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Everyone knows what a curve is, until he has studied enough mathematics
to become confused... — Felix Klein

Lecture 1
Lecturer: Krishna Hanumanthu Date: 02.01.2023

“Schemes are scary.”

1.1. Syllabus. Hartshorne [Har77, IV & V].

1.2. Prerequisites. Hartshorne [Har77, II.1-8, III.1-5]; Serre duality and Kodaira vanishing without
proofs.

1.3. Conventions. All fields k are algebraically closed. By “curve” we mean a regular/nonsingular
integral projective1 k-scheme of dimension 1.

1.4. Remark. X is a projective variety ⇐⇒ X can be embedded as a closed subvariety of some Pn .

1.5. Algebraic fact. An affine integral scheme is regular if and only if its coordinate ring is integrally
closed.

1Projective schemes are always proper.
1
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1.6. Example. The projective line P1. Plane curves: V ( f ) ⊆ P2, where f ∈ k[x, y, z] is a homogeneous
irreducible polynomial. Nonsingularity is equivalent to V ( fx , fy , fz ) =∅2. Are there such f ? Yes, x + y ,
x + y + z, x2 + y z, . . . but all these are isomorphic to P1. The curve x3 + y z2 + y3 is not isomorphic to P1.
Veronese embedding (n-uple embedding)

ϕn : [x : y] 7→ [xn : xn−1 y : · · · : x yn−1 : yn], P1→Pn

is a closed embedding. Then ϕn(P1) is non-degenerate, i.e., it’s not contained in any hyperplane.

1.A. Question. Which of the above curves are different from P1?

1.B. Question. Let X be a curve. Which curves can be embedded in P1? P2?

1.7. Fact. Any curve can be embedded in P3.

1.8. Genus. The arithmetic genus of X , denoted pa(X ), is defined as 1−PX (0), where PX is the Hilbert
polynomial of X . See Hartshorne [Har77, Ex I.7.2]. The geometric genus of X , denoted pg (X ), is
defined to be dimk H 0(X ,ωX ), where ωX is the canonical sheaf on X .

1.9. Theorem (Hartshorne [Har77, IV.1.1]). — Let X be a curve. Then pa(X ) = pg (X ) = dimk H 1(X ,OX ).

This common number is called the genus of X . It’s invariant under isomorphisms. The first equality
pa(X ) = dimk H 1(X ,OX ) is Hartshorne [Har77, Exercise III.5.3] and the second equality pg (X ) = dimk H 1(X ,OX )
is clear by Serre duality.

1.10. Notation. From now onwards, we write hi (X ,F ) for dimk H i (X ,F ).

1.C. Homework. Read Hartshorne [Har77, I.7]. Try Hartshorne [Har77, Exercise III.5.6].

Lecture 2
Lecturer: Krishna Hanumanthu Date: 05.01.2023

“The condition of your Hartshorne displays your prowess.”

2.1. Facts. If X is a projective variety over k of dimension r . Then
• H 0(X ,OX ) = k.
• In general, pa(X ) = (−1)r (χ(X ,OX )−1), where

χ(X ,OX ) = h0(X ,OX )−h1(X ,OX )+h2(X ,OX )−·· ·
is the Euler characteristic. See Hartshorne [Har77, Ex III.5.2].

• If r = 1, then pa(X ) = 1−χ(X ,OX ) = h1(X ,OX ) by Grothendieck’s dimensional cohomology
vanishing.

2.2. Definition. Let X be a curve. The genus of X is g (X ) := pa(X ) = pg (X ) = h1(X ,OX ).

Note that g (X ) is a nonnegative integer.

2.A. Question. Is every nonnegative integer genus of some curve? Answer: yes.

2.3. Example. Let Q ⊆P3 be a nonsingular quadric, for e.g., Q =V (x y−zw). It turns out that Q ∼=P1×P1

via the Segre embedding P1 ×P1→P3.

2For homogeneous polynomials f , V ( fx , fy , fz ) ⊆V ( f ) holds as f can be written as a linear combination of fx , fy , and fz .
Here, fx = ∂ f /∂x, . . .
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2.4. Weil divisors on the quadric surface in P3. Define the divisor class group ClQ by the quotient
WeilQ/{linear equivalence}, where Weil X is the free Z-module of all Weil divisors. It turns out that the
divisor class group is isomorphic to Z×Z. Using this isomorphism, we can denote any divisor class as a
pair of integers.

2.B. Exercise. Show that ClP1 =Z and that ClQ =Z×Z.

2.C. Exercise (See Hartshorne [Har77, Example II.7.6.2]). If (a,b) ∈ ClQ then “(a,b) is ample ⇐⇒
(a,b) is very ample ⇐⇒ a > 0,b > 0”.

2.D. Homework. Hartshorne [Har77, Ex III.5.6] (especially part (c)).

Consider Q. Let a,b > 0 and let X ∈ |(a,b)| be a curve, where |(a,b)| is the linear system3 of the
divisor (a,b). Bertini’s theorem says that such an X exists. Observe that g (X ) = ab −a −b +1.

2.5. Corollary. — If X ∈ |(g +1,2)|, then g (X ) = g . In particular, P1×P1 contains a curve of every genus.

2.E. Question. Is there a different surface where you can produce curves of any given genus? Given
any curve X , can it be embedded in Q =P1 ×P1?

2.F. Exercise. If X is a curve of genus 0, then X ∼=P1.

2.6. Quick review of divisors. (X is not necessarily a curve in this section.) A Weil divisor on X is a
formal expression

∑n
i=1 ai Yi where ai ∈Z and Yi are irreducible reduced codimension 1 subvarieties.

The divisor associated to a rational function f ∈ K (X ) is

div f := ∑
Y ⊆X ,codimY =1,

reduced, irreducible, closed

nY [Y ].

Such Y ’s are called prime divisors. What are aY ? Let U ⊆ X be an affine open set such that U ∩Y is
nonempty. Then OX ,Y := k[U ]IY (U ), where k[U ] is the coordinate ring of U , and IY (U ) is the ideal of
U ∩Y in U = Speck[U ]. We then define nY to be the valuation of f at the discrete valuation ring (DVR)
OX ,Y . It’s worth noting that OX ,Y is same as the stalk of OX at the generic point of Y .

Lecture 3
Lecturer: Krishna Hanumanthu Date: 09.01.2023

3.1. (continued) Quick review of divisors. Let p ∈ Y be a closed point. Define

IY ,p := “stalk of the ideal sheaf IY at p ⊆OX ,p”.

Note IY ,p is a height 1 prime in OX ,p . Also, OX ,Y = (OX ,p )IY ,p . Let U ⊆ X be an affine open subset. Then
we have the following diagram

k[U ] k[U ]IY ,p OX ,p (OX ,p )IY ,p

IY (U ) IY (U )IY ,p OX ,Y

IY ,p

ht 1 prime ht 1 prime

3Vakil [FOAG] calls this linear series.
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Conclusion: OX ,Y is a DVR whose quotient field is K (X ). Let t be a uniformizing parameter on OX ,Y , i.e.,
t generates the maximal ideal of OX ,Y . This gives a discrete valuation νY : K (X )×→Z.

3.2. Definitions. Let f ∈ k(X )× then
• Divisor of zeros of f :

( f )0 := ∑
νY ( f )>0,Y prime divisor

νY ( f )[Y ]

• Divisor of poles of f :
( f )∞ := ∑

νY ( f )<0,Y prime divisor
−νY ( f )[Y ]

• Divisor of f :
div f := ( f ) = ( f )0 + ( f )∞

A divisor on X is called principal if D = ( f ) for some rational function f ∈ K (X )×. Divisors D1, D2 are
called linearly equivalent (written D1 ∼ D2) if D1 −D2 is principal. The divisor class group of X is
Cl X := Div X := Weil X / ∼ .

3.3. Remark. Let f ∈ K (X )×, then νY ( f ) ̸= 0 holds for only finitely many prime divisors Y . Let
0 ̸= g ∈ k[U ] for some affine open U ⊆ X . Let Y ⊆ X be a prime divisor, then

νY (g ) > 0 ⇐⇒ g ∈ I (Y ∩U ) ⇐⇒ Y ∩U ⊆VU (g ) ⇐⇒ Y ∩U is an irred. comp. of VU (g ).

Hence, for all f ∈ K (X )×, {Y ⊆ X prime divisor : νY ( f ) ̸= 0} is finite.

3.4. Example. If X is an affine variety such that k[X ] := Γ(X ,OX ) is a UFD, then Cl X = 0.

3.A. Question. What happens if we don’t assume k[X ] is a UFD?

3.5. Reference. “Introduction to Algebraic Geometry” by Steve D. Cutkosky, Graduate studies in
Mathematics 188, American Mathematical Society, 2018.

3.6. The sheaf associated to a divisor. Fix a nonsingular variety X . Let D =∑
ai Yi a divisor4 on X

and U ⊆ X be an open set. Define
Γ(U ,OX (D)) := { f ∈ K (X )× : ( f )U +D ∩U Ê 0}∪ {0},

where ( f )U is the divisor on U associated to f ∈ K (U ) and D ∩U is the image of D under the natural
map Weil X →WeilU . We write D Ê 0 for a divisor D if all its “coefficients” are nonnegative.

3.B. Easy exercise. Show that OX (D) is a sheaf of OX -modules.

3.C. Exercise. Show that OX (0) =OX .

3.7. Proposition. — OX (D) is an invertible sheaf (line bundle) for all D.

3.8. Definition. The Picard group of X , denoted Pic X , is the set of all isomorphism classes of line
bundles on X , under tensor product.

3.9. Proposition. — If X is a nonsingular variety, D1 and D2 are divisors on X , then
D1 ∼ D2 ⇐⇒ OX (D1) ∼=OX (D2).

3.10. Next. Differentials and the Riemann-Roch theorem.

4From now onwards, we simply write Y instead of [Y ].
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Lecture 4
Lecturer: Krishna Hanumanthu Date: 12.01.2023

“This is my brother’s son. He wants to learn about divisors.”

4.1. Cartier divisors “=” Weil divisors. Let X be an integral locally factorial scheme. The data

{(Ui , fi )}, Ui ⊆ X open, X =∪Ui , fi ∈ K (X ), fi / f j ∈OX (Ui ∩U j )×,

is called a Cartier divisor. Let Y ⊆ X be a prime divisor, then IY ,p ⊆ OX ,p is a height 1 prime ideal,
hence it’s principal, say IY ,p = ( f ), as OX ,p is a UFD. We call “ f = 0” a local equation of Y at p.

4.A. Exercise. There exists an open affine W ⊆ X such that p ∈W and IY (Y ∩W ) = ( f ).

Use these local equations to define a Cartier divisor corresponding to Y . For p ∈ Y , choose (Wp , fp )
and (X \ Y ,1) when p ∉ Y . We can also go in the opposite direction– given a Cartier divisor {(Ui , fi )}, we
can get a Weil divisor– given any prime divisor Y on X , choose any Ui such that Ui ∩Y is nonempty,
then define nY

def= νY ( fi ). This doesn’t depend on the choice of Ui because fi and f j are same upto units.
Denote the group of all Cartier divisors, without any equivalence, as Cartier X .

4.2. Theorem (Hartshorne [Har77, Theorem II.6.11]). — If X is integral, noetherian, and factorial
then Weil X ∼= Cartier X . This isomorphism preserves principal divisors.

4.3. Line bundle associated to a Cartier divisor. Given {(Ui , fi )} = D, then define OX (D)5 as a
OX -submodule of the constant sheaf K (X )–

Γ(Ui ,OX (D)) =OX (Ui )-submodule of K (X ) generated by f −1
i = f −1

i OX (Ui ) ⊆ K (X ).

4.4. Facts.
(1) D 7→OX (D) is a 1-1 correspondence between Cartier divisors and line sub-bundles of K (X ).
(2) OX (D1 +D2) ∼=OX (D1)⊗OX (D2)
(3) OX (−D) ∼=OX (D)∨ :=Hom (OX (D),OX )
(4) D1 ∼ D2 ⇐⇒ OX (D1) ∼=OX (D2)
(5) If X is projective over a field or is integral then every line bundle on X is a sub-bundle of K (X ).

4.5. In our situation:

Weil X
∼←−−−−−−→Cartier X

∼←−−−−−−→ {line bundles}

Cl X
∼←−−−−−−→CaCl X

∼←−−−−−−→ Pic X

4.6. Example: Projective space. Let X = Pn
k = ProjS•, where S• = k[x0, . . . , xn]. For a homogenous

polynomial F ∈ S•, define a divisor associated to F as follows– F = F e1
1 · · ·F er

r be an irreducible factorization.
Then divF = e1V (F1)+·· ·+er V (Fr ).

