THE COHEN-MACAULAY PROPERTY OF INVARIANT RINGS

AYAN NATH

Contents

1.	Introc	luction	1
2.	Backg	round	2
	2.1.	Cohen-Macaulayness, generic freeness, graded Noether normalization	2
3.	The p	The proof	
	3.1.	Setup	4
	3.2.	Finite generation trick	4
	3.4.	Modding out by maximal ideals	5
	3.5.	Characteristic <i>p</i> : exploiting the Frobenious endomorphism	5
References			6

1 Introduction

In this expository report, we discuss a short proof of the Hochster-Roberts theorem (see Theorem 1.6) given in Knop's unpublished note [3] written in German. Section 1 introduces and defines some algebraic notions just enough to understand the statement of Theorem 1.6, and Section 2 provides a rapid review of the background needed for the proof. The reader may skip to Section 3 for the main proof.

1.1. *Notation.* The letters *A*, *B*, *C*, *R*, and *S* always denote commutative unital rings and *k* denotes a field. For maximal ideals, we always use m or n. All rings are Noetherian.

Before stating the main theorem, we need to introduce some notions. Noetherian local rings (R, \mathfrak{m}) always have finite Krull dimension– dim $R \leq \dim_{R/\mathfrak{m}} \mathfrak{m}/\mathfrak{m}^2$ follows by a simple application of Nakayama and Krull's height theorem.

1.2. Definition (Regular sequence). A sequence of elements $f_1, f_2, ..., f_r \in \mathfrak{m}$ in a Noetherian local ring (R, \mathfrak{m}) is called *regular* if f_1 is a nonzerodivisor and f_i is a nonzerodivisor on $R/(f_1, ..., f_{i-1})$ for each i = 2, ..., r.

This notion a priori depends on the order of the sequence. Intuitively, a regular sequence "cuts down" the maximal ideal as much as possible at each step. If $f \in R$ is any non-unit and nonzerodivisor, we have dim $R/(f) \leq \dim R - 1^1$. It follows that a regular sequence can have at most dim R terms.

Date: 25th November, 2022

Affiliation: BSc 2nd year, Chennai Mathematical Institute

¹This is because minimal primes only have zerodivisors. If $\mathfrak{p}_1 \subsetneq \mathfrak{p}_2 \subsetneq \cdots \subsetneq \mathfrak{p}_n$ is a chain in R/(f) then we can find $\mathfrak{p}_0 \in \operatorname{Spec} R$ such that $\mathfrak{p}_0 \subsetneq \mathfrak{p}_1 + (f)$ as $\mathfrak{p}_1 + (f)$ cannot be a minimal prime, f being a nonzerodivisor. In fact, this is an equality, see Atiyah-Macdonald [1, Corollary 11.18].

AYAN NATH

1.3. Definition (Depth). The length of a maximal regular sequence in a Noetherian local ring *R* is called the *depth* of *R*. It is denoted depth *R*. For a general Noetherian ring *R* and prime ideal \mathfrak{p} , we write depth \mathfrak{p} for depth $R_{\mathfrak{p}}$.

Just like (co)dimension, depth can be thought of as a measure of how big a local ring or an ideal is. Since depth $R \le \dim R$ holds for all Noetherian local rings R, it is natural to investigate the equality case.

1.4. Definition (Cohen-Macaulay rings). A Noetherian local ring *R* is called *Cohen-Macaulay* if depth $R = \dim R$. In general, a ring *A* is called Cohen-Macaulay if A_p is a Cohen-Macaulay local ring for each $p \in \text{Spec } A$.

For a finite-dimensional *k*-vectorspace *V*, we denote the free algebra $k[\phi_1, \phi_2, ..., \phi_n]$ as k[V], where $(\phi_1, ..., \phi_n)$ is a fixed dual basis for the dual space of *V*. It is clear that k[V] doesn't depend on the choice of basis upto isomorphism. Let *G* be a group. A finite-dimensional *G*-representation *V* naturally induces an action of *G* on k[V] by identifying the unit degree graded piece of k[V] with *V*.

