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FOREWORD

Well-quasi-orderings (wqos) (Kruskal, 1972) are a fundamental tool in logic and
computer science. They provide termination arguments in a large number of de-
cidability (or finiteness, regularity, …) results. In constraint solving, automated
deduction, program analysis, and many more fields, wqos usually appear under
the guise of specific tools, like Dickson’s Lemma (for tuples of integers), Higman’s
Lemma (for words and their subwords), Kruskal’s Tree Theorem and its variants
(for finite trees with embeddings), and recently the Robertson-Seymour Theorem
(for graphs and their minors). What is not very well known is that wqo-based
proofs have an algorithmic content.

The purpose of these notes is to provide an introduction to the complexity-
theoretical aspects of wqos, to cover both upper bounds and lower bounds tech-
niques, and provide several applications in logics (e.g. data logics, relevance logic),
verification (prominently for well-structured transition systems), and rewriting.
Because wqos are in such wide use, we believe this topic to be of relevance to a
broad community with interests in complexity theory and decision procedures for
logical theories. Our presentation is largely based on recent works that simplify
previous results for upper bounds (Figueira et al., 2011; Schmitz and Schnoebe-
len, 2011) and lower bounds (Schnoebelen, 2010a; Haddad et al., 2012), but also
contains some original material.

These lecture notes originate from two advanced courses taught at the 24th
European Summer School in Logic, Language and Information (ESSLLI 2012) on
August 6–10, 2012 in Opole, Poland, and at the 28th European Summer School
in Logic (ESSLLI 2016) on August 22–26, 2016 in Bolzano-Bozen, Italy; we also
employ these notes as background material for Course 2.9.1 on the mathematical
foundations of infinite transition systems taught at the Parisian Master of Research
in Computer Science (MPRI).

These notes follow their own logic rather than the ordering of these courses,
and focus on subproblems that are treated in-depth:

• Chapter 1 presents how wqos can be used in algorithms, partly based on
(Finkel and Schnoebelen, 2001),

• Chapter 2 proves complexity upper bounds for the use of Dickson’s Lemma—
this chapter is adapted chiefly from (Schmitz and Schnoebelen, 2011)—,

http://www.esslli2012.pl/
http://www.esslli2012.pl/
http://esslli2016.unibz.it/
http://esslli2016.unibz.it/
https://wikimpri.dptinfo.ens-cachan.fr/doku.php?id=cours:c-2-9-1
https://wikimpri.dptinfo.ens-cachan.fr/
https://wikimpri.dptinfo.ens-cachan.fr/
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• Chapter 3 details how to derive Ackermannian lower bounds on decision
problems, drawing heavily on (Schnoebelen, 2010a), and

• Chapter 4 investigates ideals of wqos and their applications, chiefly based
on (Goubault-Larrecq et al., 2016; Blondin et al., 2014; Lazić and Schmitz,
2015a).

Additionally, Appendix A proves many results on subrecursive hierarchies, which
are typically skipped in papers and presentations, but needed for a working un-
derstanding of the results in chapters 2 and 3, and Appendix B presents a few
problems of enormous complexity. These are based on (Schmitz, 2016b).
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1
BASICS OF WQOS AND APPLICATIONS

1.1 WellQuasi Orderings 1
1.2 Well-Structured Transition Systems 4
1.3 Examples of Applications 7

1.1 Well Quasi Orderings

A relation≤ over a setA is a quasi ordering (qo) iff it is reflexive and transitive. A quasi ordering

quasi-ordering is a partial ordering (po) iff it also antisymmetric (x ≤ y and y ≤ x partial ordering

imply x = y). Any qo induces an equivalence relation ≡ def
= ≤∩≥, and gives rise

to a canonical partial ordering between the equivalence classes, and to a strict
ordering <

def
= ≤∖≥ = ≤∖≡ between non-equivalent comparable elements. A strict ordering

qo is linear (aka total) iff any two elements are comparable (≤ ∪ ≥ = A2). The linear ordering

total orderingmain object of interest in this course is the following:

Definition 1.1 (wqo.1). A well quasi ordering (wqo) ≤ over a set A is a qo such well quasi ordering

that every infinite sequence x0, x1, x2, . . . over A contains an increasing pair : increasing pair

∃i < j s.t. xi ≤ xj .

