
RIBET’S CONVERSE TO HERBRAND’S THEOREM

AYAN NATH

Abstract. In this article, we present an overview of Ribet’s proof of the converse to Herbrand’s theorem. While
Erickson’s work [Eri08] provides an excellent exposition on the topic, our focus is on elucidating the scheme-
theoretic details found in Ribet’s paper [Rib76, §4], particularly his use of finite flat group schemes towards the
end of the proof, a facet not covered in Erickson’s essay.

1 Introduction

Fix an odd prime number p. Let A be the ideal class group of Q(µp ) where µp is the group of all pth
roots of unity as usual. Denote C = A ⊗Z Fp , an Fp -vector space. If C ̸= 0 then p is called irregular.
Define the nth Bernoulli number Bn by the exponential generating function

T

eT −1
= ∑

n∈N
Bn

T n

n!
.

1.1. Kummer’s criterion. — p is irregular if and only if p | B2B4 · · ·Bp−3.

The Fp -vector space C carries an action of the cyclotomic Galois group ∆= Gal(Q(µp )/Q) for which
there is an isomorphism χ : ∆→ F×p given by the mod p cyclotomic character. Thus, there is a ∆-module
decomposition

C = ⊕
0ÉiÉp−2

C (χi ),

where C (χi ) is the part of C on which σ ∈∆ acts as multiplication by χi (σ). Herbrand’s theorem states
that if C (χ1−k ) ̸= 0 for some even integer k ∈ [2, p −3] then p | Bk . The main result of [Rib76] is the
following–

1.2. Theorem (Ribet). — Let k be an even integer in [2, p −3]. Then p | Bk if and only if C (χ1−k ) ̸= 0.

By class field theory, the above theorem is implied by–

1.3. Theorem. — Let k ∈ [2, p − 3] be an even integer, and suppose that p | Bk . There exists a Galois
extension E/Q containing Q(µp ) such that
(a) The extension E/Q(µp ) is unramified.
(b) Gal(E/Q(µp )) is a nonzero abelian group killed by p.
(c) If σ ∈ Gal(E/Q) and τ ∈ Gal(E/Q(µp )) then στσ−1 =χ(σ)1−kτ.

Indeed, let E/Q(µp ) be as in Theorem 1.3. LetC be the idéle class group ofQ(µp ) and θ : C →Gal(E/Q(µp ))
be the (∆-equivariant) reciprocity map. Then θ factors through a surjection C =C ⊗ZFp ↠Gal(E/Q(µp )).
Therefore, we have ∆-equivariant surjections C (χi )↠Gal(E/Q(µp ))(χi ). When i = 1−k, we see that the
latter group is nonzero from part (c), and consequently C (χ1−k ) is nonzero. The above theorem is in
turn implied by the following–
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1.4. Theorem. — Let k ∈ [2, p −3] be an even integer, and suppose that p | Bk . There exists a finite field
F/Fp and a Galois representation ρ : Gal(Q/Q)→GL2(F) with the following properties–

(a) ρ is unramfied at all primes ℓ ̸= p.
(b) The representation ρ is reducible in such a way that ρ is isomorphic to a representation of the form[

1 b
0 χk−1

]
where b : Gal(Q/Q)→ F.

(c) Imρ has order divisible by p. That is, ρ is not diagonalizable.
(d) Let D be a decomposition group for p in Gal(Q/Q). Then the image of D has order prime to p. That is,

ρ|D is diagonalizable.

We first show that Theorem 1.4 implies Theorem 1.3 with Q(µp ) replaced by Q(µ1−k
p ). Indeed, the

claim is that the fixed subfield of Kerρ, say E , the Galois number field cut out by ρ, satisfies the
conditions of Theorem 1.3. Then ρ induces an injection Gal(E/Q) ,→ GL2(F). It is clear that there is a
tower E/Q(µ1−k

p )/Q since Q(µ1−k
p ) is precisely the fixed subfield of Kerχk−1. Further, Gal(E/Q(µ1−k

p )) is
an abelian p-group, for the image of Gal(E/Q(µ1−k

p )) consists of upper unipotent matrices. Since ρ is
not diagonalizable, it follows that E ̸=Q(µ1−k

p ). It is clear that E/Q(µ1−k
p ) is unramified away from p. It

remains to prove that E/Q(µ1−k
p ) is unramified at the unique prime p of Q(µ1−k

p ) above p. The inertia
group of p in Gal(E/Q(µ1−k

p )) has order prime to p because Im(ρ|D ) has order prime to p, so E/Q(µ1−k
p ) is

at worst tamely ramified. However, E/Q(µ1−k
p ) is a p-extension, hence it must be everywhere unramified.

