
On the Divisibility a! + b! | (a + b)!

Ayan Nath

Abstract. In this article, we investigate the pairs of positive integers for which sum of their
factorials divides the factorial of their sum and establish a bound on their difference. We also
solve the divisibility question over the set of Fibonacci numbers. We conclude by proving that
there are infinitely many such pairs of positive integers with difference 2 and conjecture that
for any positive integer k there are infinitely many such pairs (a, b) with |a − b| = k.

1. INTRODUCTION. Many interesting divisibilities in number theory are of the
form f (a)+ f (b) | f (a + b) where f : N → N is a function. In this article, we let
f (n) = n! and so look for pairs (a, b) such that a! + b! | (a + b)!.

One immediate such pair is (n, n). Call a pair that satisfies the divisibility good. To
understand the pattern of good pairs, we plot all the good pairs (a, b) with 1 ≤ a, b ≤
100 in the Cartesian plane where the x-axis denotes the a values and the y-axis denotes
the b values. With the help of computer we obtain the plot shown in Figure 1.

Figure 1. Plot of good pairs.

One immediately notices that the plot resembles the line x = y. This motivates us to
define the quantity |a − b| as the deviation for each good pair (a, b); it can be thought
of as a measure of how far a point (a, b) is from the line x = y.

For other related results on arithmetic functions and factorials, see, for example,
Baczkowski et al. [1], where the authors consider d(n!), σ (n!), and ϕ(n!), and [2]
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where the author considers z(n!). Here, d(n) is the number of positive divisors of
n, σ (n) is the sum of positive divisors of n, φ(n) is the number of positive integers
k ≤ n that are relatively prime to n, and z(n) is the rank (or the order) of appearance
in the Fibonacci sequence.

Definition. If (a, b) is a pair of positive integers that satisfies a! + b! | (a + b)!, then
we say that the pair (a, b) is good. For a good pair (a, b)we define the quantity |a − b|
as the deviation of the pair.

A simple brute force computer checking tells us that the maximum deviation among
all pairs (a, b) with 1 ≤ a, b ≤ 100 is 4. This suggests that the deviation of good pairs
does not get very large, or at least, that the deviation of a pair (a, b) is very small
compared to the sizes of a and b. Hence, it is natural to ask whether we can bound the
deviation of a good pair. The following theorem, to be proved in this article, gives an
upper bound on the deviations of good pairs. It also explains why the plot resembles
the line x = y.

Theorem 1. If a and b are positive integers such that a ≥ b ≥ ee
e4.22

and a! + b!
divides (a + b)!, then

a − b <
b log log b

log b
.

For sufficiently large a and b, using the theorem above, we have that b ≤ a ≤
b + b log log b

log b . Dividing by b, we obtain

1 ≤ a

b
≤ 1 + log log b

log b
.

By taking the limit and using the sandwich theorem, it follows that the ratio a/b con-
verges to 1 as b → ∞. This explains why the plot resembles the x = y line (see
Figure 1).

It is evident by looking at the plot that it may be difficult to solve the divisibility
in its most general form; often we are interested in solving a problem for a restricted
class of integers. Hence, we raise the question: what pairs of Fibonacci numbers are
good? The following theorem answers it completely.

Theorem 2. If a and b are Fibonacci numbers such that a! + b! | (a + b)!, then

(a, b) ∈ {(2, 1), (3, 2), (5, 3), (Fn, Fn)}
up to permutation. Here Fn denotes the nth Fibonacci number.

Once we prove the upper bound on the deviation, a natural question to ask is
whether the deviations of good pairs can get arbitrarily large. Or even better, can the
deviation be any positive integer? It is trivial that (n, n) and (n, n+ 1) are good pairs
for all positive integers n; hence, there are infinitely many good pairs with deviation
0 and 1. The following theorem implies that there are infinitely many good pairs with
deviation 2.

Theorem 3. The pair s = (x2(x2 + 2), x2(x2 + 2)+ 2) is good for all positive inte-
gers x. In particular, there exist infinitely many good pairs with deviation 2.
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2. BACKGROUND. In what follows, p always denotes a prime. The first Chebyshev
function is defined as

θ(x) =
�
p≤x

logp.

We take the domain of this function to be R. The following estimates for θ(x) are well
known.

Lemma 1 ([5], page 360). θ(x) < 1.000081x for all x > 0.

Lemma 2 ([3], page 265). θ(x) > 0.985x for all x ≥ 11927.

Set ε1 = 0.000081 and ε2 = 0.015 from now on. Another very well-known result in
the literature, commonly known as Mertens’ first theorem, is the following.

Lemma 3 (Mertens’ first theorem, [6]). For all x ≥ 2,

−1 − log 4 <
�
p≤x

logp

p
− log x < log 4.

The following lemma is just a weak form of Stirling’s approximation.

