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A word on notations

We write a(x) = O(b(x)) if there exists an absolute constant c such that
|a(x)| < c · b(x) for all sufficiently large x . If limx→∞ a(x)/b(x) = 0 then
we write a(x) = o(b(x)).

a(x) ≪ b(x) means a(x) < C · b(x) for some positive constant C and for
all sufficiently large x .

a(x) ≫ b(x) means a(x) > C · b(x) for some positive constant C and for
all sufficiently large x .

We say that a(x) ∼ b(x) if limx→∞
a(x)
b(x) = 1.

Throughout the article, p and q will denote primes, and we fix a monic
irreducible polynomial f ∈ Z[x ] of degree d ⩾ 1.

We will often suppress the dependence of constants on f .

Define π(x) to be the number of primes p < x and π(x ;m, a) to be the
number of primes p < x such that p ≡ a (mod m).

For convenience, set xb = x1/2(log x)−B .
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Introduction

The Prime Number Theorem is equivalent to

log lcm{1, 2, . . . , n} ∼ n.

Indeed,

log lcm{1, 2, . . . , n} =
∑
p⩽n

⌊
log n

log p

⌋
log p ≈

∑
p⩽n

log n

log p
· log p = π(n) log n.

Motivated by this, people investigated lcm{f (1), f (2), . . . , f (n)} for some
irreducible polynomial f .

However, the growth is not the same for deg f ⩾ 2. It is conjectured that
log lcm{f (1), f (2), . . . , f (n)} ∼ (d − 1)x log x for irreducible polynomials f
of degree d ⩾ 2.

We study the analogous problem at prime arguments. That is,
lcm{f (p) | p < x} for an arbitrary polynomial f ∈ Z[x ]. For simplicity, we
will only consider irreducible polynomials f .
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Results

Theorem 1 (N. & Jha)

Let f ∈ Z[x ] be an irreducible polynomial of degree d . Then,

log lcm{f (p) | p < x} ≫ x1−ε(d),

where ε(1) = 0.3735, ε(2) = 0.153 and ε(d) = exp
(−d−0.9788

2

)
for d ⩾ 3.

We remark that log lcm{f (p) | p < x} ⩽ (d + o(1))x ≪ x follows from the
Prime Number Theorem.

Theorem 2 (N. & Jha)

Let f ∈ Z[x ] be an irreducible polynomial of degree d . Then, there is a positive
proportion of primes p such that f (p) has a prime divisor greater than p1−ε(d),
where ε(1) = 0.3735, ε(2) = 0.153 and ε(d) = exp

(−d−0.9788
2

)
for d ⩾ 3.
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Setup

We study the product defined by

Q(x) =
∏
q<x

|f (q)| =
∏
p

pαp(x)

Idea is to exploit the fact that the contribution of prime factors less than
xδ is negligible compared to that of prime factors greater than xδ, where δ
is a parameter in ( 12 , 1) to be chosen later. Throughout, B will denote
some large enough constant.

Define res(m) to be the set of residues modulo m which satisfy the
congruence f (x) ≡ 0 (mod m) and resnum(m) to be the cardinality of
res(m).

Note that we have resnum(p) ⩽ d by Lagrange’s theorem and that if
p ∤ disc f then resnum(p) = resnum(p

n) for all n ⩾ 2 by Hensel’s lemma.

Also define σ(m) to be the sum∑
r∈res(m)

π(x ;m, r),

the number of elements in {f (p) | p < x} divisible by m.
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Estimate for αp(x)

Lemma 3 (“α bound”)

Let p be a prime. If p ∤ disc f , then

αp(x) =
∑

pn<xb

σ(pn) +O
(

x

max{p, xb} log x
+

(log x)2B

log p

)
;

else if p | disc f , we have
αp(x) = σ(p).

We only consider the case p ∤ disc f .
We have

αp(x) =
∞∑
n=1

σ(pn) =
∑
pn<x

σ(pn) +
∑
x⩽pn

σ(pn).

When pn ⩾ x , we see that σ(pn) ⩽ resnum(p
n) ⩽ d .

If pn divides f (k) for some 1 ⩽ k ⩽ x , we have pn ⩽ f (k) ⩽ f (x) < xd+1,
which implies that n < (d + 1) log xlog p ≪ log x/ log p.
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Estimate for αp(x)

Thus,

αp(x) =
∞∑
n=1

σ(pn) =
∑
pn<x

σ(pn) +O
(
log x

log p

)
.

We split the summation into three intervals:

pn ∈ [1, xb] ∪ (xb, x
0.9] ∪ (x0.9, x).

The third summation is small. By routine calculations, it can be shown to
be at most x0.2.

The second summation is∑
pn∈(xb,x0.9]

σ(pn) =
∑

pn∈(xb,x0.9]

∑
r∈res(m)

π(x ;m, r)

<
∑

pn∈(xb,x0.9]

resnum(m) max
r∈res(m)

π(x ;m, r)
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Estimate for αp(x)

∑
pn∈(xb,x0.9]

σ(pn) <
∑

pn∈(xb,x0.9]

resnum(m) max
r∈res(m)

π(x ;m, r)

Lemma 4 (Weak Brun-Titchmarsh)

Let ε > 0 be a constant. Then, π(x ;m, a) ≪ε
x

ϕ(m) log x for all positive integers

m < x1−ε.

Using the above bound, the proof can be completed.

∑
pn∈(xb,x0.9]

σ(pn) ≪ x

max{p, xb} log x
+

(log x)2B

log p
.
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Estimate for small primes

We define
QS(x) =

∏
p<xb

pαp(x),

the part of Q(x) consisting of small prime divisors.

