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Abstract. The primary aim of this report is to provide an account of de Jong’s theorem on alterations [dJ],
focusing on its principal arguments. Additionally, we also discuss the resolution of singularities of curves that are
embedded in varieties, with no assumptions on characteristic. Preliminary facts on blow-ups and a few examples
are presented in an appendix.

1 Alterations

Most of the material in this section is taken from [dJ], [AbOo], and [AltNotes].

1.1. Definitions. A variety over k is an integral separated k-scheme of finite type. A modification is a
proper birational morphism. An alteration of integral schemes is a dominant, proper, and generically
finite morphism. In particular, a modification is a birational alteration.

We recall the celebrated theorem of Hironaka–

1.2. Hironaka’s Theorem. — Let k be a field of characteristic 0, X a geometrically integral k-variety, and
Z a closed subvariety of X . Then there exists a finite sequence of blow-up at nonsingular closed subvarieties

Xn → Xn−1 → · · ·→ X1 → X0 = X ,

such that Xn is nonsingular and the strict transform of Z is a normal crossings divisor.
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The resolution obtained in Hironaka’s theorem is birational, i.e., Xn and X are generically same.
Naturally one hopes if such a result is true in positive characteristic. This question is still open as of now.
However, if one allows nontrivial function field extensions, then we have the following recent theorem
by de Jong–

1.3. de Jong’s Theorem. — Let X be a k-variety. Then there exists an alteration ϕ : X ′ → X such that X ′
is a regular quasi-projective variety. Additionally, if k is perfect then ϕ can be arranged to be generically
étale1.

In order for the induction in the proof to work, de Jong’s theorem asserts something more–

1.4. de Jong’s Theorem*. — Let X be a k-variety and Z ⊆ X a proper closed subset. There exists an
alteration ϕ : X1 → X along with an open embedding j : X1 → X1 such that

• X1 is a regular projective variety,
• the closed subset j (ϕ−1Z )∪X1 \ j (X1) is the support of a strict normal crossings divisor in X1.

If k is perfect then the alteration ϕ may be chosen to be generically étale.

de Jong’s approach involves constructing a “good” fibration of X consisting of nodal curves. This
requires the use of alteration. Once the variety is in the desired form, it is possible to use induction
on the dimension of the fibration’s base space. This leads to a scenario where the singularities on the
variety are quite mild and the desingularization can be carried out by hand.

For simplicity of the exposition, we will assume that k is algebraically closed throughout. Further, all
alterations considered are generically étale.

1.5. Preliminary reductions and observations.
• Replacing X by an alteration. If ϕ : X ′ → X is an alteration, then the theorem follows for (X , Z )
if it holds for (X ′,ϕ−1(Z )).

(P2) X is quasi-projective. Chow’s lemma gives a modification X ′ → X such that X ′ is quasi-projective
over k. Hence, we may assume X is quasi-projective.

(P3) X is projective. Suppose j : X ,→ X be an open embedding of X into a projective variety X . Put
Z = j (Z )∪X \ X . It is clear that if (X , Z ) satisfies the theorem then (X , Z ) satisfies it as well.

(P4) Z is the support of an effective Cartier divisor. Replace (X , Z ) by (BlZ X ,EZ X ).
• Enlarging Z . If Z ′ ⊆ X is a closed subset containing Z and we can solve the problem for (X , Z ′)
then we can also solve it for (X , Z ).

(P5) X is normal. We may replace X by its normalization.

1.6. Constructing a good fibration. Denote d = dim X . The goal is to prove the following

1.7. Lemma. — Suppose the pair (X , Z ) satisfies properties P2-P4. There exist a modification ϕ : X ′ → X
and a morphism f : X ′ →Pd−1 such that
(i) There exists a finite subset S ⊂ X \ Z of regular closed points such that ϕ : X ′ → X is the blow-up

BlS X → X .
(ii) (a) All fibers of f are nonempty and of pure-dimension 1.

(b) The smooth locus of f is dense in all fibers of f .
(c) Let Z ′ =ϕ−1(Z ), endowed with the induced reduced closed subscheme structure. The morphism

f |Z ′ is finite and generically étale.
(d) If X is normal, i.e., if (X , Z ) satisfies P5, then we may arrange for at least one closed fiber of f to

be smooth. In particular, this implies that f is generically smooth by generic flatness.

1A morphism of schemes f : X → Y is called generically étale if there is a dense open subset U ⊆ Y such that f −1(U )→U
is étale.
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We begin with a few basic lemmas. Fix a projective variety Y ⊆PN over an algebraically closed field.

1.8. Lemma. — Suppose dimY < N −1. Then there is a nonempty open subset U ⊆PN such that if p ∈U
then the projection prp : Y →PN−1 is finite birational onto its image.