1.5. Definition (Linearly reductive group). A group *G* is called *linearly reductive*² if every finitedimensional *G*-representation *V* can be decomposed into irreducible subrepresentations.

We can now finally state the main theorem-

1.6. Theorem (Hochster-Roberts). — Let G be a linearly reductive group and V a finite-dimensional G-representation, both defined over a field k of characteristic zero. Then $k[V]^G$ is a Cohen-Macaulay ring.

The linearly reductive hypothesis on *G* is solely to ensure that $Ik[V] \cap k[V]^G = I$ holds for all $k[V]^G$ -ideals *I* (see Proposition 2.10). Any graded *k*-subalgebra *S* of k[V] such that $Ik[V] \cap S = I$ holds for all *S*-ideals *I* is also Cohen-Macaulay.

2 Background

2.1. Cohen-Macaulayness, generic freeness, graded Noether normalization. Checking Cohen-Macaulayness in the graded case is much easier due to the following result–

2.2. Lemma (Cohen-Macaulayness criterion for graded rings). — Let R be a postively graded Noetherian ring and $\mathfrak{m} = R_+$ be the irrelevant ideal. Then R is Cohen-Macaulay if and only if $R_{\mathfrak{m}}$ is Cohen-Macaulay.

Proof. See Bruns-Herzog [2, Exercise 2.1.27 (c), Theorem 1.5.8 (b), Theorem 1.5.9].

2.3. Theorem (Generic freeness). — Let A be a Noetherian domain and B be a finitely generated A-algebra. Then there exists a nonzero $f \in A$ such that B_f is a free A_f -module.

Proof. See Matsumura [4, 22.A]. Also see https://en.wikipedia.org/wiki/Noether_normalizat ion_lemma#Illustrative_application:_generic_freeness.

The following lemma is true without the infiniteness constraint on k, but since our base field is of characteristic 0, we assume k is infinite to simplify the proof.

 $^{^{2}}G$ is an algebraic group in the original paper, but we avoid this as the Hochster-Roberts theorem has nothing to do with the scheme structure of *G* in characteristic zero.

2.4. Lemma (Graded Noether normalization). — Let R be a finitely-generated positively-graded k-algebra, where k is an infinite field. Assume that the degree zero graded piece of R is just k. There exist homogeneous elements $x_1, x_2, ..., x_n \in R$ such that

- (i) *R* is a finite extension of $k[x_1, x_2, ..., x_n]$.
- (*ii*) $n = \dim R$.
- (iii) $x_1, x_2, ..., x_n$ are algebraically independent over k.

Proof. We give a brief sketch. There exists d > 0 such that $R^{(d)} \stackrel{\text{def}}{=} R_0 \oplus R_d \oplus R_{2d} \oplus \cdots$ is generated by R_d over k. See Stacks [5, Tag: 0EGH]. As R is finite over $R^{(d)}$ we replace R with $R^{(d)}$. Take some homogeneous generators y_1, y_2, \ldots, y_m of R_d as a k-vectorspace. If y_i are algebraically independent, there is nothing to do. So suppose there is some nontrivial polynomial $f \in k[X_1, \ldots, X_m]$ with $f(y_1, \ldots, y_m) = 0$. We can pick f to be homogeneous as y_i are homogeneous. Due to infiniteness of k, there exist $a_i \in k$ such that $f(a_1, \ldots, a_{m-1}, 1) \neq 0$. Then $f(a_1, \ldots, a_{m-1}, 1)^{-1} f(a_1y_m + z_1, a_2y_m + z_2, \ldots, a_{m-1}y_m + z_{m-1}, y_m)$, where $z_i = y_i - a_i y_m$, is monic in y_m . Note that z_i are homogeneous. Thus, $R^{(d)}$ is finite over $k[z_1, z_2, \ldots, z_{m-1}]$ and we can induct on the k-vectorspace dimension of the degree 1 graded piece. The fact that the size of such a sequence of elements is dim R is a consequence of going-up theorem for integral extensions.

2.5. Lemma. — Let $B \hookrightarrow C$ be a finite type inclusion of domains. Then $\text{Spec } C \to \text{Spec } B$ maps closed points to closed points.