4.7. Theorem. — ClPn ∼=Z.

Sketch. For a prime divisor Y ⊆Pn , there exists a polynomial F ∈ S• such that Y =V (F ). This is because
S• is a UFD. Define degY := degF and ClPn → Z,

∑
ai Yi 7→

∑
ai degYi . This is a well-defined map

because principal divisors are given by fractions of homogeneous polynomials of same degree, i.e.,
K (Pn) = (FracS•)0. Furthermore, degree-d homogeneous polynomials should be thought of as global
sections of O (d). Then check that this is an isomorphism of groups. □

5This is denoted L (D) in Hartshorne [Har77].
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4.8. Divisor associated to global section of a line bundle. Fix X a projective variety and L a line
bundle on X . Fix a nonzero s ∈ Γ(X ,L ). We want to define a divisor associated to s. Hartshorne [Har77]
denotes the divisor of zeros of s as (s)0. Choose a local trivialization {Ui } of L . Then the Cartier divisor
associated to s is (s)0 := {(Ui , si )}. This is an effective Cartier divisor, i.e., si are regular on Ui .

4.9. Remark. This generalizes the above constructions of divF for a homogenous F ∈ S• because such
an F is a section of OX (degF ).

4.10. Proposition (Hartshorne [Har77, Proposition II.7.7]). — Let X be a nonsingular projective variety
over k. Let D0 ∈ Weil X and L =OX (D0) ∈ Pic X . Then

(1) For every nonzero section s ∈ Γ(X ,L ), the divisor of zeros (s)0 is an effective divisor which is linearly
equivalent to D0.

(2) For every effective divisor D ′ linearly equivalent to D0, there exists nonzero s ∈ Γ(X ,OX (D0)) such
that D ′ = (s)0.

(3) When k = k, if s, s′ ∈ Γ(X ,L ) have the same divisor of zeroes then s =λs′ for some λ ∈ k×.

4.B. Homework. Read about canonical sheaf.

4.11. Next. Linear systems; ampleness; globally-generated sheaves; differentials.

Lecture 5
Lecturer: Krishna Hanumanthu Date: 19.01.2023

5.1. Linear systems. Let L =OX (D0) ∈ Pic X and D0 ∈ Cl X . We have the following correspondence:

P(Γ(X ,L )) |D0|
{

effective divisors
linearly equivalent to D0.

}

Γ(X ,L ) \ {0}/k× The complete linear system
associated to D0.

def

def

def

∼

5.2. Observation. There is no effective divisor linearly equivalent to D0 if and only if Γ(X ,L ) = 0.

5.3. Example. Let X =P2 := Projk[x0, x1, x2], and L =OP2 (2) ∼=O (2 ·V (x0)). Observe that Γ(X ,L ) is the
vector space of degree-2 homogeneous polynomials in k[x0, x1, x2]. Therefore, P(Γ(X ,L )) ∼=P5 in the
classical sense. See projectivization of vector spaces (Vakil [FOAG]).

5.4. Maps to projective space. Let X be a nonsingular projective k-variety. Suppose ϕ : X → Pn is
a morphism. We know that Γ(Pn ,OPn (1)) ∼= kx0 +kx1 +·· ·+kxn , the linear homogeneous polynomials.
Then we have a line bundle L :=ϕ∗(OPn (1)) on which we have global sections si :=ϕ∗xi , 0 É i É n. We
can attach to ϕ the data (L , s0, . . . , sn). This procedure is reversible. See Vakil [FOAG] or Hartshorne
[Har77] for details. Therefore, we have a correspondence:

Mork (X ,Pn
k )←−→ {(L , s0, . . . , sn) : L ∈ Pic X , si ∈ Γ(X ,L ), si have no common zeroes}.

If si have common zeroes, we only get a morphism from an open subscheme of X , i.e., a rational map
since X is integral, in particular, irreducible, in our case.
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5.5. Definition. — We call a line bundle L globally-generated if there is a finite set of global sections
that generate L .

Observe that this definition aligns with the one in Vakil [FOAG].

5.6. Proposition (local criterion for closed embedding into Pn). — Hartshorne [Har77, Proposition
II.7.3]

5.7. Remark. Think of the two conditions as separating a 0-dimensional subscheme of length 2.
Condition 1: P +Q, P ̸=Q. Condition 2: 2P, P ∈ X . In condition 2, we have P ∈ X and t ∈ TP (X ), a tangent
vector at P.

5.8. Definition. — Let X be a projective k-variety and L be a line bundle.
(1) L is very ample if the “map determined by L ” is a closed embedding, where the “map

determined by L ” is the morphism given by a k-basis of Γ(X ,L ). Note that global-generation
is implicit in this definition.

(2) L is ample if L ⊗m is very ample for some m Ê 1.

5.9. Theorem (definition of ample in Hartshorne [Har77]). — A line bundle L is ample if and only if
for all coherent sheaves F on X , F ⊗L ⊗m is globally-generated for all sufficiently large m.

5.10. Remark. Note that ample divisors6 are not necessarily effective.

5.11. Examples.
(1) X =Pn , Ld =OX (d), d ∈Z. Therefore Ld is effective7 if and only if d Ê 0. Note that L0 =OX is

globally-generated. Also, Ld is very ample/ample if and only if d Ê 1.
(2) (Hartshorne [Har77, Example 7.6.2]) Consider X =V (x y − zw) ⊆P3. We know that

X ∼=P1 ×P1, Pic X ∼=π∗
1 PicP1 ⊕π∗

2 PicP1 ∼=Z⊕Z.

Let a, b ∈Z.
• a < 0 or b < 0: Restriction of a type (a,b) line bundle to the components are OP1 (a) and

OP1 (b). Hence, it is not globally-generated.
• a, b > 0: We have

X ∼=P1 ×P1 Veronese×Veronese
,−−−−−−−−−−→Pa ×Pb Segre

,−−→Pab+a+b

This is the closed embedding determined by (a,b) on X .
In conclusion, (a,b) is very ample if and only if a,b > 0 if and only if (a,b) is ample.

Lecture 6
Lecturer: Krishna Hanumanthu Date: 23.01.2023

6.1. (continued) Example.
(2) What about (0,b), b > 0? This is not ample. Observe that (−1,1)⊗ (0,b)⊗m = (−1,1+mb) is not

globally-generated.

6.2. Example: An ample line bundle which is not very ample (Hartshorne [Har77, Example II.7.6.3]). Let
X =V (y2z −x3 −xz2) ⊆P2 be the smooth cubic in P2. Consider P0 = [0 : 1 : 0] ∈ X and L =OX (P0). Is L
very ample? ample? globally-generated? Set-theoretically, X ∩V (z) = P0. Ideal of X ∩V (z) is (z, x3), hence

6A divisor D is called ample if the corresponding line bundle O (D) is ample.
7A line bundle is called effective if Γ(X ,L ) ̸= 0.
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X ∩V (z) = 3P0. Therefore, OP2 (1)|X =L ⊗3, and so L ⊗3 is very ample. In other words, the global section
z of OX (1) satisfies div z = 3P0. Therefore, L ⊗3 ∼= OX (3P0) ∼= OX (1). However, L is not even globally-
generated, let alone ample. Also see https://math.stackexchange.com/questions/1504206.

6.A. Exercise. If L is globally-generated then there is a point Q ∈ X \ {P0} such that Q is linearly
equivalent to P0.

6.B. Exercise (Hartshorne [Har77, Example II.6.10.1]). If X is a nonsingular projective curve such
that there are two distinct points P,Q ∈ X , linearly equivalent, then X ∼=P1.

But X is not P1 as it is a genus 1 curve.

6.3. Later. On a curve, a divisor D is ample if and only if degD > 0.

6.4. Linear systems revisited. Let X be a nonsingular projective variety and D ∈ Div X . Suppose
s ∈ Γ(X ,OX (D)) is a nonzero section. Then div s = (s)0 is effective and equivalent to D. Therefore, we
have a correspondence

{Effective divisors lin. eq. to D}
∼←−−−−−−→PH 0(X ,OX (D))

For a vector subspace V ⊆ H 0(X ,OX (D)), we have PV ⊆PH 0(X ,OX (D)) = |D|. Then V is called a linear
system.

6.5. Example. Degree d hypersurfaces in P2 is a complete linear system. Degree d hypersurfaces
passing through a single point, degree d hypersurfaces passing through a single point with multiplicity
three, and degree d hypersurfaces passing through two points with multiplicity three each are all linear
systems.

Global-geneneration and very ampleness can be expressed as properties of the corresponding linear
systems. See Hartshorne [Har77, Remark II.7.8.2].

6.6. Kähler Differentials. Fix a ring map A→B and a B -module M .

6.7. Definition. An A-derivation of B into M is an A-module map d: B→M . such that
• d is additive
• d(bb′) = bdb′+b′db
• da = 0 for all a ∈ A.

6.8. Module of relative differentials ΩB/A. There is a universal object for A-derivations of B , denoted
by ΩB/A, called the module of relative differentials, with an A-derivation d: B→ΩB/A:

B M

ΩB/A

A-derivation

d ∃!

In other words, DerA(B , M) ∼= HomB -Mod(ΩB/A , M). The following proposition shows that ΩB/A exists.

6.9. Proposition. — Let f : B ⊗A B→B be the natural multiplication map/diagonal map. Let I = Ker f .
Then d: B→ I /I 2, b 7→ 1⊗b−b⊗1 is an A-derivation, and (I /I 2,d) satisfies the universal property of ΩB/A .

6.10. Sheaf of differentials. Let f : X → Y be a map of schemes. Consider the diagonal morphism
∆ : X → X ×Y X , which is known to be a locally closed embedding. Then ∆(X ) ⊆closed W ⊆open X ×Y X
for some W. Let I be the ideal sheaf of ∆(X ) in W . Define ΩX /Y to be ∆∗(I /I 2), the sheaf of relative
differentials of X over Y .

6.11. Remark. ΩX /Y has a local description using affine opens of X and Y .

https://math.stackexchange.com/questions/1504206
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6.12. Definitions. — Let X be smooth over k. The tangent bundle TX /k is defined as Hom OX (ΩX /k ,OX ).
The canonical bundleωX /k is defined as the top exterior detΩX /k :=∧nΩX /k , also called the determinant
bundle of ΩX /k . When X is a nonsingular projective k-variety, the geometric genus of X is defined as
pg (X ) = h0(X ,ωX ).

6.13. Definition. — A variety X is called rational if it is birational to Pn , where of course, n = dim X .

6.14. Useful facts.
(1) Euler sequence. There is an exact sequence

0→ΩPn
A/A→OPn

A
(−1)⊕(n+1)→OPn

A
→ 0

(2) Smooth ⇐⇒ ΩX /k locally free. If X is irreducible, separated, finite-type over k, then ΩX /k is
locally-free of rank dim X if and only if X is smooth.

(3) Canonical bundle of Pn. Taking the top exterior of the Euler sequence, we get

OPn (−n −1) ∼= detOPn (−1)⊕(n+1) ∼= detΩPn /k ⊗detOPn ∼= detΩPn /k =ωX .

(4) Adjunction formula. Let Y ⊆ X be nonsingular, codimY = 1, and L =OX (Y ). Then

ωY =ωX ⊗L ⊗OY =ωX ⊗L |Y .

(5) Bertini’s theorem. Let X ⊆ Pn
k be a nonsingular closed subvariety over k = k. Then there is

an open subset U ⊆ {hyperplanes in Pn} = P(H 0(Pn ,O (1))) such that if H ∈U then X ̸⊆ H and
H ∩ X is nonsingular. If dim X Ê 2 then we can also ensure that H ∩ X is connected, which
means it’s a nonsingular variety (remember that connected =⇒ irreducible in our case).

(6) Geometric genus is a birational invariant.

6.15. Next. Examples of hypersurfaces in Pn and applications of Euler sequence; Riemann-Roch
theorem.

Lecture 7
Lecturer: Krishna Hanumanthu Date: 27.01.2023

7.1. Examples.
(1) Let X =Pn

k , n Ê 2, H ⊆Pn hyperplane, OX (H) =OX (1). Consider the complete linear system |d H |
on X for d > 0. By Bertini’s theorem, there exists Y ∈ |d H | which is regular everywhere. In fact,
Y can also be chosen irreducible. Hence, for all d Ê 1, there exists a nonsingular hypersurface
Y ⊆Pn

k of degree k.
(2) Let Y ⊆Pn , n Ê 2, Y a nonsingular hypersurface of degree d . By adjunction formula,

ωY =ωPn ⊗OPn (d)⊗OY =O =OPn (d −n −1)|Y =OY (d −n −1).

• n = 2, d = 2. Then Y ⊆P2 is a conic and it’s the image of the 2-uple embedding P1→P2.
• n = 2,d = 3. Then ωY =OY and pg (Y ) = 1. Thus, Y ̸∼=P1. This is called an elliptic curve.
• n = 2,d Ê 4. Then ωY =OY (d −3), d −3 > 0. Thus, pg (Y ) = (d −1)(d −2)/2. See Hartshorne
[Har77, Ex II.8.4 (f)]. Therefore, curves of different degrees in P2 are not isomorphic.

