RIBET'S CONVERSE TO HERBRAND'S THEOREM

AYAN NATH

Abstract. In this article, we present an overview of Ribet's proof of the converse to Herbrand's theorem. While Erickson's work [Eri08] provides an excellent exposition on the topic, our focus is on elucidating the schemetheoretic details found in Ribet's paper [Rib76, §4], particularly his use of finite flat group schemes towards the end of the proof, a facet not covered in Erickson's essay.

1 Introduction

Fix an odd prime number p. Let A be the ideal class group of $\mathbb{Q}\left(\mu_{p}\right)$ where μ_{p} is the group of all p th roots of unity as usual. Denote $C=A \otimes \mathbb{Z} \mathbb{F}_{p}$, an \mathbb{F}_{p}-vector space. If $C \neq 0$ then p is called irregular. Define the nth Bernoulli number B_{n} by the exponential generating function

$$
\frac{T}{e^{T}-1}=\sum_{n \in \mathbb{N}} B_{n} \frac{T^{n}}{n!}
$$

1.1. Kummer's criterion. - p is irregular if and only if $p \mid B_{2} B_{4} \cdots B_{p-3}$.

The \mathbb{F}_{p}-vector space C carries an action of the cyclotomic Galois group $\Delta=\operatorname{Gal}\left(\mathbb{Q}\left(\mu_{p}\right) / \mathbb{Q}\right)$ for which there is an isomorphism $\chi: \Delta \rightarrow \mathbb{F}_{p}^{\times}$given by the mod p cyclotomic character. Thus, there is a Δ-module decomposition

$$
C=\bigoplus_{0 \leqslant i \leqslant p-2} C\left(\chi^{i}\right)
$$

where $C\left(\chi^{i}\right)$ is the part of C on which $\sigma \in \Delta$ acts as multiplication by $\chi^{i}(\sigma)$. Herbrand's theorem states that if $C\left(\chi^{1-k}\right) \neq 0$ for some even integer $k \in[2, p-3]$ then $p \mid B_{k}$. The main result of [Rib76] is the following-
1.2. Theorem (Ribet). - Let k be an even integer in $[2, p-3]$. Then $p \mid B_{k}$ if and only if $C\left(\chi^{1-k}\right) \neq 0$.

By class field theory, the above theorem is implied by-
1.3. Theorem. - Let $k \in[2, p-3]$ be an even integer, and suppose that $p \mid B_{k}$. There exists a Galois extension E / \mathbb{Q} containing $\mathbb{Q}\left(\mu_{p}\right)$ such that
(a) The extension $E / \mathbb{Q}\left(\mu_{p}\right)$ is unramified.
(b) $\operatorname{Gal}\left(E / \mathbb{Q}\left(\mu_{p}\right)\right)$ is a nonzero abelian group killed by p.
(c) If $\sigma \in \operatorname{Gal}(E / \mathbb{Q})$ and $\tau \in \operatorname{Gal}\left(E / \mathbb{Q}\left(\mu_{p}\right)\right)$ then $\sigma \tau \sigma^{-1}=\chi(\sigma)^{1-k} \tau$.

Indeed, let $E / \mathbb{Q}\left(\mu_{p}\right)$ be as in Theorem 1.3. Let \mathscr{C} be the idéle class group of $\mathbb{Q}\left(\mu_{p}\right)$ and $\theta: \mathscr{C} \rightarrow \operatorname{Gal}\left(E / \mathbb{Q}\left(\mu_{p}\right)\right)$ be the (Δ-equivariant) reciprocity map. Then θ factors through a surjection $C=\mathscr{C} \otimes_{\mathbb{Z}} \mathbb{F}_{p} \rightarrow \operatorname{Gal}\left(E / \mathbb{Q}\left(\mu_{p}\right)\right)$. Therefore, we have Δ-equivariant surjections $C\left(\chi^{i}\right) \rightarrow \operatorname{Gal}\left(E / \mathbb{Q}\left(\mu_{p}\right)\right)\left(\chi^{i}\right)$. When $i=1-k$, we see that the latter group is nonzero from part (c), and consequently $C\left(\chi^{1-k}\right)$ is nonzero. The above theorem is in turn implied by the following-

[^0]1.4. Theorem. - Let $k \in[2, p-3]$ be an even integer, and suppose that $p \mid B_{k}$. There exists a finite field $\mathbb{F} / \mathbb{F}_{p}$ and a Galois representation $\bar{\rho}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}(\mathbb{F})$ with the following properties-
(a) $\bar{\rho}$ is unramfied at all primes $\ell \neq p$.