Using “α bound”,

logQS(x) =
∑
p<xb

αp(x) log p

=
∑
p<xb

( ∑
pn<xb

σ(pn) +O
(

x

xb log x
+

(log x)2B

log p

))
log p

=
∑
m<xb

σ(m)Λ(m) +O
(

x

log x

)
.

Λ is the von Mangoldt function defined as

Λ(n) =

{
log p if n = pk for some prime p and integer k ⩾ 1,

0 otherwise.
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Estimate for small primes

Theorem 5 (Bombieri-Vinogradov)

Let B ⩾ 6 and Q ⩽ x
1
2 (log x)−B . Then,∑

q⩽Q

max
2⩽y⩽x

max
(a,q)=1

∣∣∣∣π(y ; q, a)− y

ϕ(q) log y

∣∣∣∣≪B
x

(log x)B−5
.

∑
m<xb

σ(m)Λ(m) =
∑
m<xb

∑
r∈res(m)

π(x ;m, r)Λ(m)

<
∑
m<xb

resnum(m) max
r∈res(m)

π(x ;m, r)Λ(m)

≪ x

log x

∑
m<xb

resnum(m)Λ(m)

ϕ(m)
+O

(
x

(log x)B−5

)
...
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Estimate for small primes

Lemma 6 (Corollary of §3.3.3.5 of Serre’s “Lectures on NX (p)”)

Let f be an irreducible integer polynomial and resnum(m) be the number of
roots of the congruence f (x) ≡ 0 (mod m). Then,∑

p<x

resnum(p) log p

p − 1
= log x + R + o(1)

for some constant R.

Through some calculation, one finds that∑
m<xb

σ(m)Λ(m) ≪ x

2
− Bx log log x

log x
+O

(
x

log x

)
.

Proposition 1

logQS(x) ≪ x
2 − Bx log log x

log x +O
(

x
log x

)
.
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Removing medium-sized primes

Define the product

QM(x) =
∏

xb⩽p⩽x1/2

pαp(x),

the part of Q(x) consisting of medium-sized primes. The main result of
this section is the following.

Proposition 2

logQM(x) ≪ x log log x
log x .

This means we can just remove medium-sized primes from logQ(x) and
only lose a sublinear quantity.
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Removing medium-sized primes

From “α bound”, it follows that

logQM(x) =
∑

xb⩽p⩽x1/2

αp(x) log p

≪
∑

xb⩽p⩽x1/2

(
x

p log x
+

(log x)2B

log p

)
log p

=
x

log x

∑
xb⩽p⩽x1/2

log p

p
+O(x1/2(log x)2B)

≪ x log log x

log x
, (Mertens’ theorem)

as desired.

Theorem 7 (Mertens)∑
p<x log p/p = log x + O(1).
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Bounding large primes
Define the product

QL(x) =
∏

x1/2<p<xδ

pαp(x),

the part of Q(x) consisting of large primes. One carries out a similar analysis
and obtains

Proposition 3

logQL(x) ⩽ (1 + o(1))x
∫ δ

1/2
C (θ) dθ.

where C (θ) is as in the following theorem.

Theorem 8 (Brun-Titchmarsh, Iwaniec)

Let θ = logm
log x . Then,

π(x ;m, a) < (C (θ) + o(1)) · x

ϕ(m) log x

for (C (θ) = 2
1−θ , θ ∈ (0, 1)) and (C (θ) = 8

6−7θ , θ ∈ [9/10, 2/3]).
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Summary of estimates

logQS(x) =
x

2
− Bx log log x

log x
+O

(
x

log x

)

logQM(x) ≪ x log log x

log x
.

logQL(x) ⩽ (1 + o(1))x

∫ δ

1/2

C (θ) dθ

.
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The main bound

Since f (x) ∼ xd =⇒ log f (x) = d log x +O(1), it is easy to see that

logQ(x) =
∑
p<x

(d log p +O(1)) = dx +O(x/ log x).

Define
QVL(x) =

∏
p⩾xδ

pαp(x),

the part of Q(x) consisting of primes at least xδ (very large primes).

logQVL(x) = log
Q(x)

QS(x)QM(x)QL(x)
⩾

(
d − 1

2
−
∫ δ

1/2

C (θ) dθ + o(1)

)
x .
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Finishing the argument

Define L(x) = lcm{f (p) | p < x}. Let p be a prime such that p ⩾ xδ. One
can check that the exponent of p in Q(x) is at most O(x1−δ). Indeed,
since p2 > x , it follows that p2 can divide at most one of f (q)’s. So most
of the exponent comes from p dividing f (q) only once.

Therefore,(
d − 1

2
−
∫ δ

1/2

C (θ) dθ + o(1)

)
x ⩽ logQVL(x) ≪ x1−δ

∑
p⩾xδ

p|Q(x)

log p.

Thus,
log L(x) >

∑
p⩾xδ

p|Q(x)

log p ≫ xδ

holds for each δ satisfying d − 1
2 −

∫ δ

1/2
C (θ) dθ > 0.

By routine optimization, it can be obtained that δ = 1− ε(d) works for
ε(1) = 0.3735, ε(2) = 0.153 and ε(d) = exp

(−d−0.9788
2

)
for d ⩾ 3.
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Greatest prime divisor of f (p)

Set δ = 1− ε(d). We saw that

logQVL(x) =
∑
q<x

∑
p>xδ

p|f (q)

log p ≫ x .

Let the number of primes p less than x such that f (p) has a prime divisor
greater than xδ be N(x). Note that if p | Q(x), then p < xd+1 for all large
x .

Thus,

N(x) ≫
∑
q<x

∑
p>xδ

p|f (q)

1 ≫
∑
q<x

∑
p>xδ

p|f (q)

log p

log x
≫ 1

log x

∑
q<x

∑
p>xδ

p|f (q)

log p ≫ x

log x
,

which completes the proof.
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