Part (c) of Theorem 1.3 is just a consequence of the matrix identity[
a b
0 d

][
1 x
0 1

][
a b
0 d

]−1

=
[

1 ad−1x
0 1

]
.

Finally, we can just replace E by E(µp ) to get the result in the desired form.

1.5. Alternative explanation bypassing the construction of E . It is easily checked that b is a 1-cocycle
in Z 1(Gal(Q/Q),F(χ1−k )), and hence gives a cohomology class in H1(Gal(Q/Q),F(χ1−k )). In fact, b is
nonzero due to (c). The inflation-restriction sequence gives

0→H1(∆,F(χ1−k ))→H1(Gal(Q/Q),F(χ1−k ))→H1(Gal(Q/Q(µp )),F(χ1−k ))∆.

Note that H1(∆,F(χ1−k )) = 0 since |∆| is prime to p. As Gal(Q/Q(µp )) acts trivially on F(χ1−k ), b gives rise

to a nonzero ∆-equivariant homomorphism h : Gal(Q/Q(µp ))→ F(χ1−k ). We have ρ|Gal(Q/Q(µp )) =
[

1 h
0 1

]
,

and that h|D∩Gal(Q/Q(µp )) = 0 from (d). Therefore, h is unramified and factors through the class group
A by class field theory. Since F has characteristic p, it further factors through C = A ⊗Z Fp and gives
a nonzero map C → F(χ1−k ). Due to ∆-equivariance, this factors through C (χ1−k ) and thus implies
C (χ1−k ) ̸= 0.

2 Reductions of p-adic representations

Let K be a finite extension of Qp with integer ring OK , uniformizer π, and residue field F. Let V be a
two-dimensional K -vector space. A lattice Λ is a free O -submodule of V such that Λ⊗O K =V.

2.1. Lemma. — Let F be a nonarchimedian local field, G a profinite group, and ρ : G → GLd (F ) a
continuous representation. Then ρ stabilizes some lattice. In other words, ρ can be conjugated to a
representation with values in GLd (OF ).
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Proof. Choose a basis and consider the standard lattice L =O⊕d
F . The stabilizer of L is precisely GLd (OF ),

which is open in GLd (F ). Set H = ρ−1(GLd (OF )), an open subgroup. Then G/H is finite and G stabilizes∑
g∈G/H g L. □

Let ρ : Gal(Q/Q)→GL(V ) be a Galois representation. For a stable lattice T , we have the associated
reduction, ρ : Gal(Q/Q)→GL(T /πT ). It is a consequence of Brauer-Nesbitt theorem that the semisimpli-
fication of the reduction doesn’t depend on the choice of T. When ρ is reducible, their semisimplification
is described by two Galois character ϕ1,ϕ2 which depend only on ρ.

2.2. Ribet’s lemma. — Suppose that the K -representation ρ is simple but that its reductions are reducible.
Let ϕ1 and ϕ2 be the associated Galois characters. Then G leaves stable some lattice Λ⊂V for which the

associated reduction is of the form
[
ϕ1 ⋆

0 ϕ2

]
but not semisimple.

Proof. See [Rib76, §2.1] or [Eri08, §5.2]. □

3 A congruence between a cusp form and an Eisenstein series

Let ε be a nontrivial character with ε(−1) = 1. We consider modular forms on Γ1(p). Consider

G2,ε = L(−1,ε)/2+ ∑
nÊ1

∑
d |n

ε(d)d qn ,

G1,ε = L(0,ε)/2+ ∑
nÊ1

∑
d |n

ε(d)qn ,

s2,ε =
∑

nÊ1

∑
d |n

ε(n/d)d qn .

The first two are Eisenstein series of weights 2 and 1 respectively, and s2,ε is the unique semicusp1
eigenform which is not a cusp form. All these are eigenforms away from p and have Nebentypus ε. For
any prime p ofQ(µp−1) lying above p there is a Teichmüller lift ω : F×p →µp−1. It satisfies ω(d) ≡ d (mod p)
for each d ∈ F×p .