(b) The representation $\bar{\rho}$ is reducible in such a way that $\bar{\rho}$ is isomorphic to a representation of the form $\left[\begin{array}{cc}1 & b \\ 0 & \chi^{k-1}\end{array}\right]$ where $b: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathbb{F}$.
(c) $\operatorname{Im} \bar{\rho}$ has order divisible by p. That is, $\bar{\rho}$ is not diagonalizable.
(d) Let D be a decomposition group for p in $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$. Then the image of D has order prime to p. That is, $\left.\bar{\rho}\right|_{D}$ is diagonalizable.

We first show that Theorem 1.4 implies Theorem 1.3 with $\mathbb{Q}\left(\mu_{p}\right)$ replaced by $\mathbb{Q}\left(\mu_{p}^{1-k}\right)$. Indeed, the claim is that the fixed subfield of $\operatorname{Ker} \bar{\rho}$, say E, the Galois number field cut out by $\bar{\rho}$, satisfies the conditions of Theorem 1.3. Then $\bar{\rho}$ induces an injection $\operatorname{Gal}(E / \mathbb{Q}) \hookrightarrow \mathrm{GL}_{2}(\mathbb{F})$. It is clear that there is a tower $E / \mathbb{Q}\left(\mu_{p}^{1-k}\right) / \mathbb{Q}$ since $\mathbb{Q}\left(\mu_{p}^{1-k}\right)$ is precisely the fixed subfield of $\operatorname{Ker} \chi^{k-1}$. Further, $\operatorname{Gal}\left(E / \mathbb{Q}\left(\mu_{p}^{1-k}\right)\right)$ is an abelian p-group, for the image of $\operatorname{Gal}\left(E / \mathbb{Q}\left(\mu_{p}^{1-k}\right)\right)$ consists of upper unipotent matrices. Since $\bar{\rho}$ is not diagonalizable, it follows that $E \neq \mathbb{Q}\left(\mu_{p}^{1-k}\right)$. It is clear that $E / \mathbb{Q}\left(\mu_{p}^{1-k}\right)$ is unramified away from p. It remains to prove that $E / \mathbb{Q}\left(\mu_{p}^{1-k}\right)$ is unramified at the unique prime \mathfrak{p} of $\mathbb{Q}\left(\mu_{p}^{1-k}\right)$ above p. The inertia group of \mathfrak{p} in $\operatorname{Gal}\left(E / \mathbb{Q}\left(\mu_{p}^{1-k}\right)\right)$ has order prime to p because $\operatorname{Im}\left(\left.\bar{\rho}\right|_{D}\right)$ has order prime to p, so $E / \mathbb{Q}\left(\mu_{p}^{1-k}\right)$ is at worst tamely ramified. However, $E / \mathbb{Q}\left(\mu_{p}^{1-k}\right)$ is a p-extension, hence it must be everywhere unramified. Part (c) of Theorem 1.3 is just a consequence of the matrix identity

$$
\left[\begin{array}{ll}
a & b \\
0 & d
\end{array}\right]\left[\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
a & b \\
0 & d
\end{array}\right]^{-1}=\left[\begin{array}{cc}
1 & a d^{-1} x \\
0 & 1
\end{array}\right]
$$

Finally, we can just replace E by $E\left(\mu_{p}\right)$ to get the result in the desired form.
1.5. Alternative explanation bypassing the construction of E. It is easily checked that b is a 1 -cocycle in $Z^{1}\left(\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}), \mathbb{F}\left(\chi^{1-k}\right)\right)$, and hence gives a cohomology class in $H^{1}\left(\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}), \mathbb{F}\left(\chi^{1-k}\right)\right)$. In fact, b is nonzero due to (c). The inflation-restriction sequence gives

$$
0 \rightarrow \mathrm{H}^{1}\left(\Delta, \mathbb{F}\left(\chi^{1-k}\right)\right) \rightarrow \mathrm{H}^{1}\left(\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}), \mathbb{F}\left(\chi^{1-k}\right)\right) \rightarrow \mathrm{H}^{1}\left(\operatorname{Gal}\left(\overline{\mathbb{Q}} / \mathbb{Q}\left(\mu_{p}\right)\right), \mathbb{F}\left(\chi^{1-k}\right)\right)^{\Delta} .
$$

