Edixhoven, The weight in Serre's conjectures on modular forms, Invent. Math. 109, 563-594, 1992
[Eri08]	C. Wang-Erickson, Ribet's converse to Herbrand's theorem, https://sites.pitt.edu/~caw203/pdfs/ribet
	2.pdf
[Ray74]	M. Raynaud, <i>Schémas en groupes de type (p, p,, p)</i> , Bull. Soc. Math. France 102 , 241–280, 1974
[Rib76]	K. Ribet, A modular construction of unramified p-extension of $\mathbb{Q}(\mu_p)$, Invent. Math. 34, 151-162, 1976
[Sai09]	A. Saikia. Ribet's construction of a suitable cusp eigenform, arXiv:0910.1408v2, 2009
[Sno]	A. Snowden, Course on Mazur's theorem, Lecture 7: Raynaud's theorem, http://www-personal.umich.edu/
	~asnowden/teaching/2013/679/L07.html

[Stacks] The Stacks project authors, *The Stacks project*, https://stacks.math.columbia.edu, 2023