Alterations

Ayan Nath

CMI Student Seminar

7th September, 2023

Throughout the talk, k is a field not necessarily of characteristic 0, often algebraically closed.

• A variety over k is an integral separated k-scheme of finite type. A **modification** is a proper birational morphism. An **alteration** of integral schemes is a dominant, proper, and generically finite morphism. In particular, a modification is a birational alteration.

Theorem 1 (Hironaka)

Let k be a field of characteristic 0, X a geometrically integral k-variety, and Z a closed subvariety of X. Then there exists a finite sequence of blow-up at nonsingular closed subvarieties

$$X_n \to X_{n-1} \to \cdots \to X_1 \to X_0 = X$$
,

such that X_n is nonsingular and the strict transform of Z is a normal crossings divisor.

- The resolution obtained in Hironaka's theorem is birational, i.e., X_n and X are generically same.
- Naturally one hopes if such a result is true in positive characteristic. This question is still open as of now.
- However, if one allows nontrivial function field extensions, then we have the following recent theorem by de Jong-

Theorem 2 (de Jong)

Let X be a k-variety. Then there exists an alteration $\varphi \colon X' \to X$ such that X' is a regular quasi-projective variety. Additionally, if k is perfect then φ can be arranged to be generically étale^a.

^aA morphism of schemes $f: X \to Y$ is called **generically étale** if there is a dense open subset $U \subseteq Y$ such that $f^{-1}(U) \to U$ is étale.

• In order for the induction in the proof to work, de Jong's theorem asserts something more-

Theorem 3 (de Jong)

Let X be a k-variety and $Z \subseteq X$ a proper closed subset. There exists an alteration $\varphi \colon X_1 \to X$ along with an open embedding $j \colon X_1 \to \overline{X_1}$ such that

- $\overline{X_1}$ is a regular projective variety,
- the closed subset j(φ⁻¹Z) ∪ X₁ \ j(X₁) is the support of a strict normal crossings divisor ^a in X₁.

If k is perfect then the alteration φ may be chosen to be generically étale.

^aA strict normal crossings divisor on X is an effective Cartier divisor $D \subset X$ such that for every $p \in D$ the local ring $\mathcal{O}_{X,p}$ is regular and there exists a regular system of parameters $x_1, \ldots, x_d \in \mathfrak{m}_p$ and $1 \leq r \leq d$ such that D is cut out by $x_1 \cdots x_r$ in $\mathcal{O}_{X,p}$.

- de Jong's approach involves constructing a "good" fibration of X consisting of nodal curves. This requires the use of alteration.
- Once the variety is in the desired form, it is possible to use induction on the dimension of the fibration's base space.
- This leads to a scenario where the singularities on the variety are mild and the desingularization can be carried out by hand via explicit blow-ups.
- For simplicity of the exposition, we will assume that k is algebraically closed throughout.

Preliminary reductions and observations

- Replacing X by an alteration. If φ: X' → X is an alteration, then the theorem follows for (X, Z) if it holds for (X', φ⁻¹(Z)).
- (P2) X is quasi-projective. Chow's lemma gives a modification $X' \to X$ such that X' is quasi-projective over k. Hence, we may assume X is quasi-projective.
- (P3) X is projective. Suppose $j: X \hookrightarrow \overline{X}$ be an open embedding of X into a projective variety \overline{X} . Put $\overline{Z} = j(Z) \cup \overline{X} \setminus X$. It is clear that if $(\overline{X}, \overline{Z})$ satisfies the theorem then (X, Z) satisfies it as well.
- (P4) Z is the support of an effective Cartier divisor. Replace (X, Z) by (Bl_Z X, E_Z X).
 - Enlarging Z. If Z' ⊆ X is a closed subset containing Z and we can solve the problem for (X, Z') then we can also solve it for (X, Z).
- (P5) X is normal. We may replace X by its normalization.

Lemma 4

Suppose the pair (X, Z) satisfies properties P2-P4. There exist a modification $\varphi: X' \to X$ and a morphism $f: X' \to \mathbb{P}^{d-1}$, $d = \dim X$, such that

- There exists a finite subset $S \subset X \setminus Z$ of regular closed points such that $\varphi: X' \to X$ is the blow-up $Bl_S X \to X$.
- 2 **1** All fibers of f are nonempty and of pure-dimension 1.
 - 2 The smooth locus of f is dense in all fibers of f.
 - Let Z' = φ⁻¹(Z), endowed with the induced reduced closed subscheme structure. The morphism f|_{Z'} is finite and generically étale.
 - If X is normal, i.e., if (X, Z) satisfies P5, then we may arrange for at least one closed fiber of f to be smooth. In particular, this implies that f is generically smooth by generic flatness.

Lemma 5

Fix a projective variety $Y \subseteq \mathbb{P}^N$ over an algebraically closed field.

- If dim Y < N 1 then pr_p is finite birational for a general point p.
- If dim Y = N 1 then pr_p is finite generically étale for a general point p.
- The above lemma is standard. The idea is to look at secant varieties and tangent varieties. Use generic smoothness to get plenty of regular points on *Y*, and generic flatness to help with étaleness.