Note that $\mathrm{H}^{1}\left(\Delta, \mathbb{F}\left(\chi^{1-k}\right)\right)=0$ since $|\Delta|$ is prime to p. As $\operatorname{Gal}\left(\overline{\mathbb{Q}} / \mathbb{Q}\left(\mu_{p}\right)\right)$ acts trivially on $\mathbb{F}\left(\chi^{1-k}\right), b$ gives rise to a nonzero Δ-equivariant homomorphism $h: \operatorname{Gal}\left(\overline{\mathbb{Q}} / \mathbb{Q}\left(\mu_{p}\right)\right) \rightarrow \mathbb{F}\left(\chi^{1-k}\right)$. We have $\left.\bar{\rho}\right|_{\operatorname{Gal}\left(\bar{\Phi} / \mathbb{Q}\left(\mu_{p}\right)\right)}=\left[\begin{array}{ll}1 & h \\ 0 & 1\end{array}\right]$, and that $\left.h\right|_{D \cap G a l\left(\bar{Q} / \mathbb{Q}\left(\mu_{p}\right)\right)}=0$ from (d). Therefore, h is unramified and factors through the class group A by class field theory. Since \mathbb{F} has characteristic p, it further factors through $C=A \otimes_{\mathbb{Z}} \mathbb{F}_{p}$ and gives a nonzero map $C \rightarrow \mathbb{F}\left(\chi^{1-k}\right)$. Due to Δ-equivariance, this factors through $C\left(\chi^{1-k}\right)$ and thus implies $C\left(\chi^{1-k}\right) \neq 0$.

2 Reductions of p-adic representations

Let K be a finite extension of \mathbb{Q}_{p} with integer ring \mathscr{O}_{K}, uniformizer π, and residue field \mathbb{F}. Let V be a two-dimensional K-vector space. A lattice Λ is a free \mathscr{O}-submodule of V such that $\Lambda \otimes_{\mathscr{O}} K=V$.
2.1. Lemma. - Let F be a nonarchimedian local field, G a profinite group, and $\rho: G \rightarrow \mathrm{GL}_{d}(F)$ a continuous representation. Then ρ stabilizes some lattice. In other words, ρ can be conjugated to a representation with values in $\mathrm{GL}_{d}\left(\mathscr{O}_{F}\right)$.

Proof. Choose a basis and consider the standard lattice $L=\mathscr{O}_{F}^{\oplus d}$. The stabilizer of L is precisely $\mathrm{GL}_{d}\left(\mathscr{O}_{F}\right)$, which is open in $\mathrm{GL}_{d}(F)$. Set $H=\rho^{-1}\left(\mathrm{GL}_{d}\left(\mathscr{O}_{F}\right)\right)$, an open subgroup. Then G / H is finite and G stabilizes $\sum_{g \in G / H} g L$.

Let $\rho: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \operatorname{GL}(V)$ be a Galois representation. For a stable lattice T, we have the associated reduction, $\bar{\rho}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}(T / \pi T)$. It is a consequence of Brauer-Nesbitt theorem that the semisimplification of the reduction doesn't depend on the choice of T. When $\bar{\rho}$ is reducible, their semisimplification is described by two Galois character φ_{1}, φ_{2} which depend only on ρ.
2.2. Ribet's lemma. - Suppose that the K-representation ρ is simple but that its reductions are reducible. Let φ_{1} and φ_{2} be the associated Galois characters. Then G leaves stable some lattice $\Lambda \subset V$ for which the associated reduction is of the form $\left[\begin{array}{cc}\varphi_{1} & \star \\ 0 & \varphi_{2}\end{array}\right]$ but not semisimple.

Proof. See [Rib76, §2.1] or [Eri08, §5.2].

