The LCM of polynomial sequences at prime arguments

Ayan Nath
CMI Student Seminar

21st August, 2023

A word on notations

- We write $a(x)=\mathcal{O}(b(x))$ if there exists an absolute constant c such that $|a(x)|<c \cdot b(x)$ for all sufficiently large x. If $\lim _{x \rightarrow \infty} a(x) / b(x)=0$ then we write $a(x)=o(b(x))$.
- $a(x) \ll b(x)$ means $a(x)<C \cdot b(x)$ for some positive constant C and for all sufficiently large x.
- $a(x) \gg b(x)$ means $a(x)>C \cdot b(x)$ for some positive constant C and for all sufficiently large x.
- We say that $a(x) \sim b(x)$ if $\lim _{x \rightarrow \infty} \frac{a(x)}{b(x)}=1$.
- Throughout the article, p and q will denote primes, and we fix a monic irreducible polynomial $f \in \mathbb{Z}[x]$ of degree $d \geqslant 1$.
- We will often suppress the dependence of constants on f.
- Define $\pi(x)$ to be the number of primes $p<x$ and $\pi(x ; m, a)$ to be the number of primes $p<x$ such that $p \equiv a(\bmod m)$.
- For convenience, set $x_{\mathfrak{b}}=x^{1 / 2}(\log x)^{-B}$.

Introduction

- The Prime Number Theorem is equivalent to

$$
\log \operatorname{lcm}\{1,2, \ldots, n\} \sim n
$$

- Indeed,

$$
\log \operatorname{lcm}\{1,2, \ldots, n\}=\sum_{p \leqslant n}\left\lfloor\frac{\log n}{\log p}\right\rfloor \log p \approx \sum_{p \leqslant n} \frac{\log n}{\log p} \cdot \log p=\pi(n) \log n
$$

- Motivated by this, people investigated $\operatorname{Icm}\{f(1), f(2), \ldots, f(n)\}$ for some irreducible polynomial f.
- However, the growth is not the same for $\operatorname{deg} f \geqslant 2$. It is conjectured that $\log \operatorname{lcm}\{f(1), f(2), \ldots, f(n)\} \sim(d-1) x \log x$ for irreducible polynomials f of degree $d \geqslant 2$.
- We study the analogous problem at prime arguments. That is, $\operatorname{lcm}\{f(p) \mid p<x\}$ for an arbitrary polynomial $f \in \mathbb{Z}[x]$. For simplicity, we will only consider irreducible polynomials f.

Results

Theorem 1 (N. \& Jha)

Let $f \in \mathbb{Z}[x]$ be an irreducible polynomial of degree d. Then,

$$
\log \operatorname{lcm}\{f(p) \mid p<x\} \gg x^{1-\varepsilon(d)},
$$

where $\varepsilon(1)=0.3735, \varepsilon(2)=0.153$ and $\varepsilon(d)=\exp \left(\frac{-d-0.9788}{2}\right)$ for $d \geqslant 3$.

We remark that $\log \operatorname{lcm}\{f(p) \mid p<x\} \leqslant(d+o(1)) x \ll x$ follows from the Prime Number Theorem.

Theorem 2 (N. \& Jha)

Let $f \in \mathbb{Z}[x]$ be an irreducible polynomial of degree d. Then, there is a positive proportion of primes p such that $f(p)$ has a prime divisor greater than $p^{1-\varepsilon(d)}$, where $\varepsilon(1)=0.3735, \varepsilon(2)=0.153$ and $\varepsilon(d)=\exp \left(\frac{-d-0.9788}{2}\right)$ for $d \geqslant 3$.

Setup

- We study the product defined by

$$
Q(x)=\prod_{q<x}|f(q)|=\prod_{p} p^{\alpha_{p}(x)}
$$

- Idea is to exploit the fact that the contribution of prime factors less than x^{δ} is negligible compared to that of prime factors greater than x^{δ}, where δ is a parameter in $\left(\frac{1}{2}, 1\right)$ to be chosen later. Throughout, B will denote some large enough constant.
- Define $\operatorname{res}(m)$ to be the set of residues modulo m which satisfy the congruence $f(x) \equiv 0(\bmod m)$ and $\operatorname{res}_{n u m}(m)$ to be the cardinality of res (m).
- Note that we have $\operatorname{res}_{n u m}(p) \leqslant d$ by Lagrange's theorem and that if $p \nmid \operatorname{disc} f$ then $\operatorname{res}_{\text {num }}(p)=\operatorname{res}_{\text {num }}\left(p^{n}\right)$ for all $n \geqslant 2$ by Hensel's lemma.
- Also define $\sigma(m)$ to be the sum

$$
\sum_{r \in \operatorname{res}(m)} \pi(x ; m, r)
$$

the number of elements in $\{f(p) \mid p<x\}$ divisible by m.