• n = 3,d = 1. Then ωY =OY (−3). Of course, Y ∼=P2.
• n = 3,d = 2. Then Y is the nonsingular quadric, which is isomorphic to P1 ×P1. Note that
ωY =OY (−2). Thus, pg (Y ) = 0 as OY (−2) has no global sections. Another way to see this is
from the fact that P1 ×P1 is birational to P2. However, P1 ×P1 is not isomorphic to P2, as
seen by comparing divisor class groups.
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• n = 3, d = 3. Y is called the nonsingular cubic in P3. And ωY
∼=OY (−1), pg (Y ) = 0. In fact,

Y is rational.
• n = 3,d = 4. Then ωY =OY and pg (Y ) = 1. These are called K3 surfaces.
• n = 3,d Ê 5. Then ωY =OY (d −4) where d −4 > 0. So, pg (Y ) > 0. These are called surfaces
of general type8.

• n = 4, d ∈ {3,4}. Then pg = 0, but these 3-folds are not rational.
• n arbitrary, d Ê n +1. Then ωY =OY (d −n −1) where d −n −1 Ê 0. So, pg (Y ) Ê 1. Thus, Y
is not rational. Hence, there are nonrational varieties in all dimensions.

7.2. Serre duality (Hartshorne [Har77, Corollary III.7.7, Remark III.7.12.1]). — Let X be a nonsingular
projective variety of dimension n over k = k and F a vector bundle. There is a natural isomorphism of
k-vector spaces

H i (X ,F ) ∼= H n−i (X ,F∨⊗ωX )∨.

7.3. Curves. Let X be a curve, i.e., a nonsingular projective integral k-variety of dimension 1. We have
seen that

g (X ) := pa(X ) = pg (X ) = dimk H 1(X ,OX ) := h1(X ,OX ) = h0(X ,ωX ).

Weil divisors are of the form D =∑
P∈X nP P, where P denotes a closed point. On a curve, there’s exactly

one non-closed point– the generic point.

7.4. Notation. ℓ(D) := h0(X ,OX (D)).

Note that dim |D| = ℓ(D)−1.

7.5. Lemma. — Let X be a curve and D ∈ Weil X .

(1) ℓ(D) ̸= 0 =⇒ degD Ê 0.
(2) ℓ(D) = 0, degD = 0 =⇒ D ∼ 0

7.6. Riemann-Roch theorem. — Let X be a curve of genus g and D ∈ Weil X . Then
ℓ(D)−ℓ(K −D) = degD +1− g ,

where K is a divisor associated to the canonical bundle ωX . It’s called the canonical divisor.

Note that ℓ(K −D) = h0(OX (K −D)) = h0(ωX ⊗OX (D)∨) = h1(OX ) by Serre duality. So the Riemann-
Roch theorem can be rephrashed as

χ(X ,OX (D)) := h0(OX (D))−h1(OX (D)) = degD +1− g .

The LHS is called the Euler characteristic of D, also denoted χ(D).

7.7. Next. Riemann-Hurwitz theorem.

Lecture 8
Lecturer: Krishna Hanumanthu Date: 30.01.2023

8.1. Proof of Riemann-Roch theorem. The case D = 0 is trivial. Let D ∈ Weil X and P ∈ X . Then we will
show that the theorem holds for D if and only if it holds for D +P. To prove this, it suffices to show that
χ(D −P ) =χ(D)+1. Take the closed subscheme exact sequence

0→OX (−P )→OX →OX |P → 0.

8Vakil [FOAG] defines a variety to be of general type when its Kodaira dimension is maximal, i.e., equal to its (Krull)
dimension.
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Twist by D:
0→OX (D −P )→OX (D)→OX |P (D)→ 0.

Taking Euler characteristics and using OX |P (D) ∼=OX |P , we get the desired result. □

8.2. Examples and remarks.
(1) Consider X ⊆ Pn , a curve of degree d . Let H ⊆ Pn be a hyperplane and D = X ∩H , a divisor.

Hartshorne [Har77, Exercise III.5.2] gives us that χ(OX (D)) = d +1−pa . This is a special case
of Riemann-Roch because D is very ample.

(2) Riemann-Roch problem. Let X be a nonsingular projective variety and D ∈ Weil X . Determine
dim |nD| as a function of n. And in particular, determine its behaviour as n →∞. This is
equivalent to asking about h0(X ,OX (nD)) for n ≫ 0. Riemann-Roch theorem solves this problem
for curves by Serre vanishing.

If degD < 0 then dim |nD| = −1 for all n Ê 1. If degD = 0 then if dim |D| ̸= 0 is basically the set
of all effective divisors linearly equivalent to D, and hence D ∼ 0. If degD > 0 then we claim that
h1(nD) = 0 for n ≫ 0. By Serre duality, h1(nD) = h0(K−nD). Note that deg(K−nD) < 0 for n ≫ 0.
Thus, h0(K−nD) = 0 for large enough n. Thus, Riemann-Roch tells us that h0(nD) = n degD+1−g
for large enough n.

(3) Let X be a curve of genus g . Then degK = 2g −2 by Riemann-Roch and Serre duality.
(4) A divisor D ∈ Weil X is called special if ℓ(K −D) = h1(D) > 0. Expected dimension of H 0(D)

is defined as degD +1− g . By Riemann-Roch, h0(D) is at least the expected dimension. So,
D is special if h0(D) is strictly bigger than the expected dimension of D. A divisor D is called
non-special if h0(D) = degD +1− g .

8.3. Claim. — If degD > 2g −2 then D is non-special.

Proof. Obvious by Riemann Roch. □

(5) X is rational (which is same as being isomorphic to P1 for curves) if and only if g (X ) = 0. Take
any two points P and Q on X . If g (X ) = 0 then h0(P −Q)−h1(P −Q) = 1 by Riemann-Roch. Note
that h1(P −Q) = h0(K −P +Q) = 0 as deg(K −P +Q) =−2 < 0. Thus, h0(P −Q) = 1. This means
P ∼Q which implies X ∼=P1.

(6) A curve X is called elliptic if g (X ) = 1. In that case, degK = 0. Also h0(K ) = g = 1 > 0. Therefore,
K ∼ 0.

(7) Group law of elliptic curves. If X is an elliptic curve and P0 ∈ X . Define Pic0(X ) := {D ∈ Cl X : degD = 0}.
This has the structure of an algebraic variety. There is a bijection f : X → Pic0(X ), P 7→OX (P−P0).
Take D ∈ Pic0(X ). Apply Riemann-Roch to D +P0:

ℓ(D +P0)−ℓ(K −D −P0) = 1+1−1 = 1.

Also, deg(K −D −P0) =−1. Therefore, ℓ(D +P0) = 1. Hence, there is an effective divisor E such
that E ∼ D +P0. Therefore, degE = 1 =⇒ E ∼Q for some Q ∈ X . So, f is a surjection. It’s easy to
see that it’s also injective because a genus 1 curve cannot have two distinct linearly equivalent
points.

Lecture 9
Lecturer: Krishna Hanumanthu Date: 03.02.2023

Let X and Y be curves, f : X → Y a finite morphism9

9In the algebraically closed setting, finite morphisms are always dominant. Therefore, it makes sense to talk about the
corresponding extension of function fields.
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9.1. Definition. The degree of f is defined to be deg f := [K (X ) : K (Y )].

Let P ∈ X , Q = f (P ) ∈ Y be closed points. Then we have a map of DVRs: f # : OY ,Q→OX ,P . Let t ∈OY ,Q

be a uniformizing parameter at Q. Let eP = valP f #t .

9.2. Definition. We say f is ramified at P if eP > 1. We call P a ramification point of f and Q = f (P )
a branch point.

• If chark = 0, or chark = p > 0 and p ∤ eP , we say the ramification is tame,
• otherwise, the ramification is wild.
• eP is called the ramification index of f at P .
• If eP = 1 then f is unramified at P .

We call f separable if the extension K (X )/K (Y ) is separable.

9.3. Let f : X → Y be a finite morphism of curves. We have a pullback map

f ∗ : WeilY →Weil X , Q 7→
∑

f (P )=Q
eP P.

9.4. Remark. We always have a pullback map for line bundles f ∗ : PicY → Pic X . In the case of finite
morphism of curves, these two maps are “same”: OX ( f ∗D) ∼= f ∗OY (D).

9.A. Homework. Read Hartshorne [Har77, Proposition II.6.9]. If f : X → Y is a finite morphism of
curves and D ∈ WeilY , then deg f ∗D = deg f degD.

9.5. Proposition (Cotangent exact sequence for curves). — Let f : X → Y be finite separable morphism
of curves. Then we have an exact sequence of OX -modules

0→ f ∗ΩY /k→ΩX /k→ΩX /Y → 0

Proof. We have right exactness by the usual cotangent exact sequence. Observe that the injectivity of
f ∗ΩY /k→ΩX /k can be checked at the generic point, say η. Taking the stalk of the usual cotangent right
exact sequence at the generic point, we obtain

( f ∗ΩY /k )η→ΩX /k,η→ΩX /Y ,η→ 0.

Since localizations commute with Ω, we have ΩX /Y ,η =ΩK (X )/K (Y ) = 0. Therefore, ( f ∗ΩY /k )η→ΩX /k,η is
a surjection. Being a map of 1-dimensional vector spaces, it must be an isomorphism. □

9.6. Proposition (Hartshorne [Har77, Proposition IV.2.2]). — Let f : X → Y be a finite separable
morphism of curves. Then

(1) ΩX /Y is a torsion sheaf with support equal to the ramification points of f . As a consequence, f is
ramified at only finitely many points.

(2) For all P ∈ X , the stalk ΩX /Y ,P is a principal OX ,P -module of finite length equal to valP
dt
du .

(3) If f is tamely ramified at P then lengthOX ,P
ΩX /Y ,P = eP −1.

(4) If f is wildly ramified at P then lengthOX ,P
ΩX /Y ,P > eP −1.

9.7. Next. Hurwitz’ theorem.

Lecture 10
Lecturer: Nabanita Ray Date: 06.02.2023
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10.1. Definition. Let f : X → Y be a finite separable morphism of curves. The ramification divisor is
defined as

R = ∑
P∈SuppΩX /Y

lengthOX ,P
ΩX /Y ,P [P ].

Observe that the structure sheaf OR of R, as a closed subscheme, is isomorphic to ΩX /Y .

10.2. Proposition. — It follows that KX ∼ f ∗KY +R. In particular, canonical divisors pull back to canonical
divisors for unramified morphisms.

Proof. Tensor the cotangent exact sequence with Ω∨
X /k and use OR

∼=ΩX /Y . □

10.3. Hurwitz’s Theorem. — For a separable finite morphism f : X → Y of curves, we have

2g (X )−2 = (deg f )(2g (Y )−2)+degR.

Proof. Take degrees of the cotangent exact sequence. In other words, use the preceeding proposition
and that degree is stable under linear equivalence. □

10.4. Remark. Degree of ramification divisor is always even.

10.5. Étale morphisms. Let f : X → Y be a morphism. For f (x) = y , we have the diagram:

�OY ,y �OX ,x

k(y) k(x)

Then f is étale if the above square is a “tensor diagram”, i.e., �OX ,x
∼= �OY ,y ⊗k(y) k(x), and k(x)/k(y) is

separable, for all x 7→ y.

10.6. Proposition. Let f : X → Y be a morphsim. The following are equivalent:
(1) f is étale.
(2) f is smooth of relative dimension 0.
(3) f is flat and ΩX /Y = 0.
(4) f is flat and unramified10.

10.A. Homework. Hartshorne [Har77, Exercises III.10.3-4].

10.7. Definition. A scheme Y has an étale cover by X if there is a finite étale morphism f : X → Y . If
f is of the form X =⊔

finiteY → Y then X is called a trivial étale cover of Y . A scheme X is called simply
connected if X has no nontrivial étale cover.

10.8. Example. P1
k is simply connected. Suppose f : X →P1 is an étale cover of P1. Then X → Speck

is smooth of relative dimension 1 as P1→ Speck is smooth of relative dimension 1. Thus, dim X = 1.
Let X ′ be an irreducible component of X . By Hurwitz’s theorem, 2g (X ′)−2 =−2 =⇒ g (X ′) = 0, which
implies that X ′ ∼=P1, and X is a finite disjoint union of projective lines.

10.9. Definition. Let f : X → Y be a finite morphism between curves. Then f is called purely
inseparable if K (X )/K (Y ) is purely inseparable.

10Warning: Vakil [FOAG] defines unramified as finite-type and ΩX /Y = 0.
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10.10. Frobenius morphism. Let X be a scheme all of whose stalks have characteristic p > 0. Then we
define the Frobenius morphism Frob: X → X as

(1) Frob = idX set-theoretically.
(2) Frob# : OX →OX is the pth power map. That is, at stalk level, it is the Frobenius endomorphism.