3 A congruence between a cusp form and an Eisenstein series

Let ε be a nontrivial character with $\varepsilon(-1)=1$. We consider modular forms on $\Gamma_{1}(p)$. Consider

$$
\begin{aligned}
& G_{2, \varepsilon}=L(-1, \varepsilon) / 2+\sum_{n \geqslant 1} \sum_{d \mid n} \varepsilon(d) d q^{n}, \\
& G_{1, \varepsilon}=L(0, \varepsilon) / 2+\sum_{n \geqslant 1} \sum_{d \mid n} \varepsilon(d) q^{n}, \\
& s_{2, \varepsilon}=\sum_{n \geqslant 1} \sum_{d \mid n} \varepsilon(n / d) d q^{n} .
\end{aligned}
$$

The first two are Eisenstein series of weights 2 and 1 respectively, and $s_{2, \varepsilon}$ is the unique semicusp ${ }^{1}$ eigenform which is not a cusp form. All these are eigenforms away from p and have Nebentypus ε. For any prime \mathfrak{p} of $\mathbb{Q}\left(\mu_{p-1}\right)$ lying above p there is a Teichmüller lift ω : $\mathbb{F}_{p}^{\times} \rightarrow \mu_{p-1}$. It satisfies $\omega(d) \equiv d(\bmod \mathfrak{p})$ for each $d \in \mathbb{F}_{p}^{\times}$.
3.1. Lemma. - Let $k \in[2, p-3]$ be even. Then $G_{2, \omega \omega^{k-2}}$ and $G_{1, \omega^{k-1}}$ have \mathfrak{p}-integral Fourier expansions in $\mathbb{Q}\left(\mu_{p-1}\right)$ which are congruent modulo \mathfrak{p} to E_{k}.

Sketch. This is easy to see for the nonconstant terms. For the constant coefficient, one easily gets the result by apply known congruences about Bernoulli numbers. Omitted.
3.2. Lemma. - Let $k \in[2, p-3]$ be even. Then there exists a modular form g of weight 2 and type ω^{k-2} whose Fourier coefficients are \mathfrak{p}-integral and the constant term is 1 .

Sketch. We use Lemma 3.1. If $p \nmid B_{k}$ then take $G_{2, \omega^{k-2}}$. Otherwise, consider the products $G_{1, \omega^{n-1}} G_{1, \omega^{m-1}}$ for even $m, n \in[2, p-3]$ such that $n+m \equiv k(\bmod p-1)$. If none of these work then p divides at least $(p-1) / 4$ many of $B_{2}, B_{4}, \ldots, B_{p-3}$. It turns out that this implies that the p-adic valuation of the negative part h_{p}^{-}of the class number of $\mathbb{Q}\left(\mu_{p}\right)$ is at least $(p-1) / 4$. This is a contradiction due to size reasons.

[^1]3.3. Proposition. - Suppose $p \mid B_{k}$. There exists a normalized cuspidal newform $f=\sum_{n \geqslant 1} a_{n} q^{n}$ of weight 2 , level p, and Nebentypus ω^{k-2}, and a prime \mathfrak{p}, lying above p, of the number field K_{f} generated by the coefficients a_{n} such that for each prime $\ell \neq p$, the coefficient a_{ℓ} is \mathfrak{p}-integral and $a_{\ell} \equiv 1+\ell^{k-1} \equiv 1+\omega^{k-2}(\ell) \ell(\bmod \mathfrak{p})$.

Sketch. Consider $f=G_{2, \omega^{k-2}}-c g$ where c is the constant coefficient of $G_{2, \omega^{k-2}}$. Then $f \equiv G_{2,\left(\omega^{k-2}\right.} \equiv E_{k}(\bmod \mathfrak{p})$. So f is a mod \mathfrak{p} eigenform away from p with eigenvalue $1+\omega^{k-2}(\ell) \ell$ for the Hecke operator $T_{\ell}, \ell \neq p$. The Deligne-Serre lifting lemma produces a semi cusp form (of level p), which we again denote by f, satisfying the conditions in the statement of the result. However, we want a cusp form. We know that $s_{2, \omega^{k-2}}$ has eigenvalue $\omega^{k-2}(\ell)+\ell$. Thus, $f \neq s_{2, \omega^{k-2}}$ as ω^{k-2} is nontrivial, and f must be cuspidal. Normalize f. I claim that f must be a newform, and hence an eigenvalue for all Hecke operators. Indeed, if f were old, it must come from a modular form on $\mathrm{SL}_{2}(\mathbb{Z})$ since we are working at a prime level. This is not possible because there are no nonzero weight 2 forms on $\mathrm{SL}_{2}(\mathbb{Z})$.