Proof. Standard. Use generic smoothness and see [Har77, Proposition IV.3.5] for the general idea. □

1.9. Lemma. — Suppose dimY = N −1. Then there is a nonempty open subset U ⊂PN such that if p ∈U
then the projection prp : Y →PN−1 is finite generically étale.

Proof. We have plenty of regular points by generic smoothness. Imitating the proof of Lemma 1.8, except
that we consider tangent varieties instead of secant varieties, we obtain that prp is unramified for a
general point p. In this setting, unramified implies generically étale due to generic flatness. □

1.10. Proof of Lemma 1.7. Consider X as a projective variety in PN . By using Lemmas 1.8 and 1.9,
we have a finite generically étale morphsim π : X →Pd . By Lemma 1.8 we can also ensure that π|Z is
birational onto its image. Let B ⊆ Pd be the branch locus of π. Then prp : π(Z ) → Pd−1 is generically
étale for a general point p ∉ B ∪π(Z ). Indeed, we may apply Lemma 1.9 to each irreducible component
of π(Z ). We view this Pd−1 as a linear subspace of Pd not containing p. To distinguish this from the
usual projective space, we write G instead of Pd−1. Note that G parametrizes all lines in Pd passing
through p so we may identify G with the space of all lines through p. Choose any p ∈ Pd \ (B ∪π(Z ))
and take S = π−1(p). By definition of branch locus, S is contained in the regular locus of X , and also
S ∩Z =∅. Set

X ′ = {(x,ℓ) ∈ X ×G : π(x) ∈ ℓ}.

We claim that X ′ ∼= BlS X . Indeed, we have the following fibered diagram–

X ′ Blp P
d

X Pd
π

Because π is étale, in particular flat, over an open set containing p and blow-ups commute with flat
base change we get X ′ ∼= BlS X . Consider f = pr2 : X ′ → G = Pd−1. We claim that this is the required
morphism. The fiber of f over ℓ ∈ G is π−1(ℓ). As ℓ is a line and π is finite, it follows that π−1(ℓ) has
dimension at most 1. Furthermore, ℓ is given by d −1 equations locally, hence π−1(ℓ) has pure dimension
1. Also, by our very construction, every irreducible component of π−1(ℓ) contains at least one point of
π−1(p) because p ∈ ℓ and π−1(ℓ) → ℓ is finite, and in particular, has finite fibers. Further, the smooth
locus (X ′/Pd−1)sm is open. This completes the proofs of (i), (ii) (a)-(b). Assertion (ii) (c) is clear as
f |Z ′ : Z ′ ∼= Z →π(Z )→Pd−1 is generically étale (and finite) by construction.

The last assertion comes from iterated Bertini since a fiber of f is obtained by intersecting a N −d +1
dimensional linear subspace H ⊆ PN containing a (fixed) N −d dimensional linear subspace L ⊆ PN .
The exact details are nontrivial. See http://math.stanford.edu/~conrad/249BW17Page/handouts
/genericity.pdf. □

1.11. Lemma. — All fibers of f are geometrically connected.

Proof. Put S = (X ′/Pd )sm ⊂ X ′, the smooth locus of f . Let S
f ′
−→ Z

g−→ Pd be the Stein factorisation
of S → Pd . Since smooth morphisms are flat and f ′∗OS = OZ , it follows that g is flat. I claim that g
is unramified. Indeed, if p ∈ Pd and the finite set Zp has points with multiplicity at least two, i.e.,
nonreduced points, then the fiber Sp would be also nonreduced because some components will occur

http://math.stanford.edu/~conrad/249BW17Page/handouts/genericity.pdf
http://math.stanford.edu/~conrad/249BW17Page/handouts/genericity.pdf
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with multiplicity at least 2. But this is not possible because Sp is p-smooth. We conclude that g is
étale and hence g is a trivial cover due to simply-connectedness of Pd . Thus, S →Pd has geometrically
connected fibers. As S is fiberwise-dense in X /Pd , this completes the proof. □

We now replace (X , Z ) with (X ′, Z ′) so that we may assume properties P2-P5 along with
(P6) There exists a morphism f : X → Y of projective varieties such that

(a) All fibers are nonempty, geometrically connected and of pure dimension 1.
(b) The smooth locus of f is dense in all fibers.
(c) f is generically smooth.
(d) f |Z : Z → Y is finite and generically étale.

In the sequel, we will relax the property “all fibers are geometrically connected” to “general fibers are
geometrically connected”.

1.12. Enlarging the divisor. Consider the following lemma

1.13. Lemma. — Let f : X → Y be as above, satisfying P6 (a) and (b). There exists an effective Cartier
divisor H ⊂ X such that

(1) f |H : H → Y is finite and generically étale,
(2) for any irreducible component C of a geometric fiber of f , we have

#(X /Y )sm ∩C ∩H Ê 3,

counted without multiplicities.