3.1. Lemma. — Let k ∈ [2, p −3] be even. Then G2,ωk−2 and G1,ωk−1 have p-integral Fourier expansions in
Q(µp−1) which are congruent modulo p to Ek .

Sketch. This is easy to see for the nonconstant terms. For the constant coefficient, one easily gets the
result by apply known congruences about Bernoulli numbers. Omitted. □

3.2. Lemma. — Let k ∈ [2, p −3] be even. Then there exists a modular form g of weight 2 and type ωk−2

whose Fourier coefficients are p-integral and the constant term is 1.

Sketch. We use Lemma 3.1. If p ∤Bk then take G2,ωk−2 . Otherwise, consider the products G1,ωn−1G1,ωm−1

for even m,n ∈ [2, p −3] such that n +m ≡ k (mod p −1). If none of these work then p divides at least
(p −1)/4 many of B2,B4, . . . ,Bp−3. It turns out that this implies that the p-adic valuation of the negative
part h−

p of the class number of Q(µp ) is at least (p −1)/4. This is a contradiction due to size reasons. □

1A semicusp form is a modular form whose constant coefficient is 0.
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3.3. Proposition. — Suppose p | Bk . There exists a normalized cuspidal newform f =∑
nÊ1 an qn of weight

2, level p, and Nebentypus ωk−2, and a prime p, lying above p, of the number field K f generated by the coeffi-
cients an such that for each prime ℓ ̸= p, the coefficient aℓ is p-integral and aℓ ≡ 1+ℓk−1 ≡ 1+ωk−2(ℓ)ℓ (mod p).

Sketch. Consider f =G2,ωk−2−cg where c is the constant coefficient ofG2,ωk−2 . Then f ≡G2,ωk−2 ≡ Ek (mod p).

So f is a mod p eigenform away from p with eigenvalue 1+ωk−2(ℓ)ℓ for the Hecke operator Tℓ, ℓ ̸= p.
The Deligne-Serre lifting lemma produces a semi cusp form (of level p), which we again denote by f ,
satisfying the conditions in the statement of the result. However, we want a cusp form. We know
that s2,ωk−2 has eigenvalue ωk−2(ℓ)+ℓ. Thus, f ̸= s2,ωk−2 as ωk−2 is nontrivial, and f must be cuspidal.
Normalize f . I claim that f must be a newform, and hence an eigenvalue for all Hecke operators. Indeed,
if f were old, it must come from a modular form on SL2(Z) since we are working at a prime level. This
is not possible because there are no nonzero weight 2 forms on SL2(Z). □

4 The Galois representation

We retain notations of Proposition 3.3. In addition, let O be the integer ring of K f , K f ,p the completion
of K f at p, Op the integer ring of K f ,p, and F the residue field at p, and χ : Gal(Q/Q) → Z×

p ,→ K ×
f ,p be

the p-adic cyclotomic character. Let A be the abelian variety attached to f . It is a quotient of the
modular Jacobian variety. Define V f = Tp (A)⊗Zp Qp where Tp (A) is the p-adic Tate module of A. It
is also dual to the p-adic étale cohomology group H 1

ét(A,Qp ). Finally, let V f ,p = V f ⊗K f ⊗Qp K f ,p and
ρ f ,p : Gal(Q/Q)→GL(V f ,p) be the p-adic Galois representation attached to f at p. We show that it has a
reduction satisfying the conditions of Theorem 1.4.

4.1. Proposition. — The representation ρ f ,p is irreducible.

Proof. See [Rib76, §4.1] or [Eri08, §5.5]. □

4.2. Proposition. — There exists a Galois stable Op-lattice Λ⊂V f ,p for which the action of Gal(Q/Q) on

Λ/πΛ can be described in terms of matrices as
[

1 ⋆

0 χk−1

]
and is furthermore not semisimple.