Lemma 4. Let x be a positive integer. Then

log x! > x log x − x.

Proof. Observe that x
x

x! is a term in the expansion of ex :

ex = 1 + x

1!
+ x2

2!
+ x3

3!
+ · · · .

Hence, it follows that

ex >
xx

x!
=⇒ x > x log x − log x! =⇒ log x! > x log x − x.

Our lemma is proved.

We will need the following preliminary lemma for proving Theorem 1.

Lemma 5. If (a, b) is a good pair where a ≥ b ≥ 9, then its deviation is less than b.

Proof. Let k = a − b.We have that a! + b! | (a + b)!.Dividing by b! and substituting
a = b + k, we obtain

1 + (b + 1)(b + 2) · · · (b + k) | (b + 1)(b + 2) · · · (2b + k).

Since the left-hand side is relatively prime to (b+ 1)(b+ 2) · · · (b+ k),we can divide
the right-hand side by (b + 1)(b + 2) · · · (b + k) to get

1 + (b + 1)(b + 2) · · · (b + k) | (b + k + 1)(b + k + 2) · · · (2b + k).
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The right-hand side is the product of b consecutive integers and the left-hand side is
relatively prime to k!, since the product of k consecutive integers is divisible by k!.
Assume to the contrary that k ≥ b. Then we must have that

1 + (b + 1)(b + 2) · · · (b + k) | (b + k + 1)(b + k + 2) · · · (2b + k)

b!
.

Thus,

(b + 1)(b + 2) · · · (b + k) <
(b + k + 1)(b + k + 2) · · · (2b + k)

b!
.

The above implies that

bk <
(2b + k)b

b!
.

Taking logarithms and using Lemma 4, we get

k log b < b log(2b + k)− (b log b − b)

= b log(2 + k

b
)+ b.

Let x = k

b
; we know that x ≥ 1 by assumption. Dividing the above by b, we obtain

f (x) = x log b − log(2 + x) < 1.

The left-hand side is increasing in x for all b ≥ 9 since f 	(x) = log b− 1
2+x .We know

that x ≥ 1. Hence, log b − log 3 = f (1) ≤ f (x) < 1, which is clearly false since
b ≥ 9. So our assumption was wrong and the lemma is proved.

3. BOUND ON DEVIATION. In this section, we prove Theorem 1.

Set-up. Set k = a − b. By Lemma 5, we know that k < b. Assume to the contrary
that there are infinitely many good pairs (a, b) such that k ≥ b log log b

log b . In what follows

we always assume k ≥ b log log b
log b . We have that a! + b! | (a + b)!. Dividing by b! and

substituting a = b + k, we obtain

1 + (b + 1)(b + 2) · · · (b + k) | (b + 1)(b + 2) · · · (2b + k).

Since the left-hand side is relatively prime to (b+ 1)(b+ 2) · · · (b+ k),we can divide
the right-hand side by (b + 1)(b + 2) · · · (b + k) to get

1 + (b + 1)(b + 2) · · · (b + k) | (b + k + 1)(b + k + 2) · · · (2b + k).

Let N=1 + (b + 1)(b + 2) · · · (b + k) and
�n

i=1 p
αi
i be the prime factorization of N,

where p1 < p2 < · · · < pn are primes and the αi are positive integers.

Obtaining the main bound. Clearly N − 1 is the product of k consecutive positive
integers. Therefore all the prime factors of N must be greater than k. We have that

n�
i=1

p
αi
i | (b + k + 1)(b + k + 2) · · · (2b + k).
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Note that if p2
i | b + j for some k + 1 ≤ j ≤ b + k and 1 ≤ i ≤ n, then k2 < p2

i ≤
b + j ≤ 2b + k, which implies k2 − k ≤ 2b as pi > k, which cannot be true as b >

ee
e4.22

and k ≥ b log log b
log b . Therefore, αi can be at most the number of multiples of pi in

{b + k + 1, b + k + 2, . . . , 2b + k}. Hence we have that

αi ≤
�

2b + k

pi

�
−

�
b + k

pi

�
<

2b + k

pi
−

�
b + k

pi
− 1

�
= b

pi
+ 1,

and, in particular, that αi = 1 if pi ≥ b. Thus, we have that

bk <

k�
i=1

(b + i) < N =
n�
i=1

p
αi
i ≤

�
p∈(k,b)

p
b
p+1 ·

�
p∈{b}

p ·
�

b+k<p≤2b+k
p.

