
HODGE-TATE DECOMPOSITION FOR ABELIAN VARIETIES WITH GOOD REDUCTION

AYAN NATH

Abstract. Let K be a finite extension of Qp and A/K an abelian variety with good reduction. We give a brief
account of Hodge-Tate decomposition for the p-adic étale cohomology of A following Fontaine [Fon82].

1. Introduction

Fix a finite extension K /Qp , a completed algebraic closure K ,→Cp , and Galois group GK = Gal(K /K ). It
is well-known that Cp is algebraically closed. Since GK acts on K by isometries, it follows that the action
of G extends to Cp . Given a finite-dimensional representation V of GK over Qp , one can consider the
diagonal action of GK on V ⊗Qp Cp . Of course, it is Qp -linear but not Cp -linear. Such a Cp -vector space
is called a semi-linear Galois representation.

Theorem 1.1 (Hodge-Tate decomposition). Let A be an abelian variety over K with good reduction. Then
there is a canonical isomorphism of semi-linear Galois representations

H1
ét(AK ,Qp )⊗Qp Cp ≃ (H1(A,OA)⊕ (H0(A,Ω1

A/K )⊗Zp
χ∨

cyc))⊗K Cp ,

where χ∨
cyc is the dual of the p-adic cyclotomic character.

Remark 1.2. For an abelian variety, the cohomology ring H•
ét(AK ,Qp ) is canonically isomorphic to the

exterior algebra over H1
ét(AK ,Qp ). Therefore, it suffices to understand the first cohomology group.

2. Preliminaries

2.1. Tate modules.

Definition 2.1.1. Given an abelian group A and a prime p, the p-adic Tate module of A is defined as
the inverse limit

Tp A = lim
n

A[pn],

with transition morphisms given by the multiplication-by-p map A[pn+1] → A[pn]. It is naturally a
torsion-free Zp -module.

Example 2.1.2. The p-adic cyclotomic character χcyc : GK →Z×
p is defined as TpGm,K (K ) = Tp K

×, with
the obvious Galois action, together with the choice of a (suitable) element. From now onwards, we
denote the p-adic cyclotomic character as Zp (1), also known as a Tate twist. Naturally, set Zp (−1) =
Zp (1)∨ := HomZp (Zp (1),Zp ), Zp (n) :=Zp (1)⊗n and Cp (n) :=Cp ⊗Zp Zp (n) for all integers n.

Theorem 2.1.3 ([Tate, Theorems 1-2]). (i) dimK Hi (GK ,Cp ) =
{

1, i = 0,1

0, i Ê 2
.
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(ii) If n is nonzero, then Hi (GK ,Cp (n)) = 0 for all i Ê 0.

Corresponding to any abelian variety A, there is a dual abelian variety A∨ := Pic0 A. There is a biduality
isomorphism A

∼−→ A∨∨.

Theorem 2.1.4. Let A be an abelian variety over K . Then H1
ét(AK ,Zp ) ≃ Tp A∨.

Sketch. Start with the Kummer sequence:

0→µpn →Gm →Gm → 0.

Passing to cohomology and using H1
ét(AK ,Gm) ≃ Pic A, one derives H1

ét(AK ,µpn ) ≃ (Pic0 AK )[pn]. Taking
inverse limits, we get the desired result. □

2.2. Weil pairing. It turns out that n-torsion group schemes of A and A∨ are Cartier duals of each
other. There is a Weil (perfect) pairing

A[pn](K )× A∨[pn](K )→µpn (K )

compatible with the Galois action. Passing to Tate modules, one obtains a Galois-equivariant perfect
pairing

Tp A×Tp A∨ →Zp (1).

Consequently,
H1

ét(AK ,Zp ) ≃ Tp A∨ ≃ HomZp (Tp A,Zp (1)) ≃ (Tp A)∨⊗Zp Zp (1).

2.3. p-adic periods. Consider the OK -module of Kähler differentials ΩOK /OK . Since ΩOK /OK

[
1
p

]
=

ΩOK /OK ⊗Zp Qp =ΩK /K = 0, it follows that ΩOK /OK is p-torsion. The following theorem of Fontaine gives
a complete understanding of the rational Tate module of ΩOK /OK .

Theorem 2.3.1 ([Fon82, §1]). There is a natural isomorphism of GK -modules

TpGm,K (K )⊗Zp Cp
∼−→ TpΩOK /OK ⊗Zp Qp .

induced by dlog: O×
K
→ΩOK /OK , f 7→ d f

f .

Note that the domain of the above isomorphism is (non-canonically) isomorphic to Cp (1).

3. Proof of Hodge-Tate decomposition

Let A → SpecOK be an abelian scheme with generic fiber A → SpecK . Any point P ∈ A(K ) extends
to P ∈ A(OK ) by valuative criterion of properness. Evaluating differentials at P induces a morphism
P
∗
ΩA/OK

→ΩOK /OK . This induces a map

A(K )×H0(A ,ΩA/OK
)→ΩOK /OK .