Sketch. By Ribet’s lemma 2.2, it suffices to find a Galois stable lattice whose reduction is reducible and
whose semisimplication is 1⊕χk−1. In fact, we may choose any stable lattice (such lattice exists because
a finite dimensional p-adic representation of a compact group always stabilizes a lattice). We know that
Trace(Frobℓ) = aℓ and det(Frobℓ) = ℓε(ℓ) for ℓ ̸= p by the Eichler-Shimura relations. By Proposition 3.3,
these numbers are congruent to ℓk−1 +1 and ℓk−1 modulo p, respectively. Since Frobenius elements
topologically generate the absolute Galois group the trace and determinant must be 1+χk−1 and χk−1

respectively. By the Brauer-Nesbitt theorem, we are done. □

Fix such a lattice Λ and set M =Λ/πΛ. This will be our ρ of Theorem 1.4. From Proposition 4.2,
it is clear that parts (b) and (c) are satisfied. Part (a) is a consequence of the fact that A acquires
good reduction away from p. What remains is to check that the image under ρ of a decomposition
group, say D ′, of p in Gal(Q/Q) has order prime to p. Note that Q(µp )/Q is totally ramified at p. Denote
Q(µp )+ :=Q(µp )∩R=Q(cos2π/p). It is a theorem of Deligne-Rapoport [DR72] that A acquires good
reduction everywhere over Q(µp )+. Since p is prime to [Q(µp )+ : Q], it suffices to show that the iamge
of D := D ′∩Gal(Q/Q(µp )+) under ρ is of order prime to p. We note that D is a decomposition group in
Gal(Q/Q(µp )+) of the unique prime of Q(µp )+ lying above p. Denote by E the completion of Q(µp )+ at
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p. One can identify D with the local Galois group Gal(E/E). In what follows, all structure morphisms of
schemes are finite type.

4.3. Definition. Let R be a Dedekind domain with fraction field K and A an abelian variety over
K . Then a Néron model A is a smooth commutative group over R whose generic fiber is A which is
universal in the following sense: if XR is smooth over R then any K -morphism XR ×R K → AK can be
extended to a unique R-morphism XR →A .

The universal property tells us that if a Néron model exists then it is unique up to unique isomorphism.
Néron models of abelian varieties always exist, see [CS86, §VIII].

4.4. Definition. Let R be a Dedekind domain with fraction field K . Let G be a commutative group
scheme over R. Then G(K sep) is naturally a Gal(K sep/K )-module, called the Galois module attached to
G.

4.5. Proposition. — The Gal(E/E)-module M is the Galois module attached to a finite flat commutative
group scheme killed by p over the integer ring OE of E .

Proof. Let A be the abelian variety attached to f which induces ρ f ,p. There is an inclusion K f ,→ EndQ A⊗ZQ
given by the Hecke action on A. Change A by a Q-isogeny so that OK f ⊆ EndQ A. Indeed, we have

HomQ(A,B)⊗ZQ∼= colim A′→A
isogeny

HomQ(A′,B)

for any abelianQ-varieties A,B. This is actually a general fact about localization of categories [Stacks, Tag
05Q5]. Then M is isomorphic to A[p] = {a ∈ A : ha = 0 for all h ∈ p}, the “kernel of p”, as a Galois module.
To see this, recall that the p-adic Tate module Tp (A) is an OK f ⊗ZZp -module in a Galois-compatible
fashion. Since OK f ⊗ZZp =∏

p|p OK f ,p, it follows that there is a Galois-equivariant decomposition

Tp (A) =⊕
p|p

Tp(A),

where Tp(A) := Tp (A)⊗OK f
⊗ZZp OK f ,p is an OK f ,p-module. Here, Tp(A)⊗K f ,p is in fact V f ,p. In particular,

the lattice Λ of Proposition 4.2 is essentially a “conjugate” of Tp(A) in V f ,p. Lastly, we obtain that
Tp(A) = limn A[pn] from

Tp (A) = lim
n

A[pn] = lim
n

A

[∏
p|p

pvp(p)n

]
=⊕

p|p
lim

n
A[pvp(p)n] =⊕

p|p
lim

n
A[pn]

and applying (−)⊗OK f
⊗ZZp OK f ,p to both sides. Of course, here we are using that A[ f g ] = A[ f ]⊕ A[g ]

for f , g ∈ EndQ A such that ( f , g ) = (1). Since p | p, M is a submodule, say M ′, of the p-torsion subgroup
A[p]. We know that there is a Néron model A for A over OE by Deligne-Rapoport’s result [DR72].
Therefore, M ′ is the Galois module attached to the scheme-theoretic p-torsion A[p], which is a finite
flat commutative group scheme over OE simply because isogenies are finite flat. Define M to be the
scheme-theoretic closure of M in A[p]. Then M is a finite flat commutative group scheme, killed by p,
over OE with attached Galois module M (c.f. Lemma 4.6). Indeed, M = (M ×OE E)(E) holds because M
is just a finite set of closed points as a subset of A. □

4.6. Lemma. — Let R be a DVR with fraction field K . Let X be an R-scheme and YK be a closed subscheme
of XK = X ×R K . Then the scheme-theoretic closure of YK in X , say Y , is flat over R.