Taking logarithms, we get

k log b <θ(2b + k)− θ(b + k)+ θ(b)− θ(k)+ b

⎛
⎝ �
k<p<b

logp

p

⎞
⎠ . (1)

Estimating both sides of (1). We estimate the right-hand side of (1) term by term.
It is easy to check that we have k ≥ 11927 under the assumptions k ≥ b log log b

log b and

b ≥ ee
e4.22

. By Lemmas 1 and 2, we have

θ(2b + k)− θ(b + k)+ θ(b)− θ(k) ≤ (1 + ε1)(2b + k)− (1 − ε2)(b + k)

+ (1 + ε1)b − (1 − ε2)k

= b(2 + 3ε1 + ε2)− k(1 − 2ε2 − ε1)

< b(2 + 3ε1 + ε2).

Using Lemma 3, we have

�
k<p<b

logp

p
< log b − log k + 1 + 2 log 4 = log

�
b

k

�
+ 1 + 2 log 4.

Summing up. By combining the estimates, it follows that

k log b < b(2 + 3ε1 + ε2)+ b

�
log

�
b

k

�
+ 1 + 2 log 4

�
.

Simplifying, we get

k log b < b log

�
b

k

�
+ 4.22b.

Dividing by b, we obtain

k log b

b
< log

�
b

k

�
+ 4.22.
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The left-hand side is increasing in k and the right-hand side is decreasing in k. Using
the assumption that k ≥ b log log b

log b , we have that

log log b < log

�
log b

log log b

�
+ 4.22,

which is evidently false for all b ≥ ee
e4.22

. This gives a contradiction and so the desired
result is proved.

4. GOOD PAIRS OF FIBONACCI NUMBERS. The Fibonacci sequence is defined
by F1 = 1, F2 = 1, and Fn = Fn−1 + Fn−2 for all n ≥ 3. We are interested in solving
the divisibility a! + b! | (a + b)! over the Fibonacci numbers. It is well known that

Fn = ϕn − ϕn√
5

where ϕ = 1+√
5

2 and ϕ = −ϕ−1 = 1−√
5

2 ; this is known as Binet’s formula.
Obviously (a, b) = (Fm, Fm) is a solution for allm ≥ 1. Without loss of generality,

assume that a > b ≥ 5; we will deal with the cases b = 1, 2, 3 at the end. Note that
b �= 4 since 4 is not a Fibonacci number. Let b = Fn and a − b = k. So we have
that k = a − b ≥ Fn+1 − Fn = Fn−1. For now, assume that n ≥ 23. Hence, b = Fn ≥
F23 = 28657 and k ≥ Fn−1 ≥ F22 = 17711. Inequality (1) gives

k log b <θ(2b + k)− θ(b + k)+ θ(b)− θ(k)+ b

⎛
⎝ �
k<p<b

logp

p

⎞
⎠ .

Using Lemmas 1–3, we get

k log b < θ(2b + k)− θ(b + k)+ θ(b)− θ(k)+ b

⎛
⎝ �
k<p<b

logp

p

⎞
⎠

< (1 + ε1)(3b + k)− (1 − ε2)(b + 2k)+ b(log b

k
+ 4)

< 2.1b − 0.9k + b(log b

k
+ 4)

< 2.1b − 0.9k + b(1 + 4)

= 7.1b − 0.9k. (2)

Note that

Fn

Fn−1
= ϕn − (−ϕ−1)n

ϕn−1 − (−ϕ−1)n−1
= ϕ + (−1)n+1 ϕ−n + ϕ−n+2

ϕn−1 + (−1)nϕ−n+1
.

From the above identity, we can see that Fn
Fn−1

is greater than ϕ if and only if n is odd.
Hence,

b

k
≤ Fn

Fn−1
≤ F9

F8
= 34

21
< 1.62
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since n ≥ 23. Dividing (2) by k, we get

log b < 7.1 · b
k

− 0.9 < 7.1 · 1.62 − 0.9 = 10.602

which implies b < e10.602 < 40216. We have now proved that if b ≥ 28657 then b ≤
40215, so b ≤ 40215 in any case. Since F23 = 28657 and F24 = 46368, we get that
b ≤ F23 and n ≤ 23. We next bound k. Again we make use of inequality (1):

k log b < θ(2b + k)− θ(b + k)+ θ(b)− θ(k)+ b

⎛
⎝ �
k<p<b

logp

p

⎞
⎠

< θ(2b + k)+ θ(b)+ b

⎛
⎝ �
k<p<b

logp

p

⎞
⎠

< (1 + ε1)(3b + k)+ b(log b

k
+ 4)

< (1 + ε1)(3b + k)+ 5b

< 8.1b + (1 + ε1)k.

We know that b ≤ F23 and, using our assumption that b ≥ 5, we obtain

k log 5 ≤ k log b < 8.1b + (1 + ε1)k ≤ 8.1 · F23 + (1 + ε1)k.

Hence,

k <
8.1 · F23

log 5 − 1 − ε1
< 3.9 × 105.