4 The Galois representation

We retain notations of Proposition 3.3. In addition, let \mathscr{O} be the integer ring of $K_{f}, K_{f, \mathfrak{p}}$ the completion of K_{f} at $\mathfrak{p}, \mathscr{O}_{\mathfrak{p}}$ the integer ring of $K_{f, \mathfrak{p}}$, and \mathbb{F} the residue field at \mathfrak{p}, and $\chi: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathbb{Z}_{p}^{\times} \hookrightarrow K_{f, \mathfrak{p}}^{\times}$be the p-adic cyclotomic character. Let A be the abelian variety attached to f. It is a quotient of the modular Jacobian variety. Define $V_{f}=T_{p}(A) \otimes_{\mathbb{Z}_{p}} \mathbb{Q}_{p}$ where $T_{p}(A)$ is the p-adic Tate module of A. It is also dual to the p-adic étale cohomology group $H_{\mathrm{et}}^{1}\left(A, \mathbb{Q}_{p}\right)$. Finally, let $V_{f, \mathfrak{p}}=V_{f} \otimes_{K_{f} \otimes \mathbb{Q}_{p}} K_{f, \mathfrak{p}}$ and $\rho_{f, \mathfrak{p}}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}\left(V_{f, \mathfrak{p}}\right)$ be the p-adic Galois representation attached to f at \mathfrak{p}. We show that it has a reduction satisfying the conditions of Theorem 1.4.
4.1. Proposition. - The representation $\rho_{f, \mathfrak{p}}$ is irreducible.

Proof. See [Rib76, §4.1] or [Eri08, §5.5].
4.2. Proposition. - There exists a Galois stable $\mathscr{O}_{\mathfrak{p}}$-lattice $\Lambda \subset V_{f, \mathfrak{p}}$ for which the action of $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ on $\Lambda / \pi \Lambda$ can be described in terms of matrices as $\left[\begin{array}{cc}1 & \star \\ 0 & \chi^{k-1}\end{array}\right]$ and is furthermore not semisimple.

Sketch. By Ribet's lemma 2.2, it suffices to find a Galois stable lattice whose reduction is reducible and whose semisimplication is $1 \oplus \chi^{k-1}$. In fact, we may choose any stable lattice (such lattice exists because a finite dimensional p-adic representation of a compact group always stabilizes a lattice). We know that $\operatorname{Trace}\left(\mathrm{Frob}_{\ell}\right)=a_{\ell}$ and $\operatorname{det}\left(\mathrm{Frob}_{\ell}\right)=\ell \varepsilon(\ell)$ for $\ell \neq p$ by the Eichler-Shimura relations. By Proposition 3.3, these numbers are congruent to $\ell^{k-1}+1$ and ℓ^{k-1} modulo \mathfrak{p}, respectively. Since Frobenius elements topologically generate the absolute Galois group the trace and determinant must be $1+\chi^{k-1}$ and χ^{k-1} respectively. By the Brauer-Nesbitt theorem, we are done.

Fix such a lattice Λ and set $M=\Lambda / \pi \Lambda$. This will be our $\bar{\rho}$ of Theorem 1.4. From Proposition 4.2, it is clear that parts (b) and (c) are satisfied. Part (a) is a consequence of the fact that A acquires good reduction away from p. What remains is to check that the image under $\bar{\rho}$ of a decomposition group, say D^{\prime}, of p in $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ has order prime to p. Note that $\mathbb{Q}\left(\mu_{p}\right) / \mathbb{Q}$ is totally ramified at p. Denote $\mathbb{Q}\left(\mu_{p}\right)^{+}:=\mathbb{Q}\left(\mu_{p}\right) \cap \mathbb{R}=\mathbb{Q}(\cos 2 \pi / p)$. It is a theorem of Deligne-Rapoport [DR72] that A acquires good reduction everywhere over $\mathbb{Q}\left(\mu_{p}\right)^{+}$. Since p is prime to $\left[\mathbb{Q}\left(\mu_{p}\right)^{+}: \mathbb{Q}\right]$, it suffices to show that the iamge of $D:=D^{\prime} \cap \operatorname{Gal}\left(\overline{\mathbb{Q}} / \mathbb{Q}\left(\mu_{p}\right)^{+}\right)$under $\bar{\rho}$ is of order prime to p. We note that D is a decomposition group in $\operatorname{Gal}\left(\overline{\mathbb{Q}} / \mathbb{Q}\left(\mu_{p}\right)^{+}\right)$of the unique prime of $\mathbb{Q}\left(\mu_{p}\right)^{+}$lying above p. Denote by E the completion of $\mathbb{Q}\left(\mu_{p}\right)^{+}$at
p. One can identify D with the local Galois group $\operatorname{Gal}(\bar{E} / E)$. In what follows, all structure morphisms of schemes are finite type.
4.3. Definition. Let R be a Dedekind domain with fraction field K and A an abelian variety over K. Then a Néron model \mathcal{A} is a smooth commutative group over R whose generic fiber is A which is universal in the following sense: if X_{R} is smooth over R then any K-morphism $X_{R} \times_{R} K \rightarrow A_{K}$ can be extended to a unique R-morphism $X_{R} \rightarrow \mathcal{A}$.