Proof. Fix a large natural number n and a very ample line bundle L on X . Let i : X ,→P be the closed
embedding associated to L ⊗n . For any irreducible curve C ⊂ X , the image i (C ) ⊂P is not contained in
any linear subspace of dimension n −1. This is because i is the closed embedding given by L followed
by an n-uple embedding.

Denote by P∨ the dual projective space of all hyperplanes in P. Define the incidence variety
T := {(H , y) ∈P∨×Y : dim f −1(y)∩H = 1} ⊂P∨×Y .

This is clearly a closed set. Indeed, it is the locus where

{(H , x) ∈P∨×X : x ∈ H }
idP∨ × f−−−−→P∨×Y

has fibers of dimension 1; so by upper-semicontinuity of fiber dimension and that fibers of f have
dimension at most 1, it follows. Let y be a geometric point of Y . Then the geometric fiber pr−1

2 (y) is⋃
C⊂ f −1(y)

irreducible component

{H ⊂P∨×k κ(y) : i (C ) ⊂ H }.

As i (C ) is not contained in any linear subspace of dimension n−1, it follows that codimP∨×kκ(y) pr−1
2 (y) Ê n.

Therefore, dimT É dimY +dimP∨−n. Choose n so large that pr1(T ) has positive codimension in P∨.
Fix a closed point y ∈ Y (k). We claim that the conditions
(i) H ∉ pr1(T ),
(ii) H ∩ f −1(y) ⊂ (X /Y )sm,
(iii) H intersects f −1(y) transversally.
are all generic. Indeed, (iii) is obviously generic (c.f. [Har77, Exercise IV.3.9]) and we have already
chosen n so that (i) is generic. Condition (ii) is generic because H ∩ f −1(y) ⊂ (X /Y )sm is same as
saying that H avoids all the (finitely many) singular points of f −1(y). Take any H ′ satisfying the above
conditions and put H = X ∩H ′. It’s clear that f |H : H → Y is finite due to quasi-finiteness. Note that f |H
has a smooth fiber above y because H ∩ f −1(y) ⊂ (X /Y )sm Hence ( f |H )y is étale over y = Speck because
of dimension reasons. Since k is algebraically closed, ( f |H )y must therefore be a finite disjoint union of
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copies of Speck. Fix any closed point x ∈ H ∩ f −1(y). By smoothness, �OX ,x
∼= �OY ,y [[t ]]. The local equation

h of H in �OX ,x must therefore satisfy h ∈ k× · t +my �OX ,x because áO f −1(y), x
∼= �OX ,x /my �OX ,x

∼= k[[t ]] and
OH∩ f −1(y),x

∼= k. Thus, áOX∩H , x
∼= �OX ,x /(h) ∼= �OY ,y [[t ]]/(h) ∼= �OY ,y and we conclude that f |H is étale in a

neighborhood of y , i.e., f |H is generically étale.

The preceeding discussion shows that for every closed point y ∈ Y (k), we get a corresponding open
Up ⊂ P∨ satisfying (i)-(iii). Take any H ∈ Up . For a different closed point q ∈ Y (k), if H ′ ∈ Uq is a
hyperplane satisfying (i)-(iii), then the divisor H +H ′ satisfies conditions (i)-(iii) over Up ∪Uq . Indeed,
H and H ′ being generically étale over a reduced scheme Y means that both H and H ′ are generically
reduced, hence, the divisor H +H ′, cut out by the (invertible) ideal sheaf IH/X ·IH ′/X , coincides with
the scheme (H ∪H ′)red on a dense open set. Consequently, H +H ′ → Y is also generically étale. Since
P∨ is Noetherian, which in particular implies that any subset is quasicompact, the proof is complete. □

Now, replace (X , Z ) with (X , Z ∪H) and further assume
(P6) (e) For all geometric points y of Y and any irreducible component C of X y we have

#(X /Y )sm ∩C ∩Z Ê 3.

1.14. Altering the base. Let ψ : Y ′ → Y be a generically étale alteration. In the rest of this article, we
will frequently make the transformation

X ′ := (X ×Y Y ′)red
Z ′ := (Z ×Y Y ′)red
Y ′.

These satisfy all of our conditions except possibly P5. Let f be smooth with geometrically connected
fibers of dimension 1 over U ⊂ Y , and U ′ =ψ−1(U ). Then (X ×Y Y ′)U ′ is smooth over U ′, and hence
reduced. Therefore, X ′

U ′ →U ′ is smooth and has geometrically connected fibers of dimension 1. It’s clear
that Z ′ is the support of an effective Cartier divisor of X ′ once we prove the following lemma–

1.15. Lemma. — X ′ is an integral scheme.

Proof. Of course, X ′ is reduced by construction. Note that (X /Y )sm ×Y Y ′, being Y ′-smooth, is reduced
and contained in X ′. Therefore, the smooth locus (X ′/Y ′)sm ⊇ (X /Y )sm ×Y Y ′ is fiberwise-dense over
Y ′ because the same is true for (X /Y )sm over Y . It suffices to show that (X ′/Y ′)sm, being dense, is
irreducible. As π : (X ′/Y ′)sm → Y ′ is flat, the generic fiber πη consists exactly of generic points of
(X ′/Y ′)sm. However, this generic fiber is irreducible since it is η-smooth and connected. The last step
follows from X → Y being generically smooth and having geometrically connected general fibers. Thus,
(X ′/Y ′)sm is irreducible and the claim is proved. □

We additionally assume Y is normal by taking ψ to be a normalization morphism.

