Problem Set 1 Weighted Automata 2020

CHENNAI MATHEMATICAL INSTITUTE

January 10, 2020

Problem 1. Given an NFA A, give a weighted automaton over Natural semiring which outputs the number of accepting paths for a word w on A.

Problem 2. Give a \mathbb{Z} -automata \mathcal{A} , such that $\llbracket \mathcal{A} \rrbracket(w) = |w|_a - |w|_b$.

Problem 3. Which of the following are semirings? Argue why.

- 1. $(\mathbb{N}, \max, +, 0, 0)$
- 2. $(2^{\Sigma^*}, \cup, \cdot, \emptyset, \{\epsilon\})$
- 3. $(2^{\Sigma^*}, \cup, \cap, \emptyset, \Sigma^*)$
- 4. $(2^{\Sigma^*}, \cap, \cup, \Sigma^*, \emptyset)$
- *5. $(\mathbb{R} \cup \{-\infty, +\infty\}, \oplus_{\log}, +, +\infty, 0)$, where $x \oplus_{\log} y = -\log(e^{-x} + e^{-y})$

Problem 4. A semiring S is said to be idempotent if $x \oplus x = x$, $\forall x \in S$. Among the semirings that you have seen in class and the ones in question 3, which semirings are idempotent?

Problem 5. Show that the $n \times n$ matrices over a semiring S with matrix addition and multiplication forms a semiring.

Problem 6. Construct a weighted automaton over Natural semiring that takes a word $w = a^n$ from a unary alphabet $\{a\}$ and outputs n^2 . Is it possible to construct such a weighted automata over $(\max, +)$ semiring? Argue why.

Problem 7. Construct a weighted automaton \mathcal{A} over $(2^{\Sigma^*}, \cup, \cdot, \emptyset, \Sigma^*)$, which takes a word w from the alphabet $\Sigma = \{a, b\}$ and outputs a language $L_w \subseteq \{1\}^*$, such that $1^n \in L_w$ iff the n length prefix $w_{\leq n}$ ends with b. For example, $[\mathcal{A}](abb) = \{11, 111\}$.

Problem 8. Construct a weighted automaton \mathcal{A} over Reals, which takes a word $w \in \{0, 1\}$, such that $\llbracket \mathcal{A} \rrbracket(w) = (0.w)_2$ in decimal. For example, $\llbracket \mathcal{A} \rrbracket(1) = (0.1)_2 = (0.5)_{10}$, and $\llbracket \mathcal{A} \rrbracket(101) = (0.101)_2 = (0.625)_{10}$.*

^{*}To convert 0.w in binary to decimal, you need to add the reciprocals of powers of two(e.g., 1/2, 1/4, 1/8, 1/16, for the first, second, third and fourth decimal place, respectively). For example, $0.011 = \frac{1}{2^2} + \frac{1}{2^3} = \frac{1}{4} + \frac{1}{8} = 0.375$.