Proof. Without any loss of generality, assume X = Spec A. Suppose XK is cut out by the ideal I in A⊗R K .
Then the closure is cut out by I ∩ A in A. If A/I ∩ A has R-torsion, say r a ∈ I ∩ A for some r ∈ R \ {0}
and a ∈ A \ (I ∩ A), then a ⊗1 ∈ I , which implies a ∈ I ∩ A. We are now done because flatness is same as
torsion-free for PIDs. □

https://stacks.math.columbia.edu/tag/05Q5
https://stacks.math.columbia.edu/tag/05Q5
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4.7. Remark. Using the notations of the above lemma, if X is an R-group scheme and YK is a closed
subgroup of XK then Y , the scheme-theoretic closure of YK in X , is a closed R-subgroup of X . This is
easily checked affine-locally by rewriting things in terms of Hopf algebras.

4.8. Definition. A commutative group scheme G over a base S is said to be an F-module scheme if
there is an injection F ,→ EndS G . This is same as saying MorS(−,G) is a functor valued in F-vector spaces.

The M obtained in the proof of Proposition 4.5 is an F-module scheme where F is the residue field of
OE . Indeed, it follows from the universal property of Néron models that OE ,→ EndOE A . The F-action is
then induced from F ,→ EndOE A[p]. Of course, p-torsion points remain p-torsion under the action of an
endomorphism. Thus, there is an action of F on M by OE -automorphisms. Let us summarise what we
have obtained so far–
(a) M is a finite flat F-module scheme over OE with the attached Galois module M =M (Qp ) of dimension

2 as an F-vector space.
(b) D acts trivially on a 1-dimensional subspace X of M and via the character χk−1 on the quotient

Y = M/X .

4.9. Theorem. — The image of D in Aut M has order prime to p.

We will need the following two results in the proof of Theorem 4.9:

4.10. Theorem (Raynaud [Ray74]). — Suppose E/Qp is an extension of local fields with ramification
index less than p −1. Let G be a finite flat commutative group scheme over E which is killed by a power of
p. Then there is at most one finite flat extension of G to OE .

Proof. See [Ray74, Theorem 3.3.3], [CSS97, Chapter 5, §4], [Sno], or [Ed92, §5]. □

4.11. Lemma. — Let E/Qp be a finite extension of local fields and X a finite étale scheme over OE . Then
the Gal(E/E)-action on X (Qp ) is unramified.

Proof. Indeed, the Gal(E/E)-action on X (Qp ) factors through a finite quotient of πét
1 (SpecOE ) = Gal(Eunr/E)

by the very definition of the étale fundamental group. □

4.12. Proof of Theorem 4.9. Let X be the scheme-theoretic closure of X in M . Then X is the Galois
module attached to X . By Theorem 4.10 and Lemma 4.6, it follows that X is a (nonzero) constant
group scheme over OE . In particular, X is a proper, nontrivial étale subgroup. Hence, M cannot be
connected. The connected-étale sequence [CSS97, §V.3.7] states

0→M ◦
E →ME →M ét

E → 0,

where M ◦
E is the (geometrically) connected component of ME containing 0 and M ét

E the largest étale
quotient. It is not hard to see that the above sequence is an exact sequence of F-module schemes and
the maps therein are defined over E . Taking Qp -points, we get a sequence of D-representations

0→ M◦ → M → M ét → 0.

Now, M◦ cannot be all of M because M is not connected. Further, M◦ ̸= 0 because M ét is unramified as a
Galois module (Lemma 4.11) but M is not. Therefore, dimFM◦ = dimFM ét = 1. Since M ét is unramified
and Y isn’t, the image of M◦ in M must be distinct from X . Hence, D stabilizes X and the image of M◦.
It is easily verified that any element of order p in Aut M leaves stable a unique line. This completes the
proof. □
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