Proof. By induction, we may assume *C* is singly generated over *B*. Write $C = B[X]/\mathfrak{p}$. Then Spec $C \to$ Spec *B* factors through Spec B[X]. Obviously, Spec $C \to$ Spec B[X] maps closed points to closed points. So we must show that Spec $B[X] \to$ Spec *B* maps closed points to closed points. Indeed, suppose if $\mathfrak{m} \in MaxSpec B[X]$ and $\mathfrak{m} \cap B = \mathfrak{n}$. Then $\mathfrak{n}[X] + (X)$ is a proper ideal and it contains \mathfrak{m} . As \mathfrak{m} is maximal, this means that $\mathfrak{n}[X] + (X) = \mathfrak{m}$. Hence, $B[X]/\mathfrak{m} = B[X]/(\mathfrak{n}[X] + (X)) \cong B/\mathfrak{n}$. Thus, \mathfrak{n} is maximal in *B*.

2.6. Finite-generation of the invariant ring. We give a brief outline of the proof of finite-generation of the invariant ring.

2.7. Definition (Reynolds operator). — Let $S \subseteq R$ be rings. An *S*-module map $\rho : R \to S$ is called a *Reynolds operator corresponding to* $S \subseteq R$ if it fixes *S* pointwise.

2.8. Lemma. — Let G be a linearly reductive group acting linearly on a finite-dimensional k-vectorspace V. Then there is a linear map $V \rightarrow V^G$ which fixes V^G pointwise.

Proof. This is clear because the linearly reductive hypothesis means that we can decompose V into irreducible subrepresentations. One of the components would be the trivial subrepresentation V^G . So, we can decompose V as $V^G \oplus U$ where U is invariant under G. Now, the required map $V \to V^G$ is just the natural projection from V to V^G .

2.9. Lemma. — Let *G* be a linearly reductive group acting linearly on a free *k*-algebra $A = k[X_1, ..., X_n]$. Then there is a Reynolds operator corresponding to $A^G \subseteq A$.

Proof. We provide a brief sketch. Decompose *A* into the graded pieces as $A = k \oplus A_1 \oplus A_2 \oplus \cdots$. Then *G* acts linearly on each of the graded pieces. So, corresponding to each A_i , there is a Reynolds operator $\rho_i : A_i \to A_i^G$ by Lemma 2.8. Now the required Reynolds operator is just id $k \oplus \rho_1 \oplus \rho_2 \oplus \cdots$.

2.10. Proposition. — If there is a Reynolds operator for $S \subseteq R$. Then

(i) $IR \cap S = I$ for each S-ideal I.

(ii) if R is Noetherian, then so is S.

Proof. All of these are pretty straightforward to show. Omitted. [2, Proposition 6.4.4]

It can be shown by a routine induction on the degree that positively graded Noetherian *k*-algebras are generated by the (finitely many) generators of the irrelevant ideal. Concluding, R^G is a finitely generated *k*-algebra by Lemma 2.9 and Proposition 2.10 (ii).

3 The proof

3.1. Setup. Set $R = k[V] = k[X_1, ..., X_n]$, and $S = R^G$. We know that *S* is a finitely generated (graded) *k*-subalgebra of *R*. By graded Noether normalization (see Lemma 2.4), we can find homogeneous $f_1, ..., f_s \in S$ such that *S* is a finite *B*-module, where $B = k[f_1, ..., f_s]$ and $s = \dim S$. By Lemma 2.2, it suffices to show that $f_1, ..., f_s$ is a regular sequence in the localization of *S* at the irrelevant ideal, which is equivalent to the following for each r = 1, 2, ..., s - 1:

If $g_i \in S$, $1 \le i \le r+1$, and $g_{r+1}f_{r+1} \in g_1f_1 + g_2f_2 + \dots + g_rf_r$ then $g_{r+1} \in (f_1, \dots, f_r)S$.