1.16. Passage to a union of sections.

1.17. Lemma. — In the above settings, we can choose ψ so that

Z ′ =∪r
i=1σi (Y ′)

for distinct sections σi : Y ′ → X ′.

Proof. Let η= Specκ(Y ) be the generic point of Y . From our assumptions, Zη is a nonempty finite étale
η-scheme consisting of generic points of Z as Z is generically étale over Y . Choose a finite Galois
point η′ → η, i.e., κ(η) ,→ κ(η′) is a finite Galois extension, so that Zη×η η′ is a finite disjoint union of
copies of η′. Indeed, if Z1, Z2, . . . , Zr are the irreducible components of Z , then we can choose κ(η′) to



6 AYAN NATH

be any Galois extension of κ(η) containing the residue field at any maximal ideal of the κ(Y )-algebra
κ(Z1)⊗κ(Y )κ(Z2)⊗κ(Y ) · · ·⊗κ(Y )κ(Zr ). Take ψ : Y ′ → Y to be the normalization of Y in the finite Galois
extension κ(η′)/κ(η). We relabel and write X ,Y , Z ,η to mean X ′,Y ′, Z ′,η′. We conclude that, each finite
morphism Zi → Y is surjective (because of dimension reasons) and hence, birational too. Indeed, Zη is
precisely the collection of generic points of irreducible components of Z and κ(Zi ) ∼= κ(Y ) by construction.
As Y is normal, it follows that Zi → Y is an isomorphism by Zariski’s main theorem. Thus, their inverses
Y → Zi are the desired sections. □

1.18. Producing a family of stable pointed curves. Define

U = {y ∈ Y : X y is smooth over y and σi (y) ̸=σ j (y) for i ̸= j } ⊂ Y .

By P6 (c), it follows that U is a nonempty open set. So, XU →U is a family of stable n-pointed curves. By
some deep moduli space techniques which we don’t go into, one can ensure, at least after an alteration
of the base, properties P2-P4, P6 (a)-(f) along with

(P6) (g) There exists a family of stable n-pointed curve2 if (C ,τ1, . . . ,τn) over Y , a nonempty open
subscheme U ⊂ Y , and an U -isomorphism β : CU → XU mapping the sections τi |U to σi |U .

One can verify that P6 (g) is stable under generically étale alterations of Y . Ideally, we want β to extend
to a regular map. A common technique to extend a rational map is to pass to the closure of the graph.
Define T as the scheme-theoretic closure of the graph Γβ ⊂C ×Y X . We remark that T is integral, being
the closure of CU

∼= XU (Lemma 1.15).

1.19. The flatenning lemma (Raynaud-Gruson). — Let X and Z be varieties over a perfect field
and X → Z a dominant projective morphism. There exists a modification f : Y → Z such that the strict
transform f ′ : X̃Y → Y is flat.

By the above lemma, we can assume, in addition to P6 (a)-(c), (e), and (g), that
(P6) (h) X and T are Y -flat.

We can further normalize Y to assume Y is normal and we do so.

1.20. Lemma. — C is normal.

Proof. We use Serre’s R1+S2 criterion for normality. Let p 7→ q under C → Y . By flatness,

dimOC ,p = dimOY ,q +dimOCq ,p .

We wish to show that OC ,p is regular when its dimension is at most 1, and OC ,p has a regular sequence
of length 2 otherwise. If dimOY ,q Ê 2 then OCq ,p has a regular sequence of length2 by the same criterion
as Y is normal. Flat pullback of a regular sequence is regular. So let us assume dimOY ,q É 1. As C

is generically smooth by P6 (c), we may assume dimOY ,q = 1, i.e., OY ,q is a DVR. Here we are using
normality of Y . Let π be a uniformizer for OY ,q . We have OC ,p /(π) ∼= OCq ,p . Since Cq is a curve, p is
either a generic point of Cq or a closed point. If p is a generic point then we are done. Else, we seek a
nonunit nonzerodivisor in OCq ,p . Such an element exists because the set of zero divisors in a Noetherian
reduced ring is exactly the union of its minimal primes. □

If pr1 : T →C were quasi-finite (and hence finite) then it would be a finite birational map from a
variety to a normal variety which, by Zariski’s main theorem, is an isomorphism.