The above definition has no reference to the base field of X . Let us fix an algebraically closed base field
k of characteristic p > 0 from now onwards. Then note that Frob defined above is not a k-morphism
because it is not necessarily k-linear at the level of stalks. We can make it a k-morphism.

X X

Speck Speck

Frob

π

Frob

Define Xp to be the same scheme X but with the structure map F ◦π. This is same as defining Xp as the
fibered product X ×k k where the map k→ k is the Frobenius endomorphism. Then k acts on stalks of
Xp via pth powers. Now, Frob′ : Xp→ X , defined similarly as above, is k-linear at stalks. This is called
the k-linear Frobenius morphism.

10.11. Observation. Xp is isomorphic to X as a scheme over SpecZ, but they are not isomorphic as
schemes over Speck.

10.12. Proposition. — K (Xp ) = K (X )1/p .

Proof. We know that Xp = X ×k,Frob k, where Frob: k→ k is x 7→ xp . Therefore, the function field of Xp

is K (X )⊗k,Frob k. Now, K (X )⊗k,Frob k→K (X )1/p given by a ⊗ℓ 7→ ℓa1/p is an isomorphism. □

10.13. Observation. K (X )1/p and K (X ) are isomorphic as fields, however, they are not isomorphic as
k-algebras.

10.14. Proposition (Hartshorne [Har77, Proposition IV.2.5]). — If f : X → Y is a purely inseparable
finite morphism of curves, then X ∼= Ypn for some n Ê 1, and f is a repeated iteration of the k-linear
Frobenius morphism. In particular, g (X ) = g (Xp ).

10.15. Next. Proof of the above proposition.

Lecture 11
Lecturer: Nabanita Ray Date: 10.02.2023

11.1. Proof of Proposition 10.14. We have [K (X ) : K (Y )] = pn for some positive integer n. This comes
from the fact that K (X ) and K (Y ) are algebraic extensions of k(t ). Hence, K (X )pn ⊆ K (Y ), which
implies K (X ) ⊆ K (Y )1/pn

. Now, K (X ) and K (Ypn ) = K (X )1/pn are pn-dimensional vector spaces over
K (Y ). Therefore, K (X ) is forced to be equal to K (Y )1/pn

. Thus, X ∼= Ypn follows due to the equivalence
of category of curves with dominant morphisms and the category of function fields of curves. □
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11.2. Inseparable morphisms are ramified everywhere. Let f : X → Y be an inseparable morphism
between two curves. By field theory, such a map factors as

X Y

Ypn

f

sep. purely insep.

Therefore, it is enough to show that the k-linear Frobenius twist Frob′ : Y = Xp→ X is ramified every-
where. We claim that ΩX

∼=ΩX /Y . It suffices to check this at stalks. Consider the following diagram:

f ∗ΩY ,y ΩX ,x ΩX /Y ,x 0

f ∗OY ,y OX ,x

dd

Let t be a local parameter at y. Then f ∗(dt ) = d( f ∗t ) = dt p = pt p−1dt = 0. Thus, ΩX ,x
∼=ΩX /Y ,x , which

completes the proof.

11.3. Remark. If f : X → Y is a nonconstant (finite) morphism between two curves then g (X ) Ê g (Y ).
By factoring the morphism into separable followed by purely inseparable morphisms, we can assume f
is separable because purely inseparable morphisms don’t change genera. Now apply Hurwitz’s theorem.

11.4. Embeddings in Projective Space. Fix a curve X . The goals of this section is to show that X can
be embedded in P3 and that there exists a morphism, birational onto its image, φ : X →P2. Additionally,
φ(X ) has at most finitely many nodes as singularities.

11.A. Exercise. Hartshorne [Har77, Exercise I.5.1,5.3,5.4,5.6].

11.5. Proposition (Criteria for base-point-freeness and very ampleness). — Let D be a divisor on a
curve X . Then

(1) OX (D) is base-point-free ⇐⇒ dim |D −P | = dim |D|−1 for each P ∈ X .
(2) OX (D) is very ample ⇐⇒ dim |D −P −Q| = dim |D|−2 for each P,Q ∈ X .

Proof. See Hartshorne [Har77, Proposition IV.3.1], Vakil [FOAG, 20.2.7-10]. □

11.6. Useful Proposition. — Let X be a curve, D be a divisor, and g (X ) = g . Then
(1) degD Ê 2g =⇒ D is base-point-free.
(2) degD Ê 2g +1 =⇒ D is very ample.

Proof. Apply Riemann-Roch and use the previous theorem. □

11.7. Remarks.
(1) degD > 0 ⇐⇒ D is ample.
(2) Let X , a curve, be embedded in Pn via the very ample divisor D. Then deg X = degD.

11.B. Exercise. Hartshorne [Har77, Exercise II.6.2].

11.8. Example. Let X be a degree-4 curve in P2. Then observe that deg H |X = 4, for any line H ⊂P2. Also,
g (X ) = 3. Therefore, a divisor H |X of degree less than 2g +1 = 7 can give an embedding in projective
space.
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11.C. Exercise. If g (X ) = 1 then degD Ê 3 ⇐⇒ D is very ample.

Lecture 12
Lecturer: Nabanita Ray Date: 13.02.2023

12.1. Any curve can be embedded in P3. Fix a curve X in Pn .

12.2. Definition. For any two distinct points P,Q ∈ X , we call the line ℓPQ joining points P and Q as
secant line. The union of all secant lines of X is called the secant variety and it is denoted Sec X . There
is a unique line ℓP in Pn tangent to X at a given point P. The union of all lines tangent to X is called the
tangent variety and it is denoted Tan X .

12.3. Warning. These are not varieties in the sense of Hartshorne. They are only locally closed.

12.4. Proposition. — Let ϕ : X → Pn−1, n Ê 2, be a projection from O ∈ Pn \ X . Then ϕ is a closed
embedding if and only if O ∉ Tan X ∪Sec X .

Proof. The linear system corresponding to the projection map Pn Pn−1 is {H ∈ |OPn (1)| : O ∈ H }. So
the linear system giving ϕ is the pullback of this linear system along the embedding X ,→Pn . It is routine
to verify that this linear system separates points and tangent vectors if and only if the given hypothesis
holds. □

12.5. Lemma. — dim(Tan X ∪Sec X ) É 3.

Proof. There are continuous surjections of topological spaces

(X ×X \∆)×P1→ Sec X , (P,Q, t ) 7→ t ∈ ℓPQ ,

X ×P1→Tan X , (P, t ) 7→ t ∈ ℓP .

Therefore, dimSec X É 3 and dimTan X É 2. □

12.6. Corollary. — Any curve can be embedded in P3.

The next proposition studies projection of a curve X in P3 to P2.

12.7. Proposition (Hartshorne [Har77, Proposition IV.3.7]). — Let X ⊂ P3 which is not contained
in any plane. Let O ∈ P3 \ X and ϕ : X → P2 be the morphism given by projection from O. Then ϕ is a
birational morphism and the image of ϕ has only finitely many nodes as singularities if and only if

(1) O belongs to at most finitely many secant lines.
(2) O ∉ Tan X .
(3) O doesn’t belong to any multisecant of X . A multisecant is a line which intersects X in more than

two distinct points set-theoretically.
(4) O doesn’t belong to any secant with coplanar tangents. A secant with coplanar tangent lines

is a secant joining two points P,Q of X , whose tangent lines ℓP and ℓQ lie in the same plane, or
equivalently, ℓP and ℓQ intersect.

Proof. (1) just ensures that ϕ is a birational morphism. If P, Q ∈ X and O lies on the secant ℓPQ , then
tangent lines ℓP and ℓQ get mapped to tangents to ϕ(X ) at ϕ(P ) =ϕ(Q). Hence, (2), (3), and (4) ensure
that every line from O which intersects X cuts X in exactly two points, it is not tangent to X at either
point, and tangent lines at P and Q are mapped to distinct lines. □
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12.8. Proposition. — Let X be a curve in P3 not contained in any plane. If every secant is a multisecant
then any two tangents are coplanar.

Proof. See Hartshorne [Har77, Proposition IV.3.8]. □

12.9. Next. Any curve is birationally equivalent to a plane curve with only nodes as singularities.

Lecture 13
Lecturer: Nabanita Ray Date: 17.02.2023

13.1. Proposition. — Let X be a curve in P3 not contained in any plane. If either

(1) every secant is a multisecant
(2) any two tangents are coplanar.

then there exists a point A ∈P3 such that all tangents pass through A.

Proof. We proved (1) =⇒ (2) in the last lecture. Pick P,Q ∈ X . Then ℓP ,ℓQ ⊆ H ⊆P3, where H is a plane.
Let ℓP ∩ℓQ = {A}. As X is not contained in H , we must have X ∩H is finite. Pick R ∈ X \ (X ∩H). Let
ℓP ∩ℓR = {B1} and ℓQ ,∩ℓR = {B2}. As ℓR ̸⊂ H we have B1 = B2. Therefore, B1 = B2 ∈ ℓP ∩ℓQ = {A}. Hence,
U := {P ∈ X : A ∈ ℓP } is clopen in X . Thus, U = X . □

13.2. Definition. A curve X ⊆Pn is called strange if all tangents pass through a unique point A ∈Pn .

13.3. Example. Suppose our base field is of characteristic 2. Any conic X ⊆ P2 can be written as
V (y −x2) in some affine patch. Then dy

dx = 0 for all P ∈ X . This implies that slope of the tangent line is
zero everywhere. Hence, all tangents to X pass through A = [0 : 0 : 1].

13.A. Exercise. Is y = xp strange in characteristic p > 0? Show that this curve is not regular at [0 : 1 : 0].

13.4. Theorem (Samuel). — Only strange curves are line and conics in characteristic 2.

Proof. Omitted. See Hartshorne [Har77, Theorem IV.3.9]. □

13.5. Theorem. — Let X be a curve in P3 which is not contained in any plane. Then there exists a point
O ∈P3 \ X such that X is birational to ϕ(X ), where ϕ : X →P2 is the projection from O. Further, ϕ(X ) has
only finitely many nodes as singularities.

Proof. We do a Bertini-type dimension counting argument and apply Hartshorne [Har77, Proposition
IV.3.7]. By our assumptions, X is not strange. Hence, there exists a pair (P,Q) ∈ X ×X such that ℓPQ is
not a multisecant. Also, there exists a pair (P ′,Q ′) ∈ X ×X such that ℓP and ℓQ are not coplanar. Define

U = {(P,Q) ∈ X ×X : ℓPQ is not a multisecant},

V = {(P,Q) ∈ X ×X : ℓP and ℓQ are not coplanar}.

These sets are open and nonempty. Therefore, dimU c É 1 and dimV c É 1. Also,

A = {t ∈P3 : t ∈ ℓPQ , (P,Q) ∈U c } and B = {t ∈P3 : t ∈ ℓPQ , (P,Q) ∈V c }

have dimensions at most 2. We have the following fact–
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“(Hartshorne [Har77, Exercise II.3.7]) If f : X → Y , dim X = dimY , is a dominant morphism of integral
finite-type k-schemes, then there exists an open set U ⊆ Y such that f −1(U )→U is finite11.”

Consider the local morphism to the secant variety Sec X =P3–
(X ×X \∆)×P1→P3, (P,Q, t ) 7→ t ∈ ℓPQ .

Using the generic finiteness fact, we get points of the desired type. □

13.B. Exercise (Hartshorne [Har77, Exercise IV.1.8])12. If C is a degree-d nodal curve with r nodes
in P2 then its arithmetic genus is

pa(C ) = (d −1)(d −2)

2
− r.

Hence, number of nodes is at most (d −1)(d −2)/2.

13.6. We define Vd ,r := {C ⊆P2 : degC = d , C has r nodes}. Then there is a correspondence, not neces-
sarily one-one,

{all smooth curves}←−→
⋃

d∈N,0ÉrÉ(d−1)(d−2)/2
Vd ,r .

The map from right to left is given by blowing up at nodes.

13.7. Next. Elliptic curves.

Lecture 14
Lecturer: Krishna Hanumanthu Date: 27.02.2023

14.1. Elliptic curves. A nonsingular curve of genus 1 is called an elliptic curve. Fix an elliptic curve X .

14.2. Example. Any degree-3 plane curve in P2 is elliptic.

14.3. Later. Every elliptic curve can be embedded in P2.

We will assume Chark ̸= 2. Choose P0 ∈ X . Consider D = 2P0. By Riemann-Roch, h0(D) = 2 as D is
nonspecial because degD Ê 2g−2. Hence, dim |D| = 1. As degD Ê 2g , D is also base-point-free. Therefore,
|D| gives a morphism f : X →P1. Degree of f is 2 because f ∗OP1 (1) =OX (D) =⇒ f ∗Q ∼ 2P0, where Q
is any point in P1. By Hurwitz’ theorem degR = 4, where R is the ramification divisor. Observe that
eP = 1 if the inverse image of f (P ) is two distinct points and eP = 2 if the inverse image of f (P ) is a
single point. Since we have assumed that characteristic of the base field is not 2, all ramification must
be tame– p | eP is not possible. Therefore, R is four distinct points and P0 is one of them. WLOG,
f (P0) = 0 = [1 : 0]. By performing a linear automorphism, we may assume that the other branch points
are 0,1,λ ∈P1, λ ∈ k \ {0,1}.