Proof of Lemma 4.

- Consider X as a projective variety in P^N. By using the above lemma, we have a finite generically étale morphsim π: X → P^d. We can also ensure that π|_Z is birational onto its image.
- Let B ⊆ P^d be the branch locus of π. Then pr_p: π(Z) → P^{d-1} is generically étale for a general point p ∉ B by using the lemma for each irreducible component of π(Z).

Proof of Lemma 4.

- Consider X as a projective variety in P^N. By using the above lemma, we have a finite generically étale morphsim π: X → P^d. We can also ensure that π|_Z is birational onto its image.
- Let B ⊆ P^d be the branch locus of π. Then pr_p: π(Z) → P^{d-1} is generically étale for a general point p ∉ B by using the lemma for each irreducible component of π(Z).
- We view this \mathbb{P}^{d-1} as a linear subspace of \mathbb{P}^d not containing p, call it \mathbb{G} . This parametrizes all lines through p. Choose any $p \in \mathbb{P}^d \setminus (B \cup \pi(Z))$ and take $S = \pi^{-1}(p)$.
- Then S is contained in the regular locus of X, and also $S \cap Z = \emptyset$.

Proof of Lemma 4.

• Then S is contained in the regular locus of X, and also $S \cap Z = \emptyset$.

We are using that blow-ups commute with flat base change.

$$\mathsf{Bl}_p \, \mathbb{P}^d = \{ (x, \ell) \in \mathbb{P}^d \times \mathbb{G} \colon x \in \ell \}, \qquad X' = \{ (x, \ell) \in X \times \mathbb{G} \colon \pi(x) \in \ell \}.$$

- Choose f: X' → G = P^{d-1}. The fiber of f over ℓ ∈ G is π⁻¹(ℓ). Since ℓ is locally cut out by d − 1 equations, it follows that π⁻¹(ℓ) has pure dimension 1. Every irreducible component of a fiber intersects π⁻¹(p).
- The second last part is clear as f|_{Z'}: Z' ≅ Z → π(Z) → ℙ^{d-1} is generically étale (and finite) by construction.

- The last assertion of generic smoothness of f: X → P^{d-1} comes from iterated Bertini since a fiber of f is obtained by intersecting a N - d + 1 dimensional linear subspace H ⊆ P^N containing a (fixed) N - d dimensional linear subspace L ⊆ P^N. The exact details are nontrivial.
- We remark that all fibers of f: X → P^{d-1} are geometrically connected. This comes from a routine application of Stein factorisation and simply-connectedness of P^{d-1}.

Situation as of now

We now replace (X, Z) with (X', Z') so that we may assume properties P2-P5 along with

(P6) There exists a morphism $f: X \to Y$ of projective varieties such that

- All fibers are nonempty, geometrically connected and of pure dimension 1.
- The smooth locus of f is dense in all fibers and f is generically smooth.
- I f | z is generically étale, ...

Situation as of now

- (P6) There exists a morphism $f: X \to Y$ of projective varieties such that
 - All fibers are nonempty, geometrically connected and of pure dimension 1.
 - The smooth locus of f is dense in all fibers and f is generically smooth.
 - I f|Z is generically étale, ...
 - In particular, f is a generically nodal family of curves. Suppose f is smooth over the open set $U \subset Y$. We would like to extend $f^{-1}(U) \to U$ to a family of nodal curves over whole of X.
 - If the moduli functor

 $T \mapsto \{\text{proper family of nodal curves over } T\}_{/\simeq}$

were representable by a projective scheme then we win by "taking closure".

• The problem is that the the above functor is not representable. Therefore, we want to work with nodal families with *n* marked sections.

Straightening out Z

 Let ψ: Y' → Y be a generically étale alteration. In the rest of this article, we will frequently make the transformation

$$X' := (X \times_Y Y')_{\mathsf{red}}, \qquad Z' := (Z \times_Y Y')_{\mathsf{red}}, \qquad Y'$$

It can be verified that this preserves most of the important properties.

Proposition 1

In the above setting, we can choose ψ so that $Z' = \bigcup_{i=1}^{r} \sigma_i(Y')$ for distinct sections $\sigma_i \colon Y' \to X'$.

Proof.

- Let η be the generic point of Y. From our assumptions, Z_η is a nonempty finite étale η-scheme consisting of generic points of Z as Z is generically étale over Y.
- Choose a finite Galois point $\eta' \to \eta$ so that $Z_\eta \times_\eta \eta'$ is a finite disjoint union of copies of η' .

Straightening out Z

Proof.

- Let η be the generic point of Y. From our assumptions, Z_η is a nonempty finite étale η-scheme consisting of generic points of Z as Z is generically étale over Y.
- Choose a finite Galois point $\eta' \to \eta$ so that $Z_\eta \times_\eta \eta'$ is a finite disjoint union of copies of η' .
- Take $\psi: Y' \to Y$ to be the normalization of Y in the finite Galois extension $\kappa(\eta')/\kappa(\eta)$.
- We relabel and write X, Y, Z, η to mean X', Y', Z', η' .
- Then each finite morphism $Z_i \to Y$ is surjective (because of dimension reasons) and hence, birational too. Indeed, Z_{η} is precisely the collection of generic points of irreducible components of Z and $\kappa(Z_i) \cong \kappa(Y)$ by construction.