In fact, we may assume that all the g_i 's are homogeneous because the ideal $(f_1, \ldots, f_r)S$ is homogeneous. By Proposition 2.10 (i), it suffices to show that $g_{r+1} \in (f_1, \ldots, f_r)R$. Let us assume the contrary that $g_{r+1} \notin (f_1, \ldots, f_r)R$. This is same as saying there doesn't exist $a_1, a_2, \ldots, a_r \in R$ with $g_{r+1} = a_1f_1 + a_2f_2 + \cdots + a_rf_r$. Because of homogeneity, we may assume that either deg $a_i = \deg g_{r+1} - \deg f_i$ or $a_i = 0$ for each $i = 1, 2, \ldots, r$. The nonexistence of $a_i \in R$ with $g_{r+1} = a_1f_1 + a_2f_2 + \cdots + a_rf_r$ is equivalent to unsolvability of a (finite) system of inhomogeneous linear equations, call it S, with coefficients in k obtained by comparing coefficients in R.

3.2. Finite generation trick. Let $r_1, \ldots, r_m \in S$ generate *S* as a *B*-module. Suppose *A* is a finitely generated (as a \mathbb{Z} -algebra) subring of *k* containing

- (a) all coefficients of g_i as a polynomial in X_1, \ldots, X_n , $1 \le i \le r+1$,
- (b) all the coefficients of $c_{ij} \in B$, as polynomials in f_1, \ldots, f_s , for some arbitrary representation

$$g_i = c_{i1}r_1 + c_{i2}r_2 + \dots + c_{im}r_m, \quad 1 \le i \le r+1.$$

(c) all the coefficients of $d_{ijk} \in B$, as polynomials in f_1, \ldots, f_s , for some representation

$$r_i r_j = d_{i\,i1} r_1 + d_{i\,j2} r_2 + \dots + d_{i\,im} r_m, \quad 1 \le i, j \le m.$$

The upshot of the above construction is that we can now replace k by the ring A which has the property that A/\mathfrak{m} is a finite field for each $\mathfrak{m} \in \text{MaxSpec } A$. Indeed, applying Noether normalization with respect to the prime subfield of A/\mathfrak{m} we see that it is a finite field. To be precise, define $R_0 = A[X_1, ..., X_n]$, $B_0 = A[f_1, ..., f_s]$, and $S_0 = B_0[r_1, ..., r_m]$, then we have

- (a) $S_0 \subseteq R_0$,
- (b) $S_0 = B_0 r_1 + \dots + B_0 r_m$,
- (c) $g_{r+1} \in S_0$,
- (d) $g_{r+1}f_{r+1} \in S_0f_1 + \dots + S_0f_r$.

So we can safely replace k with A in the theorem statement. Because of our assumption that S is unsolvable, it is also unsolvable in Frac A for any such $A \subseteq k$. Write the system of equations as Mx = b, where $M \in Mat_{p \times q}(A)$, $b \in A^{\oplus p} \setminus \{0\}$. Let N = [M | b] be the augmented matrix of the system. Consider the following claim:

3.3. Claim. — The system of equations Mx = b has no solutions in $x \in (\operatorname{Frac} A)^{\oplus q}$ if and only if the A-span of rows of N has a vector of the form $(0, 0, \dots, 0, b_0)$ for some nonzero $b_0 \in A$.

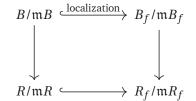
Proof. Suppose the *A*-span of rows of *N* has no vector of form $(0, 0, ..., 0, b_0)$ for any nonzero $b_0 \in A$. We must show that Mx = b has a solution. If a set of rows of *M* are linearly dependent³ then we have redundant equations. So we can delete all the redundant equations and assume that all rows of *M* are linearly independent. Therefore, the linear map $(\operatorname{Frac} A)^{\oplus q} \to (\operatorname{Frac} A)^{\oplus p}$ determined by *M* is surjective, and hence, a solution must exist.

Thus, unsolvability of a system of inhomogeneous linear equations Mx = b occurs due to the *A*-span of rows of the augmented matrix having a vector of the form $(0, 0, ..., 0, b_0)$ for some nonzero $b_0 \in A$.

We can now replace *A* by $A[1/b_0]$ to assume that S is not solvable modulo any $\mathfrak{m} \in MaxSpec A$.

3.4. Modding out by maximal ideals. We now want to mod out everything by a maximal ideal to reduce the problem to the case of finite fields. Let m be a maximal ideal of *A* to be chosen later.