14.4. Remark. λ is the cross-ratio of the branch points.

14.5. Definition. The j-invariant of X is defined as

j = j (λ) := 28 (λ2 −λ+1)3

λ2(λ−1)2 .

Our goal is to prove the following theorem:

14.6. Theorem. — Hartshorne [Har77, Theorem IV.4.1].
11This will be an assignment problem.
12This will be an assignment problem.
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14.7. Lemma. — Let P,Q ∈ X , not necessarily distinct. Then there exists an automorphism σ ∈ Aut X such
that

(1) σ2 = id.
(2) σP =Q.
(3) For all R ∈ X , R +σR ∼ P +Q.

Proof. Note that dim |P+Q| = 1 and P+Q is base-point-free. So it gives a morphism g : X →P1. Its degree
is 2. So K (X )/K (P1) is separable as K (X )/K (P1) being purely-inseparable would mean genera of X and P1

are same. Therefore, K (X )/K (P1) is Galois. Let σ : K (X )→K (X ) be the nontrivial K (P1)-automorphism.
Clearly σ2 = id. Observe that for all R ∈ X , σR ∈ g−1(g R) because σ gives a P1-automorphism of X .
Therefore, σ(P ) =Q because σ is nontrivial (see the following addendum for a justification). If R ∈ X
then R+σR is a fiber of g . Therefore, R+σ(R) ∼ P +Q because all fibers of g are linearly equivalent. □

14.8. Addendum. We embed X in P2 so that the map X → P1 given by |P +Q| is “projection on the
x-axis”. Consider the sequence

H 0(P ) ⊆ H 0(P +Q) ⊆ H 0(2P +Q) ⊆ H 0(2P +2Q) ⊆ H 0(3P +2Q) ⊆ H 0(3P +3Q) ⊆ H 0(4P +3Q)

with the following sequence of bases

{1} ⊆ {1, x} ⊆ {1, x, y} ⊆ {1, x, y, x2} ⊆ {1, x, y, x2, x y} ⊆ {1, x, y, x2, x3, x y} ⊆ {1, x, y, x2, x3, x y, x2 y, y2}.

Here, x, y ∈ K (X ) is such that valQ x =−1, valP x =−1, valP y =−2, and valQ y =−1. By Riemann-Roch,
h0(D) = degD when degD Ê 1. Therefore, the image of X inP2 given by the closed embedding determined
by the global sections 1, x, y of H 0(2P +Q) is of the form

f (x, y,1) := y2 + y(a1x2 +a2x +a3)+ (a4x3 +a5x2 +a6x +a7) = 0,

for ai ∈ k, with x and y scaled if need be. Removing the line at infinity and looking at (affine) coordinate
rings, we have the commutative diagram

k[x, y]/( f ) k[x, y]/( f )

k[x]
x 7→x x 7→x

σ∗

Therefore, σ∗ must fix x and send y to either x or a1x2 + a2x + a3 − y (this is obtained from Vieta’s
relations). These are the only two possibilities. Thus, σ either fixes everything or swaps each fiber of
X →P1.

14.9. Corollary. — Aut X is transitive.

14.10. Lemma. — Given f1, f2 : X →P1 morphisms of degree 2, there exist automorphisms σ ∈ Aut X and
τ ∈ AutP1 such that f2 ◦σ= τ◦ f2.

X X

P1 P1

f1 f2

σ

τ

Proof. Let Pi ∈ X be a ramification point of fi , i = 1,2. By the previous lemma there exists an automorphism
σ ∈ Aut X such that σP1 = P2. Note that f1 is determined by 2P1 and f2 is determined by 2P2. Also f2 ◦σ
is given by 2P1. Therefore f1 and f2 ◦σ differ by a linear automorphism τ : P1→P1. □

14.11. Lemma. — Hartshorne [Har77, Lemma IV.4.5].
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Lecture 15
Lecturer: Krishna Hanumanthu Date: 03.03.2023

15.1. Proposition. Let X be an elliptic curve over k, a field of characteristic not equal to 2. Fix P0 ∈ X .
Then there exists a closed embedding X →P2 such that the image is

y2 = x(x −1)(x −λ)

for λ ∈ k; P0 maps to [0 : 1 : 0], and the above λ is same as the λ defined earlier, upto an element of S3 as in
Hartshorne [Har77, Lemma IV.4.5].

Proof. First embed X in P2 using |3P0|. Consider
k = H 0(OX ) ⊆ H 0(OX (P0)) ⊆ H 0(OX (2P0)) ⊆ ·· ·

By Riemann-Roch, h0(OX (nP0)) = n for n > 0. Choose a basis {1, x} of H 0(OX (2P0)), and a basis {1, x, y} of
H 0(OX (3P0)). Consider 1, x, y, x2, x y, x3, y2 ∈ H 0(OX (6P0)). We have a linear dependence relation between
them as h0(6P0) = 6. This k-linear relation must involve both x3 and y2 with nonzero coefficients. We
may also assume by scaling that the coefficients of x3 and y2 are 1. So, the relation is of the form

y2 +a1x y +a3 y = x3 +a2x2 +a4x +a6.

With standard (linear) manipulations, we can transform it to y2 = x(x −1)(x −λ). Now, the original
embedding with |3P0| has to be done using the sections {1, x, y}. The first part is done. The image of P0

is [0 : 1 : 0] as x and y have poles at P0 and y2 = x(x −1)(x −λ) has a unique point at infinity– [0 : 1 : 0].

Consider X →P1 defined by [x : y : z] 7→ [x : y]. One can check that this is a degree-2 map sending P0

to ∞ and it is branched at 0,1,λ,∞. The proof is complete. □

15.2. Theorem. — Hartshorne [Har77, Theorem IV.4.1].

There is a bijective correspondence between elliptic curves over k modulo isomorphisms and k.

Lecture 16
Lecturer: Krishna Hanumanthu Date: 07.03.2023

16.1. Proof of Hartshorne [Har77, Theorem IV.4.1].
(a) Let P1,P2 ∈ X and the corresponding maps are f1, f2 : X →P1. Then there is a commutative square

X X

P1 P1

f1 f2

σ

τ

where τ(∞) =∞. Also, τ maps {0,1,λ1} to {0,1,λ2}. Therefore, λ1 and λ2 are in the same orbit for
the action of S3. What remains to check is that the j-invariants are the same. This is a routine
calculation.

(b) Let X and X ′ be elliptic curves with equal j-invariant. Let λ and λ′ be the corresponding elements of
k×. Think of j (λ) as a morphism P1→P1. This is a finite morphism of degree-6. In fact, the extension
K (P1)/K (P1) is a degree 6 Galois extension with Galois group S3. Hence, j (λ) = j (λ′) ⇐⇒ λ,λ′ are
in the same orbit under S3-action.
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Now consider the embeddings of X , X ′ inP2. Their images are y2 = x(x−1)(x−λ) and y2 = x(x−1)(x−λ′).
Since λ,λ′ are in the same orbit, there is a linear change of variable in x such that λ= λ′, which
completes the proof.

(c) This is trivial because j : P1→P1 is a nonconstant morphism, which in turn, has to be surjective. □

16.2. Examples.
(a) y2 = x3 −x. This is an elliptic curve when chark ̸= 2. The j-invariant comes out to be 26 ·33 = 1728.
(b) “Fermat curve” x3+y3 = z3. This is nonsingular when chark ̸= 3. After change of variables, completion

of squares, we get λ ∈ {−ω,ω2}, where ω is the primitive cube root of unity. Therefore, the j-invariant
is 0.

16.3. Corollary (Hartshorne [Har77, Corollary IV.4.7]). — Let X be an elliptic curve and P0 ∈ X . Put
G = Aut(X ,P0), the automorphisms of X fixing P0. Then G is a finite group of order

• 2 if j ∉ {0,1728}.
• 4 if j = 1728 and chark ̸= 3.
• 6 if j = 0 and chark ̸= 3.
• 12 if j = 0 and chark = 3.

16.4. Remark. Curves of genus at least 2 have finite automorphism group.

16.5. Group structure on an elliptic curve. Let X be an elliptic curve, P0 ∈ X . The map

X → Pic0 X , P 7→OX (P −P0)

can be verified to be an bijection. So X inherits the group structure of Pic0 X . The identity element is P0.

Consider X
|3P0|−−→P2. Pick points P,Q,R ∈ X ⊆P2. If P,Q,R are collinear, then observe that P +Q+R ∼ 3P0.

Therefore, P +Q +R = 0 in the group structure. The converse is also easy to see.

16.6. Proposition. — Let X be an elliptic curve and P0 ∈ X be the identity for the group structure. Then
the maps ρ : X → X , P 7→−P and µ : X ×X → X , (P,Q) 7→ P +Q are morphisms of varieties.

Proof. Apply Lemma 14.7 with P =Q = P0, we get an automorphism σ : X → X such that R +σR ∼ 2P0

=⇒ σR =−R. Now σ is our ρ. For µ, first show that translations are morphisms: apply (4.2) with P,P0

so we get an automorphism σ such that R +σR ∼ P +P0. This gives that σR = P −R. So, σ◦ρ is same as
“translating by P”.

16.A. Homework. Read the rest of the proof from Hartshorne [Har77]. □

16.7. Next. Canonical embedding.

Lecture 17
Lecturer: Krishna Hanumanthu Date: 10.03.2023

“You don’t always get what you want. Sometimes, you have to compromise...”

17.1. Some remarks. Let X be an elliptic curve, n ∈ Z. Then nX : X → X , X 7→ nX is a morphism of
varieties and groups.

• If n ̸= 0 then nX is a finite morphism of degree n2.
•

KernX
∼=

{
Z/nZ×Z/nZ, if gcd(n, p) = 1or chark = 0

Z/pZ or 0, if n = p = chark.
.
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In the latter cases, the “or” depends on the Hasse invariant.
• n = 2. If P ∈ X has order 2, i.e., 2P = 0 = 2P0, then consider the morphism X →P1 given by 2P0,
assume chark ̸= 2, then P is a ramification point. Therefore, 2X is a finite morphism and its
kernel is (Z/2Z)⊕2.

• n = 3. If 3P = 0 then 3P = 3P0. Consider the closed embedding X → P2 given by |3P0|. Then
P is an inflection point of X . Hartshorne [Har77, Exercise IV.2.3] says that X has exactly 9
inflection points when chark ̸= 2,3. Thus, Ker3X = (Z/3Z)⊕2. The line joining two inflection
points intersects X at another inflection point.

17.2. Canonical embedding. If the canonical divisor KX gives a closed embedding then we call it the
canonical embedding. The morphism, if any, given by KX is called the canonical morphism.

17.3. Lemma. — If g Ê 2 then |KX | has no base points.

Proof. Apply the numerical criterion for base-point-freeness and Riemann-Roch. □

17.4. Definition. A curve X of genus at least 2 is called hyperelliptic if there is a degree-2 finite
morphism X →P1.

If g = 2 then |KX | cannot be very ample. However, the canonical morphism gives a degree-2 finite
morphism to P1. Thus, any genus-2 curve is hyperelliptic.

17.5. Notation. The symbol g r
d denotes a linear system of dimension r and degree d .

17.6. Proposition. — Let X be a curve of genus Ê 2. Then the canonical morphism is a closed embedding
if and only if X is not hyperelliptic.

Proof. Use the numerical criterion for very-ampleness and Riemann-Roch. □

17.A. Trivial exercise. If X is a curve, D is a divisor, then dim |D| É degD. Equality holds if and only
if D = 0 or g = 0.

17.7. Definition. If X is a non-hyperelliptic curve of genus g Ê 3. The embedding given by |KX | is the
canonical embedding of X . The image X ′ ⊆Pg−1 has degree 2g −2 and is called a canonical curve.

17.8. Example. Let X ⊆ P2, a curve, deg X = 4. Then ωX = OX (1). Thus, X is a canonical curve.
Consequently, it’s not hyperelliptic.

17.9. Useful Example (Hartshorne [Har77, Example IV.5.2.2]). Let X be a non-hyperelliptic curve of
genus g = 4. The canonical embedding is, let’s say, f : X →P3. It has degree 6. The goal is to show

• X is contained in a unique quadric hypersurface Q ⊆P3.
• There exists a cubic surface F ⊆P3 such that X is the complete intersection of Q and F.

