Chosen Olympiad Geometry Configurations

Ayan Nath*
Chennai Mathematical Institute

These are my personal notes on a few relatively obscure geometric configurations which I found were worth knowing.

Notations

The circle passing through the points X, Y, Z is denote by $(X Y Z)$ and the circle with diameter $X Y$ is denote $(X Y)$. If T is a point on a circle ω, then the antipode of T is the point on ω diametrically opposite to T. Let $A B C$ be a fixed triangle with orthocenter H, circumcenter O, incenter I, incircle (I), centroid G, A-excenter $I_{A}, M_{A}=A I \cap(A B C)$, $M_{B C}$ be the antipode of M_{A} in $(A B C)$.

§1 Foot from A-intouch point

Let D, E, F be the intouch points of $\triangle A B C$. Let P be the perpendicular foot on $E F$ from D and $B P \cap A C=Y, C P \cap A B=Z$.

- $B C Y Z$ is a bicentric quadrilateral.
- $B C, M_{B C} I, A P$ are concurrent.
- Discover harmonic bundles.
- IMO Shortlist 2002/G8
- Brazil MO 2013/6
- RMM 2012/6

§2 The Feuerbach Point

Let F_{e} be the Feuerbach point, D be the A-intouch point, and M be the midpoint of $B C$.

- $\triangle A I O \sim \triangle F_{e} D M$
- $F_{e} \in(D T)$, where T is the midpoint of $A I$.

[^0]
§3 Special Poncelet's Porisms

Poncelet's porism states that given any point $X \in(A B C)$, we can pick points $Y, Z \in$ $(A B C)$ such that (I) is also the incircle of $\triangle X Y Z$.

- Take $X=A^{\prime}$ where A^{\prime} is the A-antipode.
- Take $X=T_{A}$ where T_{A} is the A-Mixtilinear touch point.

§4 Six-point circle

Let P be a point with isogonal conjugate P^{*}. For a point X, the pedal circle of X is the circumcirle of its pedal triangle.

- The pedal circles of P and P^{*} are the same.
- The center of the common pedal circle is the midpoint of $P P^{*}$.

§5 Incircle-circumcircle collinearity

Let A^{\prime} be the A-antipode. Let D, E, F be the A, B, C-intouch points, respectively, P be the foot from D to $E F$.

- $A^{\prime}, I, P,(A E F) \cap(A B C)$ are collinear.

§6 Schwatt line

Let M be the midpoint of A-altitude and N be the midpoint of $B C$. The line $M N$ is called the A-Schwatt line.

- The symmedian point K lies on $M N$.
- $M N$ is the locus of the centers of rectangles inscribed in the triangle.

§7 A line perpendicular to $O I$

Let the circle centered at B passing through C intersect $A B$ at P and similar define Q.

- $P Q \perp O I$

§8 Isogonal conjugate of the isotomic conjugate of H

Let the isogonal conjugate of the isotomic conjugate of H be X.

- X is the homothety center of the intouch triangle and excentral triangle $I_{A} I_{B} I_{C}$.
- X lies on the Euler line.

§9 Tangential quadrilaterals

Let $A B C D$ be a tangential quadrilateral with incenter I and incircle (I). Let E, F, G, H be the intouch points.

- Define Ex-tangential quadrilaterals by extrapolating. Find which properties carry on.
- $A C, B D, E G$ and $F H$ are concurrent.
- If $A B C D$ is cyclic with circumcenter O then $O I$ is perpendicular to the third diagonal.

§10 Three orthic incircles (Own and Tumon2001)

Let J_{A}, J_{B}, J_{C} be the incenters of $\triangle B H C, \triangle A H C, \triangle A H B$ respectively. Let H^{\prime} be the orthocenter of $\triangle J_{A} J_{B} J_{C}$. Let T_{A} be the H-intouch point of triangle $B H C$. Let $K_{A}=A H^{\prime} \cap(A B C)$.

- Let the perpendicular to $A I_{A}$ at I_{A} meet $B C$ at M. Let N be the point such that $A I_{A} M N$ is a rectangle. Prove that N lies on the line joining the incenters of $\triangle A B H$ and $\triangle A C H$.
- $I_{A} J_{A} \perp J_{B} J_{C}$
- $K_{A}, T_{A}, M_{B C}$ are collinear.
- The line of collinearity of $K_{A}, T_{A}, M_{B C}$ is parallel to $D J_{A}$.
- The radical center of the three incircles of $\triangle A H C, \triangle B H C$ and $\triangle A H B$ is the nine point center of $\triangle J_{A} J_{B} J_{C}$.
- Let I^{\prime}, O^{\prime} be the incenter and circumcenter of $\triangle J_{A} J_{B} J_{C}$ respectively, then the lines $I^{\prime} H, O O^{\prime}$ and $G_{e} I$ are parallel, where G_{e} is the Gergonne point of $\triangle A B C$.
- The distance between lines $O O^{\prime}$ and $I^{\prime} H$ is same as the distance between lines $O O^{\prime}$ and $G_{e} I$.

Click here for the AoPS page.

[^0]: *ayan.nmath: https://artofproblemsolving.com/community/user/362567