Estimate for $\alpha_{p}(x)$

Lemma 3 (" α bound")
Let p be a prime. If $p \nmid \operatorname{disc} f$, then

$$
\alpha_{p}(x)=\sum_{p^{n}<x_{\mathfrak{b}}} \sigma\left(p^{n}\right)+\mathcal{O}\left(\frac{x}{\max \left\{p, x_{\mathfrak{b}}\right\} \log x}+\frac{(\log x)^{2 B}}{\log p}\right)
$$

else if $p \mid \operatorname{disc} f$, we have

$$
\alpha_{p}(x)=\sigma(p) .
$$

- We only consider the case $p \nmid \operatorname{disc} f$.
- We have

$$
\alpha_{p}(x)=\sum_{n=1}^{\infty} \sigma\left(p^{n}\right)=\sum_{p^{n}<x} \sigma\left(p^{n}\right)+\sum_{x \leqslant p^{n}} \sigma\left(p^{n}\right) .
$$

- When $p^{n} \geqslant x$, we see that $\sigma\left(p^{n}\right) \leqslant \operatorname{res}_{\text {num }}\left(p^{n}\right) \leqslant d$.
- If p^{n} divides $f(k)$ for some $1 \leqslant k \leqslant x$, we have $p^{n} \leqslant f(k) \leqslant f(x)<x^{d+1}$, which implies that $n<(d+1) \frac{\log x}{\log p} \ll \log x / \log p$.

Estimate for $\alpha_{p}(x)$

- Thus,

$$
\alpha_{p}(x)=\sum_{n=1}^{\infty} \sigma\left(p^{n}\right)=\sum_{p^{n}<x} \sigma\left(p^{n}\right)+\mathcal{O}\left(\frac{\log x}{\log p}\right)
$$

- We split the summation into three intervals:

$$
p^{n} \in\left[1, x_{\mathfrak{b}}\right] \cup\left(x_{\mathfrak{b}}, x^{0.9}\right] \cup\left(x^{0.9}, x\right) .
$$

- The third summation is small. By routine calculations, it can be shown to be at most $x^{0.2}$.
- The second summation is

$$
\begin{aligned}
\sum_{p^{n} \in\left(x_{\mathfrak{b}}, x^{0.9}\right]} \sigma\left(p^{n}\right) & =\sum_{p^{n} \in\left(x_{\mathfrak{b}}, x^{0.9}\right]} \sum_{r \in \operatorname{res}(m)} \pi(x ; m, r) \\
& <\sum_{p^{n} \in\left(x_{\mathfrak{b}}, x^{0.9}\right]} \operatorname{res}_{\text {num }}(m) \max _{r \in \operatorname{res}(m)} \pi(x ; m, r)
\end{aligned}
$$

Estimate for $\alpha_{p}(x)$

$$
\sum_{\rho^{n} \in\left[\left(x_{0}, x^{0} \cdot 9\right]\right.} \sigma\left(p^{n}\right)<\sum_{p^{n} \in\left(x_{\mathrm{b}}, x^{0.0}\right]} \operatorname{res}_{\mathrm{num}}(m) \underset{r \max (m)}{\max } \pi(x ; m, r)
$$

Lemma 4 (Weak Brun-Titchmarsh)

Let $\varepsilon>0$ be a constant. Then, $\pi(x ; m, a)<_{\varepsilon} \frac{x}{\phi(m) \log x}$ for all positive integers $m<x^{1-\varepsilon}$.

Using the above bound, the proof can be completed.

$$
\sum_{p^{n} \in\left(x_{\mathfrak{b}}, x^{0.9}\right]} \sigma\left(p^{n}\right) \ll \frac{x}{\max \left\{p, x_{\mathfrak{b}}\right\} \log x}+\frac{(\log x)^{2 B}}{\log p}
$$

Estimate for small primes

- We define

$$
Q_{S}(x)=\prod_{p<x_{\mathfrak{b}}} p^{\alpha_{\rho}(x)},
$$

the part of $Q(x)$ consisting of small prime divisors.