Straightening out Z

Proof.

- Choose a finite Galois point η' → η so that Z_η ×_η η' is a finite disjoint union of copies of η'. Indeed, if Z_i, 1 ≤ i ≤ r, are the irreducible components of Z, then we can choose κ(η') to be any Galois extension of κ(η) containing all of κ(Z_i), i ≤ i ≤ r.
- Take $\psi: Y' \to Y$ to be the normalization of Y in the finite Galois extension $\kappa(\eta')/\kappa(\eta)$.
- Then each finite morphism Z_i → Y is surjective (because of dimension reasons) and hence, birational too. Indeed, Z_η is precisely the collection of generic points of irreducible components of Z and κ(Z_i) ≅ κ(Y) by construction.
- As Y is normal, it follows that $Z_i \rightarrow Y$ is an isomorphism by Zariski's main theorem. Thus, their inverses $Y \rightarrow Z_i$ are the desired sections.

Producing a stable pointed family

Define

 $U = \{y \in Y \colon X_y \text{ is smooth over } y \text{ and } \sigma_i(y) \neq \sigma_j(y) \text{ for } i \neq j\} \subset Y.$

By P6 (c) (generic smoothness of f), it follows that U is a nonempty open set. So, $X_U \rightarrow U$ is a family of stable *n*-pointed curves¹.

- By some moduli space techniques (stable extension theorem) which we don't go into, one can ensure, at least after an alteration of the base, properties P2-P4, P6 (a)-(f) along with
 - (P6) (g) There exists a family of stable *n*-pointed curve $(\mathcal{C}, \tau_1, \ldots, \tau_n)$ over Y, a nonempty open subscheme $U \subset Y$, and an U-isomorphism $\beta: \mathcal{C}_U \to X_U$ mapping the sections $\tau_i|_U$ to $\sigma_i|_U$.

¹A family $\mathcal{C} \to S$ of nodal curves together with sections $\sigma_i: S \to \mathcal{C}, i = 1, ..., n$, is called a **family of stable** *n*-**pointed curves of genus** *g* if (i) $\sigma_i(S)$ lie in the smooth locus $(\mathcal{C}/S)^{sm}$ and are mutually disjoint, (ii) All geometric fibers have arithmetic genus *g*, and (iii) $\omega_{\mathcal{C}/S}(\sum \sigma_i(S))$ is relatively ample.

Extending β

- We can base-change the diagram above to the normalization of Y and we do so.
- Ideally, we want β to extend to a regular map because then we can replace X by $\mathcal{C}.$
- A common technique to extend a rational map is to pass to the closure of the graph. Define *T* as the closure of the graph Γ_β ⊂ C ×_Y X.
- Then β is a regular map if and only if $pr_1: T = \overline{\Gamma}_{\beta} \to C$ is an isomorphism.

Extending β

The induced map $T \rightarrow Y$ may not have curve as fibers, so we flatten it-

Theorem 6 (Raynaud-Gruson)

Let X and Z be varieties over a perfect field and $X \to Z$ a dominant projective morphism. There exists a modification $f: Y \to Z$ such that the strict transform $f': \widetilde{X_Y} \to Y$ is flat.

- So we blow up Y and assume that X and T are Y-flat.
- We already know that pr_1 is birational because β is an isomorphism over U. Also, as Y is normal, C is normal (this comes from Serre's $R_1 + S_2$ criterion). So we hope to apply Zariski's main theorem.
- So we wish to show that pr₁ has finite fibers.
- And now we come at a very technical discussion, which I am not going to pursue here. So let us just assume that pr_1 is magically an isomorphism and consequently β extends to a morphism.

Blow-ups

- Finally, we replace (X, Z) by (C, β⁻¹(Z)). Here, we may lose the finiteness
 of Z → Y but that's a non-issue.
- One can then use induction on dimension to change Y to a regular scheme.
- The resulting X has very simple singularities, and its desingularization can be carried out by hand.
- Indeed, a generically smooth family of nodal curves looks, étale locally around a singularity, something like

$$\operatorname{Spec} \frac{k[x, y, t]}{(xy - t^2)} \to \operatorname{Spec} k[t],$$

which can be resolved by routine blow-ups at singularities.

References

- D. Abramovich and F. Oort, *Alterations and Resolution of singularities*, Resolution of Singularities, Progress in Mathematics **181**, Birkhäuser, Basel.
- T. Feng, and A. Landesman, Math 249B Notes: Alterations, lectures by B. Conrad, http://math.stanford.edu/~conrad/249BW17Page/handouts/ alterations-notes.pdf.
- The Stacks project authors, *The Stacks project*, 2023.
- A. J. de Jong, *Smoothness, semi-stability and alterations*. Publications Mathématiques IHÉS **83** (1996), pp. 51-93.