The universal property tells us that if a Néron model exists then it is unique up to unique isomorphism. Néron models of abelian varieties always exist, see [CS86, §VIII].
4.4. Definition. Let R be a Dedekind domain with fraction field K. Let G be a commutative group scheme over R. Then $G\left(K^{\text {sep }}\right)$ is naturally a $\operatorname{Gal}\left(K^{\text {sep }} / K\right)$-module, called the Galois module attached to G.
4.5. Proposition. - The Gal (\bar{E} / E)-module M is the Galois module attached to a finite flat commutative group scheme killed by p over the integer ring \mathscr{O}_{E} of E.

Proof. Let A be the abelian variety attached to f which induces $\rho_{f, \mathfrak{p}}$. There is an inclusion $K_{f} \hookrightarrow \operatorname{End}_{\mathbb{Q}} A \otimes_{\mathbb{Z}} \mathbb{Q}$ given by the Hecke action on A. Change A by a \mathbb{Q}-isogeny so that $\mathscr{O}_{K_{f}} \subseteq \operatorname{End}_{\mathbb{Q}} A$. Indeed, we have

$$
\operatorname{Hom}_{\mathbb{Q}}(A, B) \otimes_{\mathbb{Z}} \mathbb{Q} \cong \operatorname{colim}_{\substack{A^{\prime} \rightarrow A \\ \text { isogeny }}} \operatorname{Hom}_{\mathbb{Q}}\left(A^{\prime}, B\right)
$$

for any abelian \mathbb{Q}-varieties A, B. This is actually a general fact about localization of categories [Stacks, Tag 05Q5]. Then M is isomorphic to $A[\mathfrak{p}]=\{a \in A: h a=0$ for all $h \in \mathfrak{p}\}$, the "kernel of \mathfrak{p} ", as a Galois module. To see this, recall that the p-adic Tate module $T_{p}(A)$ is an $\mathscr{O}_{K_{f}} \otimes_{\mathbb{Z}} \mathbb{Z}_{p}$-module in a Galois-compatible fashion. Since $\mathscr{O}_{K_{f}} \otimes_{\mathbb{Z}} \mathbb{Z}_{p}=\prod_{\mathfrak{p} \mid p} \mathscr{O}_{K_{f}, \mathfrak{p}}$, it follows that there is a Galois-equivariant decomposition

$$
T_{p}(A)=\bigoplus_{\mathfrak{p} \mid p} T_{\mathfrak{p}}(A),
$$

where $T_{\mathfrak{p}}(A):=T_{p}(A) \otimes_{\mathscr{O}_{K_{f}} \otimes_{\mathbb{Z}} \mathbb{Z}_{p}} \mathscr{O}_{K_{f}, \mathfrak{p}}$ is an $\mathscr{O}_{K_{f}, \mathfrak{p}}$-module. Here, $T_{\mathfrak{p}}(A) \otimes K_{f, \mathfrak{p}}$ is in fact $V_{f, \mathfrak{p}}$. In particular, the lattice Λ of Proposition 4.2 is essentially a "conjugate" of $T_{\mathfrak{p}}(A)$ in $V_{f, \mathfrak{p}}$. Lastly, we obtain that $T_{\mathfrak{p}}(A)=\lim _{n} A\left[\mathfrak{p}^{n}\right]$ from

$$
T_{p}(A)=\lim _{n} A\left[p^{n}\right]=\lim _{n} A\left[\prod_{\mathfrak{p} \mid p} \mathfrak{p}^{v_{\mathfrak{p}}(p) n}\right]=\bigoplus_{\mathfrak{p} \mid p} \lim _{n} A\left[\mathfrak{p}^{v_{\mathfrak{p}}(p) n}\right]=\bigoplus_{\mathfrak{p} \mid p} \lim _{n} A\left[\mathfrak{p}^{n}\right]
$$