2An S-scheme C is called a family of nodal curves if it is of finite presentation, proper and flat, and all geometric fibers
are connected reduced curves with at most nodes as singularities. A family C → S of nodal curves together with sections
σi : S →C , i = 1, . . . ,n, is called a family of stable n-pointed curves of genus g if (i) σi (S) lie in the smooth locus (C /S)sm

and are mutually disjoint, (ii) All geometric fibers have arithmetic genus g , and (iii) ωC /S (
∑
σi (S)) is relatively ample.
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1.21. Extending β. Our goal is to show that pr1 has finite fibers. Such a property can be checked at
geometric points. So let y ∈ Y be a geometric point. Observe that each geometric fiber Ty is a curve due
to flatness. We want to show that (pr1)y : Ty →Cy has finite fibers. We have the following setup–

Ty

Cy X y

y

(pr1)y (pr2)y

hy

Splitting into irreducible components–

Ty = T1 ∪·· ·∪Tt

Cy =C1 ∪·· ·∪Cs X y = X1 ∪·· ·∪Xr

(pr1)y (pr2)y

As CU
∼= XU , it follows that pr1 and pr2 are birational (and of course, proper), in particular, surjective.

Therefore, (pr1)y and (pr2)y are surjective too.

1.22. Lemma. — In the above setup,
(i) For each 1 É i É r , there exists a unique 1 É j (i ) É t so that T j (i ) → Xi is surjective. Also, there

exists an open V ⊂ X meeting Xi densely such that pr−1
2 (V ) ∼=V.

(*) Moreoever, T j (i ) →Cy is not constant.
(ii) For each 1 ÉαÉ s, there exists a unique 1 É γ(α) É t so that Tγ(α) →Cα is surjective. Also, there

exists an open W ⊂C meeting Cα densely such that pr−1
1 (W ) ∼=W.

The three-point assumption P6 (e) is going to be crucially used in the proof of Lemma 1.22 (*). We
first note the main corollary–

1.23. Corollary. — (pr1)y is quasi-finite, and hence, pr1 is an isomorphism.

Proof. If (pr1)y is not quasi-finite, it maps some component T j to a point in Cy . By Lemma 1.22 (*), T j

maps to a point under (pr2)y . This is not possible because T j is a curve sitting in the fibered product
Cy ×y X y over the algebraically closed field κ(y). □

1.24. Proof of Lemma 1.22 (i) and (ii). By symmetry of the situation, it suffices to prove (i). Item
(ii) will follow similarly. Recall that (pr2)y is surjective. We claim that it is sufficient to find an open
V ⊂ X meeting X y densely such that pr−1

2 (V ) →V is an isomorphism. Indeed, if V is such a set, then
two distinct components T j and T j ′ cannot both map onto Xi under (pr2)y since T j ∩T j ′ is finite, which
would imply that the fibers of pr−1

2 (Xi )→ Xi have size at least 2 almost always. This can’t be because
pr2 is birational.

By previous constructions, (X /Y )sm has dense intersection with X y . Denote

A := {x ∈ X : dimpr−1
2 (x) = 0} ⊂ X .

It is clear that A is open by upper-semicontinuity of fiber dimension. Also A intersects X y in a dense
set. Indeed, (pr2)y only has finitely many positive dimensional fibers due to Noetherean reasons. We
claim that V = A ∩ (X /Y )sm works. Note that pr−1

2 V → V is finite birational. The morphism V → Y
is surjective and smooth, hence faithfully flat in particular, therefore V is normal as Y is normal. By
Zariski’s main theorem, pr−1

2 V →V is an isomorphism and proof is complete. □
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1.25. Proof of Lemma 1.22 (*). For each i , we have a unique T j (i ) mapping surjectively onto
Xi . Assume the contrary that (pr1)y (T j (i )) = {c} for some c ∈ Cy . Let 1 É α < β < γ É n be such that
xα = σα(y), xβ = σβ(y), and xγ = σγ(y) lie in Xi ∩ (X /Y )sm. We are using P6 (e) here. If T → X ′ → X
is the Stein factorization of pr2 then X ′ → X is a finite modification, hence an isomorphism over the
normal locus of X by Zariski’s main theorem. In particular, pr−1

2 (x) is connected for any smooth point
x ∈ (X /Y )sm. Note that tα = (τα(y),σα(y)) ∈ Ty and similarly for β,γ. Finally, put cα = (pr1)y (tα) = τα(y)
and likewise. We remark that (pr2)−1

y
(x)→ (pr1)y ((pr2)−1

y
(x)) is an isomorphism for any x ∈ X y simply

because (pr2)−1
y

(x) ⊂Cy ×y {x}.