This shows that a = b + k < 28657 + 3.9 × 105 = 418657. Now we have that
(a, b) ∈ {1, 2, . . . , 418657} × {1, 2, . . . , 28657}. By an easy computer check, we
conclude that the solutions are (a, b) ∈ {(2, 1), (3, 2), (5, 3)}. What remains is to
check the cases b = 1, 2, 3. For b = 1, we obtain that a! + 1 | (a+1)!

a! = a + 1, which
implies a = 1, 2. If b = 2, again, a! + 2 | (a+2)!

a!/2 = 2(a + 1)(a + 2), which forces
a ≤ 4 due to size reasons, i.e., a! + 2 ≤ 2(a + 1)(a + 2) is false for all a ≥ 5. If
b = 3, we obtain that a! + 6 | (a+3)!

a!/6 = 6(a + 1)(a + 2)(a + 3), which again by the
same reasoning implies that a ≤ 6. It can be verified that all the valid solutions are
already found and that they indeed work.

5. ADMISSIBLE VALUES OF DEVIATIONS. We have seen that the deviation
of a good pair is small compared to its components and established a bound on the
deviation. In this section, we investigate the natural question of whether the deviations
of good pairs can take on any value. That is, for any positive integer k, does there exist
a good pair with deviation k? We will prove that the deviation can be 0, 1, and 2 for
infinitely many good pairs. It is clear that (n, n) is a good pair with deviation 0. Also it
is not hard to verify that (n, n+ 1) is good for all n: note that n! + (n+ 1)! | (2n+ 1)!
is simply n+ 2 | (n+ 1)(n+ 2) · · · (2n+ 1) after dividing both sides by n!. Table 1
gives examples of good pairs with different deviations.

We are going to use the idea in [4, Lemma 10] to prove Theorem 3, which states
that there are infinitely many good pairs with deviation 2.
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Table 1. Examples of good pairs with different deviations.

Deviation Good pairs

2 (3, 5), (8, 10), (10, 12), (15, 17), (17, 19), (21, 23)

3 (11, 14), (57, 60), (112, 115), (133, 136), (205, 208)

4 (50, 54), (78, 82), (90, 94), (126, 130), (137, 141), (148, 152)

Proof. Let a = x2(x2 + 2). We want to prove that a! + (a + 2)! | (2a + 2)! for all
positive integers x. It is easily verified that this holds for x ∈ {1, 2, . . . , 9}. So let us
assume x ≥ 10. Dividing by a!, we get 1 + (a + 1)(a + 2) | (a + 1)(a + 2) · · · (2a +
2). The left-hand side 1 + (a + 1)(a + 2) factors as (x2 − x + 1)(x2 + x + 1)(x4 +
3x2 + 3). The right-hand side is

B = (a + 1)(a + 2) · · · (2a + 2)

= (x4 + 2x2 + 1)(x4 + 2x2 + 2) · · · (2x4 + 4x2 + 2).

Notice that x4 + 3x2 + 3 is a term in the product above. We claim that gcd(x4 + 3x2 +
3, (x2 − x + 1)(x2 + x + 1)) = 1 for all integers x. To prove this, it suffices to check
that x4 + 3x2 + 3 and x2 + x + 1 are relatively prime for all integers x since x2 −
x + 1 is obtained from x2 + x + 1 by changing x to −x, an operation which does not
change x4 + 3x2 + 3. We have

(x + 1)(x4 + 3x2 + 3)− (x3 + 2x + 1)(x2 + x + 1) = 2.

Thus any prime dividing both x2 + x + 1 and x4 + 3x2 + 3 must be 2, which is false
since x2 + x + 1 is odd.

Therefore x4 + 3x2 + 3 and (x2 − x + 1)(x2 + x + 1) are relatively prime. As
x4 + 3x2 + 3 is a factor of the product (a + 1)(a + 2) · · · (2a + 2), it follows that
x4 + 3x2 + 3 divides B; hence, it suffices to prove that A = (x2 − x + 1)(x2 + x + 1)
divides B for all x. Let p be a prime divisor of A. Clearly p ≤ x2 + x + 1. Note that
there are

�
2a + 2

p

�
−

�
a

p

�
≥ a + 2

p
− 2 ≥ x2(x2 + 2)+ 2

x2 + x + 1
− 2 > x2 − x − 1

multiples of p in the product B = (a + 1)(a + 2) · · · (2a + 2). Therefore the exponent
of p in the prime factorization of B is at least x2 − x − 1. Now, the exponent of p in
the prime factorization of A is at most

logp A ≤ log2(x
4 + x2 + 1) < log2(2x

4) < 8 log x + 1 < 8x + 1,

which is less than x2 − x − 1 for all x ≥ 10. Hence, our theorem is proved.

We end the article with an open problem for readers:

Conjecture 1. For any positive integer k, there exist infinitely many good pairs with
deviation k.
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