and applying $(-) \otimes_{\mathscr{O}_{K_{f}} \otimes_{\mathbb{Z}} \mathbb{Z}_{p}} \mathscr{O}_{K_{f}, \mathfrak{p}}$ to both sides. Of course, here we are using that $A[f g]=A[f] \oplus A[g]$ for $f, g \in \operatorname{End}_{\mathbb{Q}} A$ such that $(f, g)=(1)$. Since $\mathfrak{p} \mid p, M$ is a submodule, say M^{\prime}, of the p-torsion subgroup $A[p]$. We know that there is a Néron model \mathcal{A} for A over \mathscr{O}_{E} by Deligne-Rapoport's result [DR72]. Therefore, M^{\prime} is the Galois module attached to the scheme-theoretic p-torsion $\mathcal{A}[p]$, which is a finite flat commutative group scheme over \mathscr{O}_{E} simply because isogenies are finite flat. Define \mathcal{M} to be the scheme-theoretic closure of M in $\mathscr{A}[p]$. Then \mathcal{M} is a finite flat commutative group scheme, killed by p, over \mathscr{O}_{E} with attached Galois module M (c.f. Lemma 4.6). Indeed, $M=\left(\mathcal{M} \times \mathscr{O}_{E} E\right)(\bar{E})$ holds because M is just a finite set of closed points as a subset of A.
4.6. Lemma. - Let R be a DVR with fraction field K. Let X be an R-scheme and Y_{K} be a closed subscheme of $X_{K}=X \times{ }_{R} K$. Then the scheme-theoretic closure of Y_{K} in X, say Y, is flat over R.

Proof. Without any loss of generality, assume $X=\operatorname{Spec} A$. Suppose X_{K} is cut out by the ideal I in $A \otimes_{R} K$. Then the closure is cut out by $I \cap A$ in A. If $A / I \cap A$ has R-torsion, say $r a \in I \cap A$ for some $r \in R \backslash\{0\}$ and $a \in A \backslash(I \cap A)$, then $a \otimes 1 \in I$, which implies $a \in I \cap A$. We are now done because flatness is same as torsion-free for PIDs.
4.7. Remark. Using the notations of the above lemma, if X is an R-group scheme and Y_{K} is a closed subgroup of X_{K} then Y, the scheme-theoretic closure of Y_{K} in X, is a closed R-subgroup of X. This is easily checked affine-locally by rewriting things in terms of Hopf algebras.
4.8. Definition. A commutative group scheme G over a base S is said to be an \mathbb{F}-module scheme if there is an injection $\mathbb{F} \hookrightarrow \operatorname{End}_{S} G$. This is same as saying $\operatorname{Mor}_{S}(-, G)$ is a functor valued in \mathbb{F}-vector spaces.

The \mathcal{M} obtained in the proof of Proposition 4.5 is an \mathbb{F}-module scheme where \mathbb{F} is the residue field of \mathscr{O}_{E}. Indeed, it follows from the universal property of Néron models that $\mathscr{O}_{E} \hookrightarrow \operatorname{End}_{\mathscr{O}_{E}} \mathcal{A}$. The \mathbb{F}-action is then induced from $\mathbb{F} \hookrightarrow \operatorname{End}_{\mathscr{O}_{E}} \mathcal{A}[p]$. Of course, \mathfrak{p}-torsion points remain \mathfrak{p}-torsion under the action of an endomorphism. Thus, there is an action of \mathbb{F} on \mathfrak{M} by \mathscr{O}_{E}-automorphisms. Let us summarise what we have obtained so far-
(a) \mathcal{M} is a finite flat \mathbb{F}-module scheme over \mathscr{O}_{E} with the attached Galois module $M=\mathcal{M}\left(\overline{\mathbb{Q}}_{p}\right)$ of dimension 2 as an \mathbb{F}-vector space.
(b) D acts trivially on a 1-dimensional subspace X of M and via the character χ^{k-1} on the quotient $Y=M / X$.
4.9. Theorem. - The image of D in Aut M has order prime to p.

We will need the following two results in the proof of Theorem 4.9:
4.10. Theorem (Raynaud [Ray74]). - Suppose E / \mathbb{Q}_{p} is an extension of local fields with ramification index less than $p-1$. Let G be a finite flat commutative group scheme over E which is killed by a power of p. Then there is at most one finite flat extension of G to \mathscr{O}_{E}.