• Case 1. c ∉ {cα,cβ,cγ}. In this case, zα = (pr1)y ((pr2)−1
y

(xα)) is a connected set containing both
cα and c. So, there is a positive dimensional irreducible component of zα passing through c. A
similar statement holds for β and γ, contradicting the fact that Cy is a nodal curve. Here, one
has to observe that zα, zβ, zγ have no irreducible components in common. This is easy to see
because (pr2)−1

y
(xα), (pr2)−1

y
(xβ), (pr2)−1

y
(xγ) are disjoint and (pr1)y , being birational, has only

finitely many non-singleton fibers.
• Case 2. c ∈ {cα,cβ,cγ}. Say c = cα. We see that the curves zβ and zγ meet at the point c = cα ∈C sm

y
.

This is a contradiction to smoothness. □

We have arranged for pr1 to be an isomorphism (Corollary 1.23). Therefore, β extends to a morphism
C → X which is an isomorphism over U .

1.26. Reducing to a family of stable curves. Finally, we replace (X , Z ) by (C ,β−1(Z )). Here, we may
lose the finiteness of Z → Y but that’s a non-issue. One can then use induction on dimension to change
Y to a regular scheme. The resulting X has very simple singularities, and its desingularization can be
carried out by hand. The reader is referred to [dJ, §4.23-4.28] for the explicit blow-ups constructed.

2 Resolution of Embedded Curves

Most of this section is taken from [Stacks, Tag 0BI3] and the results are presented in high generality.
The goal is to prove the following theorem–

2.1. Theorem (Embedded resolutions). — Let X be a Noetherian scheme and Y ⊆ X a reduced
closed subscheme of pure dimension 1 with irreducible components Y1,Y2, . . . ,Yr . Suppose there are regular
integral schemes Xi for each Yi along with finite morphisms Xi → Yi . Then there is a finite sequence
X ′ = Xn → Xn−1 → · · ·→ X1 → X of blow-ups at closed points such that the proper transform Y ′ ⊆ X ′ of Y
is a disjoint union of regular integral one dimensional schemes.

We begin with a few useful lemmas.

2.2. Lemma (Blow-ups of curves are finite). — Let Y be a one dimensional integral Noetherian scheme
and p ∈ Y a closed point. Then the blow-up π : Blp Y → Y is finite.

There’s a quick way to see this. Note that the exceptional divisor, which is an effective Cartier divisor
on a curve, is a finite set. Hence, Blp Y → Y is projective and quasi-finite and so it’s finite.

2.3. Lemma (Resolution by blow-ups). — Let Y be a one dimensional integral Noetherian scheme.
Suppose there exists a finite morphism π : X → Y for some regular one dimensional (Noetherian) integral
scheme X . Then π can be factored as a finite sequence X → Yn → Yn−1 → · · ·→ Y1 → Y0 = Y where Yi is a
blow-up of Yi−1 at a closed point for all 1 É i É n and Yn is regular.
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Proof. Set Y0 = Y . For each positive integer i , define Yi to be the blow-up of Yi−1 at an arbitrary singular
closed point pi−1, if exists, else let pi−1 be any (regular) closed point. First we show that π factors as
X → Y1 → Y .

As X is Noetherian, π−1(p0) ⊆ X is a finite set of closed points, i.e., an effective Cartier divisor. By the
universal property of blow-ups (see appendix), it follows that π factors through Y1. We can iterate the
above argument with Yi+1 replaced by Yi for each i = 0,1,2, . . . , in that order, to get a (possibly infinite)
factorization X → · · ·→ Y2 −→ Y1 −→ Y0 = Y , where each morphism Yi+1 → Yi is finite (Lemma 2.2). Of
course, strictly speaking, a factorisation being infinite has no meaning. What is meant is an “infinite”
commutative diagram of the form

· · · Y2 Y1 Y0 = Y

X

.

Let πi be the morphism Yi → Y . Pushing forward all the structure sheaves to Y , we get a chain

OY ⊆π1,∗OY1 ⊆π2,∗OY2 ⊆ ·· · ⊆π∗OX .

Indeed, it is appropriate to write πi+1,∗OYi+1 ⊆πi ,∗OYi since Yi+1 → Yi , being a dominant morphism of
integral schemes, induces an injection on structure sheaves. This is a sequence of coherent sheaves on a
Noetherian scheme, which must stabilize. Consequently, Yi+1 → Yi is an isomorphism for some i . This
means that pi is already an effective Cartier divisor on Yi and OYi ,pi is a DVR. Thus, Yi is regular and
the proof is complete. □

2.4. Lemma. — Let X be a Noetherian scheme. Let Y ⊆ X be an one-dimensional integral closed subscheme
such that there is a regular integral scheme Y1 along with a finite morphism Y1 → Y . Then there exists a
finite sequence X ′ = Xn → Xn−1 → · · ·→ X1 → X of blow-ups at closed points such that the proper transform
Y ′ of Y in X ′ is a regular integral scheme of dimension 1.

Proof. Obvious by Lemma 2.3 and Blow-up Closure Lemma (see appendix). □

Let X be a locally Noetherian scheme and Y , Z ⊂ X be closed subschemes. Assume Y is integral of
dimension 1 and Y is not contained in Z . For a closed point p ∈ X , denote the intersection multiplicity

multp Y ∩Z = lengthOX ,p
OY ∩Z ,p .