Define $\overline{A} = A/\mathfrak{m}$, $\overline{R} = R/\mathfrak{m}R$, $\overline{B} = B/\mathfrak{m}B$, and $\overline{S} = S/\mathfrak{m}S$. Let $\overline{X_i} \in \overline{R}$, $\overline{f_i} \in \overline{B}$, and $\overline{g_i} \in \overline{S}$ denote the images of X_i, f_i , and g_i , respectively. Note that $\overline{R} = \overline{A}[\overline{X_1}, \dots, \overline{X_n}]$ is a free algebra and $\overline{B} = \overline{A}[\overline{f_1}, \dots, \overline{f_s}]$. Let the characteristic of \overline{A} be p > 0. We still have $\overline{g_{r+1}} \notin (\overline{f_1}, \dots, \overline{f_r})\overline{R}$. But there is something more we want– we would hope that $f_1, \dots, f_r \pmod{\mathfrak{m}R}$ are algebraically independent over A/\mathfrak{m} . This can be ensured by having $\overline{B} \subseteq \overline{R}$, i.e., the induced map $B/\mathfrak{m}B \to R/\mathfrak{m}R$ to be an injection^{4 5}. By generic freeness (Theorem 2.3), there exists a nonzero $f \in B$ such that R_f is a free B_f -module. The Jacobson radical of a free algebra over a domain is 0. So, we can find a maximal ideal $\mathfrak{n} \in MaxSpec B$ not containing f so that $\mathfrak{m} = \mathfrak{n} \cap A$ is a maximal ideal of A (see Lemma 2.5). We claim that $B/\mathfrak{m}B \to R/\mathfrak{m}R$ is an injection. This follows from the following commutative diagram:



Obviously, the horizontal localization maps are inclusions. The vertical map on the right hand side is also an injection because R_f is a free B_f -module. Hence, $B/\mathfrak{m}B \to R/\mathfrak{m}R$ is also an inclusion.

3.5. Characteristic *p*: exploiting the Frobenious endomorphism. We mod out by the m obtained in the previous subsection and write *k* for *A*/m. Because $B/\mathfrak{m}B \hookrightarrow R/\mathfrak{m}R$, we can think of $\overline{f_i}$ as elements of $R/\mathfrak{m}R$. For brevity, we also drop the bars. So, for e.g., we just write f_i for $\overline{f_i}$, *B* for \overline{B} , etc.

The *B*-module *S* has a maximum-rank⁶ free submodule, say *F*. Then *S*/*F* is a torsion *B*-module. So there exists a nonzero $c \in B$ so that $cS \subseteq F$ as *S*/*F* is finitely generated. We have

$$g_{r+1}f_{r+1} = g_1f_1 + g_2f_2 + \dots + g_rf_r.$$

³Linear (in)dependence is independent of whether we choose A or Frac A as our base ring because we can always clear denominators.

⁴In general, this is *not* an injection. Take, for example, $\mathbb{Z}[2X]/2\mathbb{Z}[2X] \rightarrow \mathbb{Z}[X]/2\mathbb{Z}[X]$.

⁵For if $P \in A[T_1,...,T_s]$ is a polynomial, not all coefficients in m, such that $P(f_1,...,f_s) \in \mathfrak{m}R$ (this is same as saying $f_i \pmod{\mathfrak{m}R}$ are algebraically dependent over A/\mathfrak{m}) then $P(f_1,...,f_s) \in \mathfrak{m}R \cap B = \mathfrak{m}B$, from the injectivity of $B/\mathfrak{m}B \to R/\mathfrak{m}R$. Therefore, the image of $P(f_1,...,f_s)$ in $B/\mathfrak{m}B$ is 0, which forces all coefficients of P to be in m as $B/\mathfrak{m}B$ is a free A/\mathfrak{m} -algebra generated by $\overline{f_1},...,\overline{f_s}$. Thus, $f_i \pmod{\mathfrak{m}R}$ are indeed algebraically independent over A/\mathfrak{m} .

