Problem Set 1
 Weighted Automata 2020

Chennai Mathematical Institute

January 10, 2020

Problem 1. Given an NFA \mathcal{A}, give a weighted automaton over Natural semiring which outputs the number of accepting paths for a word w on \mathcal{A}.

Problem 2. Give a \mathbb{Z}-automata \mathcal{A}, such that $\llbracket \mathcal{A} \rrbracket(w)=|w|_{a}-|w|_{b}$.
Problem 3. Which of the following are semirings? Argue why.

1. $(\mathbb{N}, \max ,+, 0,0)$
2. $\left(2^{\Sigma^{*}}, \cup, \cdot, \emptyset,\{\epsilon\}\right)$
3. $\left(2^{\Sigma^{*}}, \cup, \cap, \emptyset, \Sigma^{*}\right)$
4. $\left(2^{\Sigma^{*}}, \cap, \cup, \Sigma^{*}, \emptyset\right)$
*5. $\left(\mathbb{R} \cup\{-\infty,+\infty\}, \oplus_{\log },+,+\infty, 0\right)$, where $x \oplus_{\log } y=-\log \left(e^{-x}+e^{-y}\right)$
Problem 4. A semiring S is said to be idempotent if $x \oplus x=x, \forall x \in S$. Among the semirings that you have seen in class and the ones in question 3 , which semirings are idempotent?

Problem 5. Show that the $n \times n$ matrices over a semiring S with matrix addition and multiplication forms a semiring.

Problem 6. Construct a weighted automaton over Natural semiring that takes a word $w=a^{n}$ from a unary alphabet $\{a\}$ and outputs n^{2}. Is it possible to construct such a weighted automata over (max, +) semiring? Argue why.

Problem 7. Construct a weighted automaton \mathcal{A} over $\left(2^{\Sigma^{*}}, \cup, \cdot, \emptyset, \Sigma^{*}\right)$, which takes a word w from the alphabet $\Sigma=\{a, b\}$ and outputs a language $L_{w} \subseteq\{1\}^{*}$, such that $1^{n} \in L_{w}$ iff the n length prefix $w_{\leq n}$ ends with b. For example, $\llbracket \mathcal{A} \rrbracket(a b b)=\{11,111\}$.

Problem 8. Construct a weighted automaton \mathcal{A} over Reals, which takes a word $w \in\{0,1\}$, such that $\llbracket \mathcal{A} \rrbracket(w)=(0 . w)_{2}$ in decimal. For example, $\llbracket \mathcal{A} \rrbracket(1)=(0.1)_{2}=(0.5)_{10}$, and $\llbracket \mathcal{A} \rrbracket(101)=(0.101)_{2}=$ $(0.625)_{10}$.*
*To convert 0 .w in binary to decimal, you need to add the reciprocals of powers of two(e.g., $1 / 2,1 / 4,1 / 8,1 / 16$, for the first, second, third and fourth decimal place, respectively). For example, $0.011=\frac{1}{2^{2}}+\frac{1}{2^{3}}=\frac{1}{4}+\frac{1}{8}=0.375$.