- Using " α bound",

$$
\begin{aligned}
\log Q_{S}(x) & =\sum_{p<x_{\mathfrak{b}}} \alpha_{p}(x) \log p \\
& =\sum_{p<x_{\mathfrak{b}}}\left(\sum_{p^{n}<x_{\mathfrak{b}}} \sigma\left(p^{n}\right)+\mathcal{O}\left(\frac{x}{x_{\mathfrak{b}} \log x}+\frac{(\log x)^{2 B}}{\log p}\right)\right) \log p \\
& =\sum_{m<x_{\mathfrak{b}}} \sigma(m) \Lambda(m)+\mathcal{O}\left(\frac{x}{\log x}\right) .
\end{aligned}
$$

- Λ is the von Mangoldt function defined as

$$
\Lambda(n)= \begin{cases}\log p & \text { if } n=p^{k} \text { for some prime } p \text { and integer } k \geqslant 1, \\ 0 & \text { otherwise }\end{cases}
$$

Estimate for small primes

Theorem 5 (Bombieri-Vinogradov)

Let $B \geqslant 6$ and $Q \leqslant x^{\frac{1}{2}}(\log x)^{-B}$. Then,

$$
\sum_{q \leqslant Q} \max _{2 \leqslant y \leqslant x} \max _{(a, q)=1}\left|\pi(y ; q, a)-\frac{y}{\phi(q) \log y}\right| \ll B \frac{x}{(\log x)^{B-5}}
$$

$$
\begin{aligned}
\sum_{m<x_{\mathfrak{b}}} \sigma(m) \wedge(m) & =\sum_{m<x_{\mathfrak{b}}} \sum_{r \in \operatorname{res}(m)} \pi(x ; m, r) \wedge(m) \\
& <\sum_{m<x_{\mathfrak{b}}} \operatorname{res}_{\text {num }}(m) \max _{r \in \operatorname{res}(m)} \pi(x ; m, r) \wedge(m) \\
& \ll \frac{x}{\log x} \sum_{m<x_{\mathfrak{b}}} \frac{\operatorname{res}_{\text {num }}(m) \wedge(m)}{\phi(m)}+\mathcal{O}\left(\frac{x}{(\log x)^{B-5}}\right)
\end{aligned}
$$

Estimate for small primes

Lemma 6 (Corollary of §3.3.3.5 of Serre's "Lectures on $N_{X}(p)$ ")

Let f be an irreducible integer polynomial and $\operatorname{res}_{n u m}(m)$ be the number of roots of the congruence $f(x) \equiv 0(\bmod m)$. Then,

$$
\sum_{p<x} \frac{\operatorname{res}_{\text {num }}(p) \log p}{p-1}=\log x+R+o(1)
$$

for some constant R.
Through some calculation, one finds that

$$
\sum_{m<x_{\mathfrak{b}}} \sigma(m) \wedge(m) \ll \frac{x}{2}-\frac{B x \log \log x}{\log x}+\mathcal{O}\left(\frac{x}{\log x}\right)
$$

Proposition 1

$\log Q_{S}(x) \ll \frac{x}{2}-\frac{B x \log \log x}{\log x}+\mathcal{O}\left(\frac{x}{\log x}\right)$.

Removing medium-sized primes

- Define the product

$$
Q_{M}(x)=\prod_{x_{b} \leqslant p \leqslant x^{1 / 2}} p^{\alpha_{\rho}(x)},
$$

the part of $Q(x)$ consisting of medium-sized primes. The main result of this section is the following.

Proposition 2

$\log Q_{M}(x) \ll \frac{x \log \log x}{\log x}$.

- This means we can just remove medium-sized primes from $\log Q(x)$ and only lose a sublinear quantity.

Removing medium-sized primes

From " α bound", it follows that

$$
\begin{aligned}
\log Q_{M}(x) & =\sum_{x_{b} \leqslant p \leqslant x^{1 / 2}} \alpha_{p}(x) \log p \\
& \ll \sum_{x_{b} \leqslant p \leqslant x^{1 / 2}}\left(\frac{x}{p \log x}+\frac{(\log x)^{2 B}}{\log p}\right) \log p \\
& =\frac{x}{\log x} \sum_{x_{b} \leqslant p \leqslant x^{1 / 2}} \frac{\log p}{p}+\mathcal{O}\left(x^{1 / 2}(\log x)^{2 B}\right) \\
& \ll \frac{x \log \log x}{\log x},
\end{aligned}
$$

(Mertens' theorem)
as desired.
Theorem 7 (Mertens)
$\sum_{p<x} \log p / p=\log x+O(1)$.