⁶The rank is defined as the cardinality of a maximal set of elements of *S* which are linearly independent over *B*. Here, maximum-rank means that rank_B *F* = rank_B *S*. It can be shown that rank_B *S* = dim_{Frac B} $F \otimes_B$ Frac *B*.

Set $q = p^N$. Exponentiating by q and multiplying by c, we get

$$(\underbrace{cg_{r+1}^q}_{\in F})f_{r+1}^q = (\underbrace{cg_1^q}_{\in F})f_1^q + (\underbrace{cg_2^q}_{\in F})f_2^q + \dots + (\underbrace{cg_r^q}_{\in F})f_r^q.$$

If f_{r+1}^q is a zerodivisor on $F/(f_1^q, f_2^q, ..., f_r^q)F$ then it is also a zerodivisor on $F/(f_1, ..., f_r)F$ because $(f_1^q, ..., f_r^q) \subseteq (f_1, ..., f_r)$, which is clearly false because

$$F/(f_1,...,f_r)F \cong (B/(f_1,...,f_r)B)^{\oplus \ell} \cong {}^7k[f_{r+1},f_{r+2},...,f_s]^{\oplus \ell},$$

where $\ell = \operatorname{rank}_B F$. In particular, cg_{r+1}^q must be zero modulo $(f_1^q, \ldots, f_r^q)F$. So, there exists $h_i \in F$, $i = 1, \ldots, r$, dependent on q, such that

$$cg_{r+1}^{q} = h_{1}f_{1}^{q} + h_{2}f_{2}^{q} + \dots + h_{r}f_{r}^{q}.$$

Since the Frobenious endomorphism is an automorphism in the case of finite fields, every element of k is a qth power. Denote $\mathcal{M} = \{X_1^{e_1} \cdots X_n^{e_n} : 0 \le e_i < q \text{ for each } i = 1, ..., n\}$. Therefore, every element h of R can be written as $h = \sum_{m \in \mathcal{M}} h_m^q m$ in a unique way. In other words, $k[X_1, ..., X_n]$ is a free $k[X_1^q, ..., X_n^q]$ -module. Let $h_i = \sum_{m \in \mathcal{M}} h_{im}^q m$ for each i. Thus,

$$cg_{r+1}^{q} = \sum_{i=1}^{r} h_{i}f_{i}^{q} = \sum_{i=1}^{r} \sum_{m \in \mathcal{M}} h_{im}^{q}f_{i}^{q}m = \sum_{m \in \mathcal{M}} \left(\sum_{i=1}^{r} h_{im}f_{i}\right)^{q}m = \sum_{m \in \mathcal{M}} k_{m}^{q}m$$

where $k_m = \sum_{i=1}^r h_{im} f_i \in (f_1, ..., f_r) R$. It is now crucial that *c* doesn't depend on *q*. We choose *q* so large that $c = \sum_{m \in \mathcal{M}} c_m^q m$ for $c_m \in k$. Here we are using the fact that all elements of *k* are *q*th powers. Then

$$\sum_{m\in\mathcal{M}} (c_m g_{r+1})^q m = \sum_{m\in\mathcal{M}} k_m^q m.$$

As $c \neq 0$, there exists $m \in \mathcal{M}$ with $c_m \neq 0$ so that

$$c_m g_{r+1} = k_m \Longrightarrow g_{r+1} = c_m^{-1} k_m \in (f_1, \dots, f_r) R.$$

Contradiction!

References

- [1] M. Atiyah and I. Macdonald, Introduction to Commutative Algebra, Addision-Wesley (1969).
- [2] W. Bruns and J. H. Herzog, Cohen-Macaulay Rings, Cambridge Studies in Advanced Mathematics (1998).
- [3] F. Knop, Die Cohen-Macaulay-Eigenschaft von Invariantenringen, https://www.researchgate.net/publication/2 38698485, Unpublished (1990).
- [4] H. Matsumura, Commutative Algebra, 2nd ed., W.A. Benjamin, New York (1970).
- [5] The Stacks authors, The Stacks project, https://stacks.math.columbia.edu (2022).

⁷Here, we are using that $f_i \pmod{\mathfrak{m}R}$ are algebraically independent over A/\mathfrak{m} .