This is actually a Galois-equivariant bilinear pairing due to translation invariance of global differential
forms. Passing to Tate modules, we get a canonical map

F : H0(A ,ΩA/OK
)→HomZp [GK ](Tp A,TpΩOK /OK ).

It is a routine check that the above morphism is independent of the choice of model A .

Proposition 3.1. F is injective.
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The above result is proven by passing to formal completions, which we postpone to Section 4. Using
Theorem 2.1.4, F can be rewritten as

H0(A ,ΩA/OK
) ,→H1

ét(AK ,Zp (1))⊗Zp [Gk ] TpΩOK /OK .

Inverting p, using Theorem 2.3.1, and twisting by Cp (−1), we get an injection

βA : H0(A,ΩA/K )⊗K Cp (−1) ,→H1
ét(AK ,Qp )⊗Qp Cp .

Similarly,
βA∨ : H0(A∨,ΩA∨/K )⊗K Cp (−1) ,→H1

ét(A∨
K

,Qp )⊗Qp Cp .

Dualizing, using H1(A,OA)∨ ≃ H0(A∨,ΩA∨/K ) ([Mum, §13]), and the Weil pairing, we obtain a surjection
of Galois modules

αA : H1
ét(AK ,Qp )⊗Qp Cp ↠H1(A,OA)⊗K Cp .

Consider (αA◦βA)⊗Cp (1) : H0(A,ΩA/K )⊗KCp →H1(A,OA)⊗KCp (1). Observe that any e⊗1 ∈ H0(A,ΩA/K )⊗K

Cp is GK -invariant. Hence, the image of e⊗1 lies in (H1(A,OA)⊗K Cp (1))GK , which is 0 by Theorem 2.1.3.
Since elements of the form e ⊗1 generate the domain, it follows that αA ◦βA = 0. Because of dimension
reasons, αA and βA give an exact sequence

0→H0(A,ΩA/K )⊗K Cp (−1)→H1
ét(AK ,Qp )⊗Qp Cp →H1(A,OA)⊗K Cp → 0.

It is now sufficient to show that Ext1(Cp ,Cp (−1)) = 0 in the category of finite-dimensional semi-linear
Galois representations over Cp . However, observe that Hom(Cp ,−) = (−)GK in the same category. Thus,
Theorem 2.1.3 (b) finishes the proof of Theorem 1.1. □

4. Proof of Proposition 3.1

We follow [Mon]. Define the ‘perfection’ Ã as the inverse limit of the following system

· · · ·p−→ A(K )
·p−→ · · · ·p−→ A(K )

·p−→ A(K )
·p−→ A(K ).

Denote by Ω̃ the perfection of ΩOK /OK . Similar to the construction of F , we can form a map

F̃ : H0(A ,ΩA/OK
)→HomZp [GK ](Ã,Ω̃).

We claim that there is a commutative diagram

H0(A ,ΩA/OK
) HomZp [GK ](Tp A,TpΩOK /OK )⊗Zp Qp

HomZp [GK ](Ã,Ω̃)⊗Zp Qp

FQp

F̃Qp

Since ΩOK /OK is p-torsion, the natural inclusion TpΩOK /OK ,→ Ω̃ induces an isomorphism Ω̃[1/p] ≃
TpΩOK /OK ⊗Zp Qp =Cp (1) by Theorem 2.3.1. We have a canonical exact sequence

0→ Tp A → Ã → A(K )→ 0.

Apply HomZp [GK ](−,Ω̃)⊗Zp Qp . Observe that HomZp [GK ](A(K ),Ω̃)⊗Zp Qp ≃ HomZp [GK ](A(K ),Cp (1)) = 0.

For if φ : A(K )→Cp (1) is a Galois equivariant morphism, we have φ(A(L)) ⊆ H0(GL ,Cp (1)) = 0 for every
finite extension L/K . Let θ be a non-vanishing global differential on A . We need to show that F (θ) ̸= 0. If
θ ∈mKΩA/OK

, we can divide θ by some power of the uniformizer of K so that θ is non-vanishing modulo
mK . This is ok to do because TpΩOK /OK is torsion-free. It suffices to show that F̃ (θ) is not torsion. Let Â be
the formal completion of A along the unit section. By smoothness, Â is isomorphic to SpfOK �x1, . . . , xd �
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where d = dim A. Observe that Â(OK ) ,→ A(OK ) and that Â(OK ) can be identified with mK ×·· ·×mK .
Expand θ in formal coordinates:

θ =∑
i

Fi (x1, . . . , xd )dxi , Fi ∈OK �x1, . . . , xd �.

Since we have assumed that the the reduction modulo mK of θ is nonzero, it follows that Fi (0, . . . ,0)
must be a unit for some i , say for i = 1. Then for any point P = (x,0, . . . ,0) ∈mK ×·· ·×mK and any lift
P̃ ∈ Ã, we have p0(F̃ (θ)(P̃ )) = F1(x,0, . . . ,0) dx where p0 : Ω̃→ΩOK /OK is the canonical projection. Since
F1(x,0 . . . ,0) ∈O×

K
and x can be varied over p-power roots of p, we conclude. □
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