- These problem sets are not graded. However students are strongly encouraged to solve these problems and submit solutions for feedback.
- Submissions shall be accepted till Thursday, 9th January 2020 for feedback. Feel free to contact the TA in case of any doubts.
- 1. Specify Büchi automata which recognize the following ω -regular languages over $\Sigma = \{a, b, c\}$:
 - (a) The set of $\alpha \in \Sigma^{\omega}$, in which abc appears as an infix at least once.
 - (b) The set of $\alpha \in \Sigma^{\omega}$, in which abc appears as an infix infinitely often.
 - (c) The set of $\alpha \in \Sigma^{\omega}$, in which abc appears as an infix only finitely often.
- 2. Let the NFA A recognize the language $U\subseteq \Sigma^*$. Prove or disprove:
 - (a) $L(A) \subseteq \lim U$
 - (b) $L(A) \supseteq \lim U$
- 3. Prove or disprove the following equations (for $U, V \subseteq \Sigma^+$):
 - (a) $(U \cup V)^{\omega} = U^{\omega} \cup V^{\omega}$
 - (b) $\lim(U \cup V) = \lim U \cup \lim V$
 - (c) $U^{\omega} = \lim(U^+)$
 - (d) $\lim(U.V) = U.V^{\omega}$
- 4. Show that one needs the union operation to generate all Büchi recognizable ω -languages by giving an example of a Büchi recognizable ω -language $L \subseteq \Sigma^{\omega}$ which cannot be written as $U.V^{\omega}$, with regular languages $U,V \subseteq \Sigma^*$.

Problems taken from Lecture notes of the course "Automata and Reactive Systems" by Prof. Dr. Wolfgang Thomas.