We have X ⊆P3, degree 6, genus 4. Let IX be the ideal sheaf. Then we have an exact sequence

0→IX →OP3→OX → 0.

The fact that X is contained in a unique quadric hypersurface Q ⊆P3 translates to saying IX (2) has a
global section. Twist the exact sequence by 2 and take global sections:

0→ Γ(P3,IX (2))→ Γ(P3,OP3 (2))→ Γ(X ,OX (2)).

Lecture 18
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Lecturer: Krishna Hanumanthu Date: 13.03.2023

18.1. (continued) Useful Example. We have h0(P3,OP3 (2)) = 10, and by Riemann-Roch, h0(X ,OX (2)) = 9.
Therefore, IX (2) has a nonzero global section, i.e., there exists a quadric Q ⊆P3 containing Q. It must
be irreducible and reduced. Further, this Q is unique because if it is contained in another integral quadric
Q ′ then X would be contained in the degree-4 curve Q ∩Q ′, a contradiction. Similarly, we can show that
h0(P2,IX (3)) Ê 5. The cubic forms in Γ(P2,IX (3)) that are divisible by the quadratic form above form a
subspace of dimension 4. Thus, there is a cubic surface F such that X is the complete intersection of Q
and F.

18.A. Easy exercise. Every non-hyperelliptic curve of genus 3 is a quartic in P2.

18.2. Proposition . — Let X be a hyperelliptic curve of genus g Ê 2. Then X has a unique g 1
2 . If f0 : X →P1

is the corresponding morphism of degree 2, then the canonical morphism f : X →Pg−1 consists of f0 followed
by the (g −1)-uple embedding of P1 in Pg−1. In particular, the image X ′ = f (X ) is a rational normal curve
of degree g −1, and f is a morphism of degree 2 onto X ′. Finally every effective canonical divisor on X is a
sum of g −1 divisors in the unique g 1

2 , we so write |K | =∑g−1
1 g 1

2 .

Proof. See [Har77, Proposition IV.5.3] □

18.3. Alternative explanation for uniqueness of g 1
2 . Let L be a line bundle corresponding to a hyperelliptic

map f : C→P1. I claim that L ⊗(g−1) ∼= K . The morphism corresponding to L ⊗(g−1) is

C
|L |−−−−−→P1 |OP1 (g−1)|

−−−−−−−−−→Pg−1.

Note that L ⊗(g−1) has degree 2g −2. Also, it must have at least g sections because the image of the
above composition is nondegenerate. By Riemann-Roch, K ⊗ (L ⊗(g−1))∨ is a degree 0 line bundle with
at least one section. Thus, K ⊗ (L ⊗(g−1))∨ ∼=OC and it follows that L ⊗(g−1) ∼= K . Now if there are two
g 1

2 ’s, let’s say L1 and L2. Then we can ‘reconstruct’ the hyperelliptic cover by considering the canonical
map. It is a double cover of a degree g −1 rational normal curve. Thus, the maps corresponding to L1

and L2 are same, which means L1
∼=L2, that is, the g 1

2 is unique.

Lecture 19
Lecturer: Krishna Hanumanthu Date: 17.03.2023

“My daughter had a math exam. She calculated the greatest common divisor of two natural numbers,
say 8 = 2×2×2 and 28 = 2×2×7, as 2 instead of 2×2.”

“Scheme-theoretic intersection of Weil divisors in SpecZ!”

19.A. Question. Is g 1
2 unique at the level of linear system of divisors or at the level of divisor classes?

19.1. Hartshorne’s proof for (g −1)g 1
2 ⊆ |K |. Any g −1 points of X ′ determine a hyperplane section in

Pg−1. So, |K | =∑g−1
i=1 g 1

2 . □

19.2. Clifford’s Theorem. — Let D be an effective special divisor on X . Then we have

dim |D| É 1

2
degD.

Furthermore, equality holds if and only if D ∈ {0,K } or X is hyperelliptic and D is a multiple of the unique
g 1

2 .
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19.3. Lemma. — Let D,E be effective divisors on X . Then

dim |D|+dim |E | É dim |D +E |.

Proof. The standard inclusion H 0(X ,OX (D))× H 0(X ,OX (E)) ,→ H 0(X ,OX (D +E)) gives a morphism
|D|× |E |→ |D +E | with finite fibers. □

19.B. Exercise. When is the above inequality strict?

19.4. Proof of Clifford’s Theorem. Equality obviously holds when D ∈ {0,K }. Let D is effective and special
so K −D is effective. We have from our lemma that

dim |D|+dim |K −D| É dim |K | = g −1.

and Riemann-Roch gives
dim |D|−dim |K −D| É degD − g +1.

Adding, we get the desired bound. Now, assume dim |D| = 1
2 degD, D ̸= 0,K . We induct on degD. Base

case is degD = 2, where D is of course the unique g 1
2 . Now let degD Ê 4. Then dim |D| Ê 2. Pick E ∈ |K −D|

and fix P,Q ∈ X such that P ∈ SuppE and Q ∉ SuppE . Since dim |D| Ê 2 there exists D1 ∈ |D| such that
P,Q ∈ SuppD1. For dim |D−P−Q| Ê dim |D|−2 Ê 0. Now, let D ′ = D∩E , the scheme-theoretic intersection.
We have Q ∈ SuppD,Q ∉ SuppE , hence degD ′ < degD. We claim that dim |D ′| = 1

2 dimD ′. We have the
exact sequence

0→OX (D ′)→OX (D)⊕OX (E)→OX (D +E −D ′)→ 0.

Therefore, dim |D|+dim |E | É dim |D ′|+dim |D +E −D ′| by left-exactness of global section functor. But,
the LHS is just g −1 because equality holds everywhere. The RHS is at most dim |D+E | = dim |K | = g −1.
Therefore, equality holds everywhere and D ′ is a multiple of g 1

2 . Consequently, X is hyperelliptic by
induction hypothesis. Consider the linear system |D| + (g − 1−dim |D|)g 1

2 . It has degree 2g − 2 and
dimension at least g −1 by the lemma. Hence, it must be same as the canonical system. This finishes the
proof. □

19.5. Next. Classification of curves.

Lecture 20
Lecturer: Krishna Hanumanthu Date: 20.03.2023

20.1. Classification of curves. Classification problem of curves of genus g .

• g = 0. Only P1.
• g = 1. Parameter space is k.
• g Ê 2. Much more difficult.

Subdividing Mg , the moduli space of curves of genus g , according ot whether the curve admits linear
systems of certain degrees and dimensions is useful. For instance, whether the curve admits a g 1

2 , i.e.,
whether the curve is hyperelliptic. More generally, we may ask which curves admit a g 1

d for some d Ê 2.
A curve X is called trigonal if it admits a g 1

3 .

20.2. Facts (Kleiman-Laksov). Let X be a curve of genus g .

• For any d Ê 1
2 g +1, X has a g 1

d .

• For any d < 1
2 g +1, there are curves without any g 1

d .
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20.3. Examples. We consider g = 3,4. Every curve of genus 3 or 4 has a g 1
3 ; if X is hyperelliptic then

there’s nothing to do, otherwise, use the canononical embedding when X is nonhyperelliptic. Also, there
are nonhyperelliptic curves of these genera.

20.A. Exercise. Prove that there are non-hyperelliptic curves of every genus.

In fact, there are nonhyperelliptic curves of every g Ê 3.

• For g = 3, use the map given by OX (K −P ) for some P ∈ X .
• For g = 4, consider the canonical embedding X ,→P3, degree 6. Then X is contained in a quadric

Q. It is well known that if Q is nonsingular then Q ∼= P1 ×P1. In this case, X corresponds to
the (3,3) divisor on Q. We know that Q has two families of lines, each parametrized by P1.
Intersecting each family with X gives a g 1

3 . Therefore, X has two g 1
3 . Secondly, if Q is singular,

Q is a quadric cone. Then Q has a family of lines parametrized by P1. This family will restrict to
a unique g 1

3 to X .
• g = 5. For d Ê 4, every genus 5 curve has a g 1

4 . There are curves of genus 5 which do not have a
g 1

2 or g 1
3 . Let X be a nonhyperelliptic curve of genus 5. Let us assume X is non-hyperelliptic.

Then the canonical embedding gives a degree 8 map X ,→P4.

Claim. X has a g 1
3 if and only if X has a trisecant for a canonical embedding.

Proof. Let P,Q,R ∈ X . By Riemann-Roch,

dim |P +Q +R| = dim |K −P −Q −R|−1.

On the other hand, |K −P −Q −R| is exactly the linear system of hyperplane sections containing
P,Q,R. The dimension of |K −P −Q −R| is equal to dimension of hyperplanes in P4 containing
P,Q,R. So, the dim |P +Q +R| = 1 happens if and only if P,Q,R are collinear. □

Claim. There exists X ⊆P4 of degree 8 with no trisecants.

Proof. Take X to be the complete intersection of three quadric hypersurfaces, X =Q1 ∩Q2 ∩Q3.
The canonical bundle of X is OX (1). Therefore, X is a canonical curve and genus of X is 5. We
claim that X has no trisecants. If a line L intersects X at three points, then L interects each of
Qi at three points, then L ⊆Q1 ∩Q2 ∩Q3 = X (Bezout). Contradiction! Thus, X has no g 1

3 . □

Claim. The above X has a g 1
4 .

Proof. Pick P ∈ X . Consider the projection X ,→P4→P3 from point P. The degree of the image,
say X ′, is 7. Then X ′ is nonsingular because X has no trisecants. Now, X ′ has trisecants because
otherwise we can project it again to P2 violating degree-genus formula. Let Q,R,S lie on
a trisecant of X ′. Their inverse images along with P form four points which lie on a plane
(2-dimensional linear subspace) in P4. This gives a g 1

4 by considering P +Q +R +S. □

20.B. Question. Is every non-hyperelliptic curve of genus 5 a complete intersection of nonsingular
quadrics in P4? 13

20.C. Homework. Read Hartshorne [Har77, Proposition IV.6.1] and Hartshorne [Har77, Pages
346-367].

13No! Blow up a plane nodal quintic.
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Lecture 21
Lecturer: Krishna Hanumanthu Date: 21.03.2023

21.1. Classification of curves in P3. Given (d , g ), is there a curve X ⊆P3 of degree d and genus g? Or
in other words, given a curve of genus g , is there a linear system L which has dim Ê 3 and which is
very ample.

21.2. Halphen’s Theorem. — A curve X of genus g Ê 2 has a nonspecial very ample D of degree d if and
only if d Ê g +3.

Proof. Suppose D is a nonspecial very ample divisor of degree d . By Riemann-Roch, dim |D| = d − g .
Therefore, d − g Ê 2. If d − g = 2 then X is a embeds as a plane curve of degree d . We know that
ωX =OX (d −3). This contradicts the fact that D is nonspecial.

The rest of the proof in Hartshorne’s text is sloppy and unclear. See https://mathoverflow.net/a
/410071. □

Lecture 22
Lecturer: Krishna Hanumanthu Date: 22.03.2023

22.1. Corollary. — There exists a curve X of degree d and genus g in P3 whose hyperplane section D is
nonspecial, if and only if

• g = 0 and d Ê 1,
• g = 1 and d Ê 3, or
• g Ê 2 and d Ê g +3.

Proof. The first two parts are obvious. The third one is same as Halphen’s Theorem. □

22.2. Proposition. — If X is a nondegenerate curve in P3 for which the hyperplane section D is special,
then d Ê 6 and g Ê 1

2 d +1. Furthermore, the only such curve with d = 6 is the canonical curve of genus 4.

Proof. See Hartshorne [Har77, Proposition IV.6.3]. □

22.3. Castelnuovo’s Theorem. — Let X be curve of degree d and genus g in P3, which is not contained
in any plane. Then d Ê 3, and

g É
{

1
4 d 2 −d +1, if d is even
1
4 (d 2 −1)−d +1, if d is odd.

.

Furthermore, the equality is attained for every d Ê 3, and any curve for which equality holds lies on quadric
surface.