This is finite by the theory of associated primes because OY ∩Z ,p =OX ,p /(IY /X ,p +IZ /X ,p ) has singleton
support. We remark that if p is a regular point of Y then multp Y ∩ Z is equal to the valuation of
IZ /X ,pOY ,p in the discrete valuation ring OY ,p .

2.5. Lemma. — Using above notations, let X ′ → X be the blow up of X at p and Y ′, Z ′ ⊆ X ′ be the proper
transforms of Y , Z . Also assume that OY ,p is regular. Then

(1) Y ′ → Y is an isomorphism,
(2) Y ′ intersects the exceptional divisor at exactly one point q ∈ X ′,
(3) multq Y ′∩Z ′ < multp Y ∩Z .

Proof. The universal property of blow-ups and the blow-up closure lemma (see appendix) immediately
give (1) and (2). Blow-ups can be computed locally, so we may replace X by a small-enough affine
open neighborhood U = Spec A of p such that Y ∩U is cut out by I , Z ∩U is cut out by J , m ⊆ A is
the maximal ideal corresponding to p, and the image of some section, say x1 ∈ A, in OY ,p = A/I ⊗A Am

is a uniformizer. Note that m= I + (x1). Let x2, x3, . . . , xn ∈ A be a generating set of I . In this situation,
X ′ = Blp Spec A = ProjA A[mt ]. Consider the affine patch Spec A[mt/x1t ]. The total transform of Y is cut
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out by (x1
x2t
x1t , . . . , x1

xn t
x1t ) = x1( x2t

x1t , . . . , xn t
x1t ) in Spec A[mt/x1t ]. The factor x1 corresponds to the exceptional

divisor. Hence, the strict transform Y ′ is cut out by I ′ = ( x2t
x1t , . . . , xn t

x1t ) in Spec A[mt/x1t ]. Therefore, point
q corresponds to the maximal ideal m′ = (x1, x2t

x1t , . . . , xn t
x1t ). Now let f ∈ J be such that its image under

A → A/I has valuation r = multp Y ∩Z at m. We can write f = xr
1u + v where u ∉m and g ∈ (x2, . . . , xn).

Certainly f t/x1t is an element of the ideal J ′ ⊆ A[mt/x1t ] cutting out Z ′, as J ⊆m. The image of f t/x1t
in A[mt/x1t ]/I ′ is xk

1 ut/x1t . Clearly, ut/x1t is not a valid element of A[mt/x1t ] because u ∉m. Thus,
the valuation of f (mod I ′) at q in A[mt/x1t ]/I ′ is one less than r. This finishes the proof of (3). □

2.6. Proof of Theorem 2.1. Applying Lemma 2.4, we can assume Yi is regular for each 0 É i É r. For
every i ̸= j and closed point p ∈ Yi ∩Y j , consider the number multp Yi ∩Y j . If the maximum of these
numbers is larger than 1, then we can decrease it by blowing up at all the points where the maximum is
attained (Lemma 2.5). If the maximum is 1 then we can separate the Yi ’s using the same lemma by
blowing up at all such points p. Indeed, blow-ups are isomorphism away from the exceptional divisor, so
disjoint Yi ’s remain disjoint. □
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Appendix

Blow-ups. Let X ,→ Y be a closed embedding corresponding to a finite type quasicoherent sheaf of
ideals. The blow-up of X ,→ Y is a Cartesian diagram, which we call a blow-up diagram,

EX Y BlX Y

X Y

such that EX Y is an effective Cartier divisor on BlX Y , such that any other such Cartesian diagram

D W

X Y ,

where D is an effective Cartier divisor on W , factors uniquely through it:

D W

EX Y BlX Y

X Y .
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We call BlX Y the blow-up of Y along X and EX Y the exceptional divisor. If Z → Y is any morphism
then Z ×Y BlX Y is the total transform of Z and (Z \ X )×Y BlX Y the proper transform or strict
transform of Z .

Of course, the above is not really a definition. One needs to construct the blow-up.

BlX Y = ProjA A⊕ I t ⊕ I 2t 2 ⊕·· ·

EX Y = ProjA
A

I
⊕ I

I 2 t ⊕ I 2

I 3 t 2 ⊕·· ·

where t is a dummy variable indicating the grading. The blow-up algebra orRees algebra A⊕I t⊕I 2t 2⊕·· ·
is also denoted A[I t ]. Further, for any f ∈ I , the zero-degree part of (A ⊕ I t ⊕ I 2t 2 ⊕·· · ) f t is denoted
A[I t/ f t ], which is called an affine blow-up algebra. It can be verified that the above construction satis-
fies the required universal property [FOAG, §23.3.2]. One can then glue these pieces to define blow-up
for general schemes using a relative Proj construction. The blow-up BlX Y → Y is an isomorphism away
from X . Of course, this means that the blow-up is a birational morphism when Y is integral and X ̸= Y .
Another important (but easy) fact is that blow-up preserves irreducibility and reducedness. See [FOAG,
§23.2.1, 23.2.A, 23.2.B, 23.2.2, 23.2.C] for details. The most important and useful fact for us about
blow-ups is the following–