Bounding large primes

Define the product

$$
Q_{L}(x)=\prod_{x^{1 / 2}<p<x^{\delta}} p^{\alpha_{p}(x)}
$$

the part of $Q(x)$ consisting of large primes. One carries out a similar analysis and obtains

Proposition 3

$\log Q_{L}(x) \leqslant(1+o(1)) x \int_{1 / 2}^{\delta} C(\theta) \mathrm{d} \theta$.
where $C(\theta)$ is as in the following theorem.

Theorem 8 (Brun-Titchmarsh, Iwaniec)

Let $\theta=\frac{\log m}{\log x}$. Then,

$$
\pi(x ; m, a)<(C(\theta)+o(1)) \cdot \frac{x}{\phi(m) \log x}
$$

for $\left(C(\theta)=\frac{2}{1-\theta}, \theta \in(0,1)\right)$ and $\left(C(\theta)=\frac{8}{6-7 \theta}, \theta \in[9 / 10,2 / 3]\right)$.

Summary of estimates

-

$$
\log Q_{S}(x)=\frac{x}{2}-\frac{B x \log \log x}{\log x}+\mathcal{O}\left(\frac{x}{\log x}\right)
$$

$$
\begin{gathered}
\log Q_{M}(x) \ll \frac{x \log \log x}{\log x} . \\
\log Q_{L}(x) \leqslant(1+o(1)) x \int_{1 / 2}^{\delta} C(\theta) \mathrm{d} \theta
\end{gathered}
$$

The main bound

- Since $f(x) \sim x^{d} \Longrightarrow \log f(x)=d \log x+\mathcal{O}(1)$, it is easy to see that

$$
\log Q(x)=\sum_{p<x}(d \log p+\mathcal{O}(1))=d x+\mathcal{O}(x / \log x) .
$$

- Define

$$
Q_{V L}(x)=\prod_{p \geqslant x^{\delta}} p^{\alpha_{p}(x)},
$$

the part of $Q(x)$ consisting of primes at least x^{δ} (very large primes).
$\log Q_{V L}(x)=\log \frac{Q(x)}{Q_{S}(x) Q_{M}(x) Q_{L}(x)} \geqslant\left(d-\frac{1}{2}-\int_{1 / 2}^{\delta} C(\theta) \mathrm{d} \theta+o(1)\right) x$.

Finishing the argument

- Define $L(x)=\operatorname{lcm}\{f(p) \mid p<x\}$. Let p be a prime such that $p \geqslant x^{\delta}$. One can check that the exponent of p in $Q(x)$ is at most $\mathcal{O}\left(x^{1-\delta}\right)$. Indeed, since $p^{2}>x$, it follows that p^{2} can divide at most one of $f(q)$'s. So most of the exponent comes from p dividing $f(q)$ only once.
- Therefore,

$$
\left(d-\frac{1}{2}-\int_{1 / 2}^{\delta} C(\theta) \mathrm{d} \theta+o(1)\right) x \leqslant \log Q_{V L}(x) \ll x^{1-\delta} \sum_{\substack{p \geqslant x^{\delta} \\ p \mid Q(x)}} \log p .
$$

- Thus,

$$
\log L(x)>\sum_{\substack{p \geqslant x^{\delta} \\ p \mid Q(x)}} \log p \gg x^{\delta}
$$

holds for each δ satisfying $d-\frac{1}{2}-\int_{1 / 2}^{\delta} C(\theta) \mathrm{d} \theta>0$.

- By routine optimization, it can be obtained that $\delta=1-\varepsilon(d)$ works for $\varepsilon(1)=0.3735, \varepsilon(2)=0.153$ and $\varepsilon(d)=\exp \left(\frac{-d-0.9788}{2}\right)$ for $d \geqslant 3$.

Greatest prime divisor of $f(p)$

- Set $\delta=1-\varepsilon(d)$. We saw that

$$
\log Q_{V L}(x)=\sum_{q<x} \sum_{\substack{p>x^{\delta} \\ p \mid f(q)}} \log p \gg x
$$

- Let the number of primes p less than x such that $f(p)$ has a prime divisor greater than x^{δ} be $N(x)$. Note that if $p \mid Q(x)$, then $p<x^{d+1}$ for all large x.
- Thus,
which completes the proof.

References

On the Least Common Multiple of Polynomial Sequences at Prime Arguments (with Abhishek Jha), International Journal Of Number Theory (2021)