22.4. Example. Let d = 10. For every 0 É g É 7, we have a curve X ⊆P3 of genus g and degree 10. If g = 0

then we can do P1 Veronese−−−−→P10 repeated projections−−−−−−−−−−−→P3. If g = 1, then we can use a degree 10 point to get
an embedding X →P9 repeated projections−−−−−−−−−−−→P3. Halphen’s theorem gives 2 É g É 7. However, Castelnuovo’s
bound says g É 16 and that g = 16 is attained. Consider a (7,3) type curve X ⊆Q :=P1 ×P1 ,→P3 then
we get a degree 7+3 = 10 and genus 7 ·3−7−3+1 = 12 curve.

https://mathoverflow.net/a/410071
https://mathoverflow.net/a/410071
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22.5. Proof of Castelnuovo’s theorem. If d = 2s then take X = (s, s) ⊆Q ⊆ P3 and if d = 2s +1 we take
X = (s, s+1) ⊆P3. These curves show that equality can be attained. Let D = P1+·· ·+Pd be a hyperplane
section of X such that all these points are distinct and no three of the Pi are collinear (Hartshorne
[Har77, Exercise IV.3.9]). We will estimate dim |nD|−dim |(n −1)D|.
Claim. Let n Ê 1. For each i = 1, . . . ,min(d ,2n +1), Pi is not a base point of |nD −P1 −·· ·−Pi−1|.
It suffices to construct a degree-n surface that contains P1, . . . ,Pi−1 but not Pi . We find a union of n planes
as follows– take the first plane to contain P1 and P2 but no other Pi ; take the second plane to contain P3

and P4 but no other P j , and so on... From this, it follows that dim |nD|−dim |(n −1)D| Ê min(d ,2n +1)
because we can delete at least min(d ,2n+1) non-base-points from nD to get to (n−1)D = nD−P1−·· ·−Pd .
By Riemann-Roch, we have dim |nD| = nd − g for all large n. Telescoping the difference inequality, we
get nd − g = dim |nD| Ê r (r +2)+ (n − r )d , where r = ⌊1

2 (d −1)⌋. Simplifying, this gives us the desired
bound.

When equality holds, equality must hold everywhere, so we have dim |2D| É 8 in particular. Now one
can verify that H 0(P3,IX /P3 (2)) is nonzero by twisting and taking cohomology of the closed subscheme
exact sequence 0→IX /P3→OP3→OX → 0. □

22.6. Remark.
• For plane curves, g = (d −1)(d −2)/2.
• A complete intersection F1∩F2 = X ⊆P3 of degrees (a,b) satisfies deg X = ab and g (X ) = 1

2 ab(a+b−4).
• For every (a,b)-type curve on P1 ×P1 ⊆P3, we have d = a +b and g = ab −a −b +1.
• Let Q be a singular quadric in P3. If d = 2a, we may take X = Q ∩ X , where X is a degree-a
hypersurface, then the genus will be g (X ) = a2 −2a+1. If d = 2a+1 and X ⊆Q, we can achieve
g = a2 −a.

22.7. Classification of curves of degree É 7 in P3.
• d = 1. P1

• d = 2. conic in P2

• d = 3. elliptic curve, twisted cubic .
• d = 4. plane quartic, rational quartic curves, elliptic quartic curves (complete intersection of two
quadrics).

• d = 5. plane quintic, and there are curves with nonspecial OX (1) with g = 0,1,2 É d −3.
• d = 6. plane sextic, and there are OX (1) nonspecial curves with g É d −3 = 3, canonical curve of
genus 4 (this is equal to the complete intersection of a quadric and a cubic surface).

• d = 7. plane septic, and there are nonspecial OX (1) curves of genera 0,1,2,3,4. There is a curve
of type (3,4) on a smooth quadric, which has g = 6. By Castelnuovo, this is the maximum possible
genus for a degree 7 curve.

22.A. Question. Does there exist a a curve of degree 7 with genus 5 in P3? It does! Read Hartshorne
[Har77, Page 353].

Lecture 23
Lecturer: Nabanita Ray Date: 27.03.2023

23.1. Surfaces. A surface is a projective, smooth, 2-dimensional k-variety, where k is algebraically
closed. Examples: P2,P1 ×P1, nonsingular hypersurfaces in P3. By curve, we mean an effective Cartier
divisors on a surface. Goals of the upcoming few lectures:

• Intersection theory on a surface
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• Riemann-Roch for surfaces
• Hodge index theorem, etc.
• Ruled surfaces
• Monoidal transformations (projective bundles, blow-ups,...)

23.2. Intersection theory on surfaces. For C ,D are two curves in A2, then we defined the intersection
multiplicity of P ∈C ∩D as (C ·D)P = lengthOP /( f , g ), where C =V ( f ) and D =V (g ). We then define

C ·D = ∑
P∈C∩D

(C ·D)P .

If the local equations for C and D at point P ∈C ∩D generate the maximal ideal mP of the stalk, then
the intersection is called transversal.

23.3. Remark. If two curves intersect transversally at a point P then they are regular at P.

X always denotes a surface from now onwards.

23.4. Lemma. — Let C be a smooth curve and D be any curve. Moreoever, C and D intersect transversally.
Then #(C ∩D) = degC OX (D)⊗OC = degC D|C
Proof. Consider 0→ OX (−D)→ OX → OD → 0. Tensor by OC and use that OD ⊗OX OC = OC∩D to get
OX (−D)⊗OC

∼=OX (−C ∩D). This gives the desired result by taking degrees. □

23.5. Lemma. — Let C1, . . . ,Cr be curves on surface X and D be a very ample divisor on X . Then almost
all D ′ ∈ |D| are irreducible, nonsingular and meet each of the Ci transversally.

Proof. Apply Bertini to X and each of the curves. □

23.6. Definition. Let C and D be two very ample divisors on X . Define C ·D = #(C ′∩D ′) where we take
C ′ ∈ |C | and D ′ ∈ |D| such that D ′ and C ′ intersect transversally. This is well-defined by Lemma 23.4.

23.7. Intersection product for arbitrary curves. Define Vamp(X ) = {D ∈ Weil X : D is very ample}.
Consider Vamp X ×Vamp X →Z, (C ,D) 7→C ·D. One can verify that this is symmetric, invariant under
linear equivalence, and additive in both arguments. We can generalize this notion to arbitrary curves.
Let C and D be any curves on X and H be an ample divisor. Then C +nH ,D +nH ,nH are very ample
for n ≫ 0 (Vakil [FOAG, Exercise 17.6.C]). Choose

• C ′ ∈ |C +nH | smooth and irred.
• D ′ ∈ |D +nH | smooth and irred and transversally to C ′.
• E ′ ∈ |nH | smooth, irred, and transversal to D ′.
• F ′ in nH smooth, irred, transversal to C ′,E ′.

Then C ∼C ′−E ′ and D ∼ D ′−F ′. Now finally, define C ·D =C ′ ·D ′−C ′ ·F ′−D ′ ·E ′+E ′ ·F ′. One can
check that this is a well-defined map. Thus, we have an extended map Weil X ×Weil X →Z.

23.8. Remark. Any divisor can be written as the difference two very ample divisors.

23.A. Homework. Riemann-Roch for singular curves (Hartshorne [Har77, Exercise IV.1.9]).

23.9. Remark. Let C and D be any curves, possibly singular. Then C ·D = degOX (D)⊗OC . Write
D ∼ D ′−F ′ where D ′,F ′ are very ample and transversal to C . Then

degD = deg[(OX (D ′)⊗OC )⊗OC (OX (−F ′)⊗OC )] = #(D ′∩C )−#(F ′∩C ) = deg(OX (C )⊗OD ′)−deg(OX (C )⊗OF ′)
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Lecture 24
Lecturer: Nabanita Ray Date: 31.03.2023

24.1. Recall. If p ∈C ∩D and C ,D don’t have any common component, then we can define

(C ·D)P = dimk OX ,p /( fp , gp ).

24.2. Theorem. — If C and D don’t have any common component, then C ·D =∑
p∈C∩D (C ·D)P .

Proof. Take Euler characteristics of 0→OX (−D)⊗OC →OC →OC∩D→ 0 and use the fact that OC∩D has
finite support. From this, we observe that C ·D depends only on the linear equivalence class of D, and
by symmetry, on the linear equivalence class of C . We now replace C and D by nonsingular transversal
curves and finish the proof. □

24.A. Exercise. Let C ⊆ X be a curve and D ∈ Weil X . Then degC |D =C ·D.

The self intersection number of a curve C is C 2 =C ·C = degOX (C )⊗OC = degNC /X , the degree of the
normal sheaf. If C is nonsingular then NC /X is a line bundle of rank codimX C .

24.3. Example. Take X = P1 ×P1, the nonsingular quadric surface. Any curve C can be denoted by
bidegree (a,b) ∈ Pic X =Z⊕Z. And D be another curve of bidegree (a′,b′). Then C ·D = ab′+a′b. To
see this, consider the two rulings on X .

24.4. Example. If H is ample on X and C is any curve. Then H ·C > 0. This is seen by considering the
closed embedding given by nH , for some large enough n. Then degC in the closed embedding, which is
a positive integer, is degnH |C = (nH) ·C = n(H ·C ).

24.5. Genus formula. Adjunction formula says that ωY
∼= ωX ⊗detNY /X for a closed embedding

Y ,→ X . When Y is an effective Cartier divisor, ωY
∼=ωX ⊗OX (Y )|Y . Taking degrees,

2g (C )−2 = (KX +C ) ·C .

This is the genus formula.

24.B. Exercise. Let C ⊆P1 ×P1 be a curve of bidegree (a,b). Using the genus formula, compute g (C ).

24.6. Riemann-Roch Theorem. — Let D ∈ Weil X . Then χ(D) = 1
2 D · (D +KX )+1+pa(X ).

Proof. Write D ∼ C − E where C and E are very ample. Then 0→ OX (−E)→ OX → OE → 0 and
0→OX (−C )→OX →OC → 0. Twist both by C , take Euler characteristics, and apply Riemann-Roch for
curves to compute χ(OX (C )⊗OC ) and χ(OX (C )⊗OE ). Finally, apply the genus formula. □

24.7. Lemma. — Let H be any ample on X . Denote nX ,H = H ·KX . If D ·H > nX ,H then h2(D) = 0.

Proof. Apply Serre duality to see that K −D is effective. Then use one of the above example. □

Lecture 25
Lecturer: Nabanita Ray Date: 03.04.2023

25.1. Checking effectivity. On curves, if degD > 0 then nD is effective for n ≫ 0.
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25.2. Theorem. — On a surface X , if H ·D > 0 and D2 > 0 then nD is effective for n ≫ 0.

Proof. Recall that D ·H > KX ·H implies H 2(D) = 0. For n ≫ 0, we have (nD)·H > KX ·H , hence H 2(nD) = 0.
By Riemann-Roch, h0(nD) Ê 1

2 n2D2 −nD ·KX +1−pa(X ). Sending n→∞, we get the result. □

25.3. Numerical equivalence. A divisor D ∈ Weil X is called numerically trivial or numerically
equivalent to zero if D ·C = 0 for each curve C ⊆ X . We denote

Pic0 X := {D ∈ Cl X : D ·C = 0 for all curves C ⊂ X }.

Denote N ′(X ) := Pic X /Pic0 X . It is a nontrivial fact that this is a finitely-generated free abelian group.
This is called the Néron-Severi group. We also define

nef X = {D ∈ Weil X : D ·C Ê 0 for each C ⊆ X }.

Then N ′(X )R := N ′(X )⊗ZR is a finite-dimensional R-vector space called the real Néron-Severi group.
There is a natural map Pic X →N ′(X )→N ′(X )R. Wemay then look at the “cone” generated by ample/nef
line bundles in N ′(X )R. It turns out that the cone generated by ample line bundles and nef line bundles
in N ′(X )R are same.

25.4. Algebraic equivalence (Hartshorne [Har77, III.9.8.5, Exercise V.1.7]). Let X be a surface and
C a smooth curve. Also, D be an effective Cartier divisor on X ×C , flat over C . We have a projection
π : X ×C→C . Then π−1(t ) = X t

∼= X . We then get a family of divisors {D|X t = D t = D ×X X t : t ∈C }. Pick
closed points t1, t2 ∈C . Then D t1 and D t2 are called pre-algebraically equivalent. Now, D1,D2 ∈ Weil X
are pre-algebraically equivalent if D1 −D2 = D t1 −D t2 for some curve C , closed points t1, t2, divisor D.
We say D ′,D ′′ ∈ Weil X are algebraically equivalent if there exists a sequence of divisors such that
D ′ = D1,D2, . . . ,Dn = D ′′, where Di and Di+1 are pre-algebraically equivalent. Denote D ′ ∼alg D ′′. It can
be verified that

• {D ∈ Div X : D ∼alg 0} is a subgroup of Weil X .
• Linear equivalence =⇒ algebraic equivalence =⇒ numerical equivalence.

25.5. Hodge Index Theorem. — Let H be an ample divisor on the surface X , and suppose that D is a
divisor, D ̸∼ 0, with D ·H = 0. Then D2 < 0.

Proof. Suppose D2 Ê 0. Consider two cases

• D2 > 0. Then H ′ = nH +D is ample for n ≫ 0. So H ′ ·D = D2 > 0. Therefore, nD is effective by
the first theorem of this lecture, which contradicts the fact that D ·H = 0.