Blow-up Closure Lemma. Let X ,→ Y be a closed embedding of schemes and Z → Y be any arbitrary
morphism. Consider the following commutative diagram

EZ Z

Z ×Y EX Y Z ×Y BlX Y

X ×Y Z Z

EX Y BlX Y

X Y

eff. Cartier

loc. prin.

eff. Cartier

Here, Z is the proper transform of Z , i.e., the scheme-theoretic closure of (Z ×Y BlX Y ) \ (Z ×Y EX Y )
in Z ×Y BlX Y , and EZ is the pullback of Z along the closed embedding Z ×Y EX Y ,→ Z ×Y BlX Y . Then
Z = BlX×Y Z Z and EZ is the exceptional divisor on Z .

Proof. See [Stacks, Tag 080E] for a proof when Z → Y is a closed embedding. The general case can be
proved similarly; see [FOAG, §23.2.6, 23.2.G]. □

2.7. Examples.
(i) Resolving the planar nodal cubic. Consider the nodal cubic y2 = x3 + x2 in A2. Then Bl(0,0)A

2 is
cut out by xY − X y = 0 in A2 ×P1 where A2 = Speck[x, y] and P1 = Projk[X ,Y ]. This has two
patches– [X : Y ] = [s : 1] or [1 : t ]. The first patch is U1 = Speck[x, y, s]/(s y − x) and the second
is U2 = Speck[x, y, t ]/(y − xt ). The exceptional divisor is cut out by (y) in U1 and by (x) in U2.
Therefore, the total transform of y2 = x3+x2 is cut out by y2− s2 y2− s3 y3 = 0 in U1. We remove the
factor of y to get the strict transform– the strict transform of y2 = x3+x2 is cut out by 1−s2−s3 y = 0
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in U1. It is easy to see that this is a nonsingular curve. One can similarly compute the local
equations on U2 to verify that the node is resolved.

Figure 2.1. Resolution of a node through blow-up [Har77].

(ii) A curve requiring multiple blow-ups. Consider y x2 − y2 = 0 in A2. This is the union of a parabola
and the x-axis so it has a multiplicity 2 singularity at the origin. With notations same as the in
the previous example, the local equation of the total transform in U1 is y(s y)2 − y2 = 0. Hence, the
strict transform is cut out by y s2 −1 = 0 in U1. This patch is nonsingular. Similarly, the same is cut
out by xt − t 2 = 0 in U2

∼= Speck[x, t ]. Of course (0,0) is a singularity of xt − t 2 = 0 so we blow-up
again. Write Bl(0,0) U2 = Speck[x, t ,u]/(tu−x)∪Speck[x, t , v]/(t −xv) with usual gluing. By similar
computations, we get the strict transform of xt − t 2 = 0 as V (u −1) ⊂ Speck[x, t ,u]/(tu − x) and
V (v −v2) ⊂ Speck[x, t , v]/(t −xv). It is easy to check that these patches are nonsingular. Therefore,
two blow-ups were needed to resolve the singularity. We remark that this computation aligns with
the statement of Lemma 2.5 (3).

(iii) Estimating the number of blow-ups required. Let C be an affine plane curve with a singularity of
multiplicity m at the origin and all other points nonsingular. We give an upper bound on the
number of blow-ups necessary to get a resolution of singularities. One cannot bound the number
of blow-ups required solely in terms of the multiplicity of the singularity. Indeed, consider the
following example– choose n ≫ 0. The blow-up of the hypercusp y2 = xn is given by (the Zariski
closure of) u2 = vn−2. We see that the multiplicity at the origin stays the same even after

⌊n
2

⌋−1
many blow-ups. So, we introduce another parameter– the genus g . Why are we choosing genus
and not the degree? the answer is it doesn’t really matter because they are both closely related
for plane curves. After the first blow-up Bl(0,0) C , the genus drops to g −m(m −1)/2. From this
point onwards, every blow-up at a singular point decreases the genus by at least 1. Therefore, we
are guaranteed to resolve C within g −m(m −1)/2+1 many blow-ups. Even though this bound is
pretty naive, it’s sharp– consider y2 = x2n+1, which has a multiplicity 2 singularity at the origin.
The blow-up at the origin is given by y2 = x2n−1. So after repeatedly doing the same n times
we get a genus 0 conic y2 = x. The genus decreases by exactly 1

2 2(2− 1) = 1 on each blow-up,
so it follows that y2 = x2n+1 has genus g = n. Thus, the number of blow-ups required is exactly
n = g −m(m −1)/2+1.
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