Proof. See [Ray74, Theorem 3.3.3], [CSS97, Chapter 5, §4], [Sno], or [Ed92, §5].
4.11. Lemma. - Let E / \mathbb{Q}_{p} be a finite extension of local fields and X a finite étale scheme over \mathscr{O}_{E}. Then the $\operatorname{Gal}(\bar{E} / E)$-action on $X\left(\overline{\mathbb{Q}}_{p}\right)$ is unramified.

Proof. Indeed, the $\operatorname{Gal}(\bar{E} / E)$-action on $X\left(\overline{\mathbb{Q}}_{p}\right)$ factors through a finite quotient of $\pi_{1}^{\text {et }}\left(\operatorname{Spec} \mathscr{O}_{E}\right)=\operatorname{Gal}\left(E^{\mathrm{unr}} / E\right)$ by the very definition of the étale fundamental group.
4.12. Proof of Theorem 4.9. Let \mathscr{X} be the scheme-theoretic closure of X in \mathscr{M}. Then X is the Galois module attached to \mathscr{X}. By Theorem 4.10 and Lemma 4.6, it follows that \mathscr{X} is a (nonzero) constant group scheme over \mathscr{O}_{E}. In particular, \mathscr{X} is a proper, nontrivial étale subgroup. Hence, \mathfrak{M} cannot be connected. The connected-étale sequence [CSS97, §V.3.7] states

$$
0 \rightarrow \mathcal{M}_{E}^{\circ} \rightarrow \mathcal{M}_{E} \rightarrow \mathcal{M}_{E}^{e \mathrm{e} t} \rightarrow 0,
$$

where \mathscr{M}_{E}° is the (geometrically) connected component of \mathscr{M}_{E} containing 0 and $\mathscr{M}_{E}^{\text {ét }}$ the largest étale quotient. It is not hard to see that the above sequence is an exact sequence of \mathbb{F}-module schemes and the maps therein are defined over E. Taking $\overline{\mathbb{Q}}_{p}$-points, we get a sequence of D-representations

$$
0 \rightarrow M^{\circ} \rightarrow M \rightarrow M^{\text {et }} \rightarrow 0 .
$$

Now, M° cannot be all of M because \mathcal{M} is not connected. Further, $M^{\circ} \neq 0$ because $M^{\text {et }}$ is unramified as a Galois module (Lemma 4.11) but M is not. Therefore, $\operatorname{dim}_{\mathbb{F}} M^{\circ}=\operatorname{dim}_{\mathbb{F}} M^{\text {ét }}=1$. Since $M^{\text {ét }}$ is unramified and Y isn't, the image of M° in M must be distinct from X. Hence, D stabilizes X and the image of M°. It is easily verified that any element of order p in Aut M leaves stable a unique line. This completes the proof.

References

[CS86] G. Cornell and J. H. Silverman, Arithmetic Geometry, Springer-Verlag New York, 1986
[CSS97] G. Cornell, J. H. Silverman, and G. Stevens, Modular forms and Fermat's Last Theorem, Springer-Verlag, New York, 1997
[DR72] P. Deligne and M. Rapoport, Les schémas de modules de courbes elliptiques, International Summer School on Modular Functions, Antwerp 1972
[Ed92] B. Edixhoven, The weight in Serre's conjectures on modular forms, Invent. Math. 109, 563-594, 1992
[Eri08] C. Wang-Erickson, Ribet's converse to Herbrand's theorem, https://sites.pitt.edu/~caw203/pdfs/ribet 2.pdf
[Ray74] M. Raynaud, Schémas en groupes de type (p, p, \ldots, p), Bull. Soc. Math. France 102, 241-280, 1974
[Rib76] K. Ribet, A modular construction of unramified p-extension of $\mathbb{Q}\left(\mu_{p}\right)$, Invent. Math. 34, 151-162, 1976
[Sai09] A. Saikia. Ribet's construction of a suitable cusp eigenform, arXiv:0910.1408v2, 2009
[Sno]
A. Snowden, Course on Mazur's theorem, Lecture 7: Raynaud's theorem, http://www-personal.umich.edu/ ~asnowden/teaching/2013/679/L07.html
[Stacks] The Stacks project authors, The Stacks project, https://stacks.math.columbia.edu, 2023

[^0]: Date: 9th September, 2023.
 Affiliation: BSc 3rd year, Chennai Mathematical Institute.

[^1]: ${ }^{1}$ A semicusp form is a modular form whose constant coefficient is 0.