• D2 = 0. Since D ̸∼ 0, hence there exists E with D ·E ̸= 0. Replacing E by E ′ = (H 2) ·E − (E ·H) ·H ,
we may assume H ·E = 0. Now let D ′ = nD +E . Then D ′ ·H = 0 and (D ′)2 = 2nD ·E +E 2. Since
D ·E ̸= 0, we have (D ′)2 > 0 for large n. We are now in the first case. □

25.6. Nakai-Moishezon Criterion. — A divisor D on the surface X is ample if and only if D2 > 0 and
D ·C > 0 for all irreducible curves C ⊆ X .

25.7. Sheaf Proj. Let X be a Noetherian scheme. Let F =⊕dÊ0Fd is a graded sheaf of OX -algebras.
Also, assume F0 =OX and F1 is a coherent OX -module. For any affine open U = Spec A ⊆ X , F (U ) is a
graded A-algebra. There is a map ProjF (U )

π−→U . We can then “glue” these to define Proj F ; of course,
we must have compatibility conditions.

25.8. Remarks.
• Proj OX [T0, . . . ,Tn] =Pn

X .
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• Let E be a vector bundle of rank n. Denote F = SymE =⊕dÊ0Sd (E ). Then Y =Proj F X
π−→ X is a

projective bundle. Note that dimY = dim X +n−1. Also, π∗OY (ℓ) = SℓE for ℓÊ 0. (Hartshorne
[Har77, II.7])

• PicY =π∗ Pic X ×ZOY (1) (Hartshorne [Har77, Exercise II.7.9]).
• The projective bundle PE of a vector bundle E is characterized by the universal property: given
a morphism f : T → X , to factorize f through the projection map PE → X is to specify a line
sub-bundle of f ∗E .

25.9. Example. Let L be a line bundle on X . Then PL → X , the projectivisation of the line bundle, is
an isomorphism.

Lecture 26
Lecturer: Nabanita Ray Date: 05.04.2023

26.1. Right derived sheaves. Let f : X → Y be a continuous map of topological spaces and F a sheaf
on X . Define R i f∗F to be the sheafification of of the presheaf U 7→H i ( f −1(U ),F f −1(U )). These are the
right derived functors of the pushforward f∗ : ShX → ShY .

• When Y = Spec A, R i f∗F = ãH i (X ,F ).

26.2. Grauert’s theorem. — Let f : X → Y be a morphism of schemes, F a coherent sheaf on X which is
flat over Y . Fix y. Define hi (y,Fy ) = dimκ(y) H i (X y ,Fy ). If hi is constant for all y then R i f∗F is locally
free and moreoever, R i f∗F ⊗κ(y)

∼−→H i (X y ,Fy ) is an isomorphism.

26.A. Homework. Solve the exercises in Hartshorne [Har77, III.8].

26.3. Ruled surfaces. A ruled surface is a surjective morphism π : X →C , X is a surface and C is a
(smooth) curve, such that every fiber is isomorphic to P1 and there is a section σ : C→ X of π. Here, X
is called a ruled surface.

26.4. Example. P1 ×P1 is a ruled surface which has two rulings given by the two projections.

26.5. Lemma. — If π : X →C is a ruled surface, D a divisor on X , with D · f = n Ê 0, then π∗OX (D) is
locally free of rank n +1. Here, f denotes the generic fiber of π. In particular, π∗OX =OC .

Proof. See Hartshorne [Har77, Lemma V.2.1]. □

26.6. Corollary. — R iπ∗OX (D) = 0 for i > 0.

26.7. Reference. Hartshorne [Har77, III.9, Exercise V.1.7].

26.8. Theorem. — Let π : X → Y be a ruled surface if and only if X ∼= PE where E is a rank 2 vector
bundle on C .

Proof. See Hartshorne [Har77, Proposition V.2.2]. □

26.9. Remark. Unramified, flat, bijective =⇒ isomorphism.

Lecture 27
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Lecturer: Nabanita Ray Date: 10.04.2023

27.A. Assignment Problems.

(1) Hartshorne [Har77, Exercise III.8.1].
(2) Let C ⊂ X be a smooth curve on a surface and D ∈ Weil X be a divisor. Then C ·D = degD|C .
(3) Hartshorne [Har77, Exercise V.1.4 (a), V.1.7, V.1.9 (a) (b)].
(4) Hartshorne [Har77, Exercise V.2.3, V.2.8 (a) (b)].
(5) Show that torsion-free sheaves on a smooth curve are locally free.
(6) q(X ) = h1(X ,OX ) called the irregularity of X and pn(X ) = h0(X ,ω⊗n

X ) is called the nth-plurigenera.
Observe that pa = pg −q(X ). Show that pa , pg , q(X ), pn are birational invariants for smooth sur-
faces. If X →C is a ruled surface then q(X ) = g (C ), the genus of the curve, and pg (X ) = 0, pn(X ) = 0,
for n Ê 2.

(7) If π : X → C is a ruled surface, D is any section and f is any fiber then D and f intersect
transversally.

27.1. Consider a ruled surface π : PE →C . Then one can easily show that PicPE =ZC0 ⊕π∗ PicC for
some section C0. This gives that N 1(PE ) ∼=ZC0 ⊕Z f where N 1 is denotes the Néron-Severi group. Also,
there is a surjective map PicPE →N 1(PE ).

27.2. Proposition. — If X =PE →C is a ruled surface with section σ. Denote σ(C ) =C0. By universal
property, this means there is a line bundle L corresponding to σ such that E →L → 0 on C . Then
Ker(E →L ) :=N is a line bundle. Also, π∗L =OX (1)⊗OX (−C0) and N =π∗(OX (1)⊗OX (−C0)).

Proof. N is of course a line bundle because it’s torsion-free. We have a sequence 0→OX (−C0)→OX →OC0→ 0.
Twist by OX (1) and push it forward–

0→π∗(OX (1)⊗OX (−C0))→π∗(OX (1)⊗OX )→π∗(OC0 ⊗OX (1))→ 0.

We know that themiddle term is just E . Also, π∗(OX (1)⊗OC0 ) =π∗OC0 (1) =L . Asπ∗π∗(OX (1)⊗OC0 ) =OX (1)⊗OC0

so the proof is complete. □

27.3. Proposition. — Let π : X →C be a ruled surface. Then there exists a vector bundle E such that
X =PE with

• H 0(E ) ̸= 0,
• H 0(E ⊗L ) = 0 for all line bundles L with degL < 0.

Such a vector bundle E is called normalized. Also,

• −e = degE := degdetE is invariant on X .
• There exists a section σ : C→ X , σ(C ) =C0 such that OX (1) =OX (C0).

Proof. See Hartshorne [Har77, Proposition V.2.8]. □

27.4. Remark. Normalization is not unique.

Lecture 28
Lecturer: Nabanita Ray Date: 12.04.2023
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28.1. Recall. We saw that if π : PE →C is a ruled surface with section σ, with image C0 ⊂PE , and E
is normalized then OPE (1) ∼=OX (C0). This C0 is called a normalized section. From now onwards, C0

always denotes a normalized section and E is normalized.

28.2. Proposition. — Let σ : C→ X be a section with σ(C ) = D. We can write a sequence E →OC (E)→ 0
on C . Then D ∼C0 + (E −detE ) · f and degE =C0 ·D.

Proof. Observe that

C0 ·D = deg(OX (C0)⊗OD ) = deg(OPE (1)⊗OD ) = deg(OD (1)) = degOC (E) = degE .

Taking degrees of the sequence 0→OC → E →OC (E)→ 0 we get degE = degE . There is a kernel bundle
N with 0→N → E →OC (E)→ 0. Taking determinants, degE =N ⊗OC (E) =⇒ N = detE ⊗OC (E)∨.
Also, we have shown that π∗N =OPE (1)⊗OX (−D). □

28.3. If E =OC ⊕OC (−nP ) then C 2
0 = degdetE = degOC (−nP ) =−n using the above proposition. So we

can have self-intersection as any negative integer.

28.4. Proposition. — KX ∼−2C0 + (KC +detE ) · f

Proof. Clear by adjunction formula and the fact that Pic X =ZC0 ⊕π∗ PicC . □

28.5. Review of blow-ups. Let X be any Noetherian scheme and I be an ideal sheaf. Denote the
graded algebra

⊕
dÊ0 I d by F . Then X̃ = ProjF → X is the blow-up of X with respect to I . There is

an obvious way to state this definition in terms of closed subschemes due to the duality between closed
subschemes and quasicoherent ideal sheaves. If Y is the closed subscheme corresponding to I then
π−1(Y ) ∼=PN ∨

Y /X → Y is called the exceptional divisor. Further, Nπ−1(Y )/X̃
∼=Oπ−1(Y )(−1). Let Z be any

closed subscheme of X not contained in Y . Then the scheme-theoretic closure of π−1(X \ Z ) is called the
strict transform of Z and it is denoted Z̃ . This is same as the blow up of Z with respect to Y ∩Z . If P is
a closed point of codimension n in X , then NP/X =mP /m2

P = κ(p)⊕n . Thus, PNP/X
∼=Pn−1.

28.6. Monoidal transformations. Let X be a surface and P ∈ X be any closed point. Denote by
π : X̃ → X the blow up of X along P. Such point blow-ups are called monoidal transformations. We write
E for the exceptional divisor π−1(P ). Note that

E 2 = degOX̃ (E)⊗OE = degNE/X̃ = degOP1 (−1) =−1.

We also have Pic X̃ ∼=ZE ⊕π∗ Pic X . This is always true regardless of whether X is a surface or if blow-up
locus is a point (but we do need nonsingularity).

Lecture 29
Lecturer: Nabanita Ray Date: 17.04.2023

29.1. Picard group of blow-up. Recall that we mentioned Pic X̃ ∼= ZE ⊕π∗ Pic X . As P has high
codimension, it follows that Pic X ∼= Pic X \ P ∼= Pic(X̃ \ E). We have the excision exact sequence

Z→ Pic X̃ → Pic(X̃ \ E)→ 0.

The left map is actually injective. Indeed, nE ·nE =−n2 ̸= 0. As Pic(X̃ \ E) = Pic X → Pic X̃ splits using
π∗, it follows that Pic X̃ ∼= ZE ⊕π∗ Pic X . We denote the projection map Pic X̃ → Pic X as π′. Also,
π∗C ·D =C ·π′D. This can be checked by using E 2 =−1, π∗C ·E = 0, and π∗C ·π∗D =C ·D.

29.2. Proposition. —



34 AYAN NATH

• π∗OX̃ =OX ,
• R i f∗OX̃ = 0,
• H i (X̃ ,OX̃ ) = H i (X ,OX ).

Proof. Omitted. □

29.3. Proposition. — K X̃ =π∗KX +E .

Proof. Let K X̃ = aπ∗L +bE . Restricting, K X̃ |X̃ \E = (aπ∗L +bE)|X̃ \E = (aπ∗L )|X̃ \E = aL |X \P . Therefore,
aL = KX as blow-ups are isomorphisms away from P. Also, by multiplying both sides by E , we get
b = 1. □

29.4. Consider a blow-up π : X̃ → X . Let C be a curve on X and p ∈ C a closed point. Obesrve that
π−1C = E ∪ C̃ . Write π∗C = C̃ +xE . We wish to determine x.

One of the most important results of this discussion is–

29.5. Theorem. — If the multiplicity of C at P is r then π∗C = C̃ + r E .

Proof. Let m be the ideal of P. We know X̃ = Proj X
⊕

dÊ0m
d . Choose local parameters x, y ∈m⊂OX ,P .

Replace X by some affine open neighborhood P ∈ Spec A such that x, y ∈m and m⊂ A be the ideal of P.
Put Au ⊕ At = A⊕2. We have the sequence

0→ (uy −xt )A→ A⊕2 u 7→x, t 7→y−−−−−→m→ 0

Thus,m= A⊕2/(uy−xt ) and
⊕

dÊ0m
d ∼= A[u, t ]/(uy−xt ) as graded A-algebras. So, X̃ = ProjA A[u, t ]/(uy−xt ) ⊂P1

A .
Let f = fr (x, y)+ g be a local equation of C where fr ∈mr \mr+1, g ∈mr+1. Restrict to the distinguished
open set D(t ) ⊂ P1

A . Then X̃ ∩D(t ) = Spec A[u]/(uy − x)→ Spec A. It is easy to check that the excep-
tional divisor in X̃ ∩D(t ) is cut out by y. The pullback of f along the blow up gives the local equation
π∗ f = fr (uy, y)+ g (uy, y) = y r ( fr (u,1)+ yh). This completes the proof. □

29.6. Remark. From the above proof, we can also see that blow-ups of curves are finite.

29.7. One can show using the adjunction formula that pa(C̃ ) = pa(C )− 1
2 r (r −1). Indeed,

2g (C̃ )−2 = C̃ (C̃ +KX ) = (π∗C − r E)(π∗C − r E +π∗KX +E) = 2pa(C )−2− r (r −1).

Thus, we see that one can resolve all singularities by repeatedly blowing-up at singularities.
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