A well partial ordering is an antisymmetric wqo. By extension, a set along well partial ordering

with an ordering (A,≤) is a quasi order (also noted qo) if ≤ is a quasi ordering
over A (and similarly with po, wqo, etc.).

Example 1.2 (Basic WQOs). The set of non negative integers (N,≤) is a wqo.
Note that it is linear and partial. Given a set A, (A,=) is always a po; it is a wqo
iff A is finite. (See Exercise 1.1 for more examples of qos and wqos.)

1.1.1 Alternative Definitions
Definition 1.1 will be our main working definition for wqos, or rather its conse-
quence that any sequence x0, x1, . . . overAwith xi ̸≤ xj for all i < j is necessar-
ily finite. Nevertheless, wqos can be found under many guises, and enjoy several
equivalent characterisations, e.g.

Definition 1.3 (wqo.2). Aqo (A,≤) is a wqo iff every infinite sequence x0, x1, . . .
over A contains an infinite increasing subsequence: ∃i0 < i1 < i2 < · · · s.t.
xi1 ≤ xi1 ≤ xi2 ≤ · · · .
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Definition 1.4 (wqo.3). A qo (A,≤) is a wqo iff

1. there are no infinite strictly decreasing sequences x0 > x1 > x2 > · · · in
A—i.e., (A,≤) is well founded—, andwell-founded ordering

2. there are no infinite sets {x0, x1, x2, . . .} of mutually incomparable ele-
ments in A—i.e., (A,≤) has no infinite antichains.antichain

finite antichain condition

The equivalence between these characterisations is quite useful; see Exer-
cise 1.3 and the following:

Example 1.5. Theqos (Z,≤) and (Q,≤) are not well-founded. The set of positive
natural numbers N+ ordered by divisibility “|” has infinite antichains, e.g. the set
of primes. The set of finite sequences Σ∗ ordered lexicographically is not well-
founded. None of these examples is wqo.

Regarding the equivalence of (wqo.1), (wqo.2, and (wqo.3), it is clear that
(wqo.2) implies (wqo.1), which in turn implies (wqo.3). In order to prove that
(wqo.3) implies (wqo.2), we use the Infinite Ramsey Theorem.1 Assume (xi)i∈N isRamsey Theorem

an infinite sequence over (A,≤), which is a wqo according to (wqo.3). We con-
sider the complete graph over N and colour every edge {i, j} (where i < j) with
one of three colours. The edge is red when xi ≤ xj (up), it is blue when xi > xj
(strictly down), and it is green when xi ̸≤ xj ̸≤ xi (incomparable). The Infinite
RamseyTheorem shows that there exists an infinite subset I ⊆ N of indexes such
that every edge {i, j} over I has the same colour. In effect, I yields an infinite
subsequence (xi)i∈I of (xi)i∈N. If the subsequence has all its edges green, then
we have exhibited an infinite antichain. If it has all edges blues, then we have
exhibited an infinite strictly decreasing sequence. Since these are not allowed
by (wqo.3), the single colour for the edges of I must be red. Hence the original
sequence has a infinite increasing subsequence: (A,≤) satisfies (wqo.2).

1.1.2 Upward-closed Subsets of wqos
Let (A,≤) be a quasi-ordering. The upward-closure ↑B of someB ⊆ A is definedupward-closure

as {x ∈ A | x ≥ y for some y ∈ B}. When B = ↑B, we say that B is upward-
closed; the downward-closure ↓B of B and the notion of downward-closed sets areupward-closed

downward-closure

downward-closed
defined symmetrically.

Definition 1.6 (wqo.4). A qo (A,≤) is a wqo iff any increasing sequence U0 ⊆
U1 ⊆ U2 ⊆ · · · of upward-closed subsets of A eventually stabilise, i.e.,

∪
i∈N Ui

is Uk = Uk+1 = Uk+2 = . . . for some k.
Equivalently, a qo (A,≤) is a wqo iff (Down(A),⊆), the set of its downward-

closed subsets ordered by inclusion, is well-founded.

This characterisation is sometimes expressed by saying that upward-closed sets
1See Exercise 1.5 for an elementary proof that does not use Ramsey’s Theorem.

http://en.wikipedia.org/wiki/Ramsey's_theorem
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satisfy the Ascending Chain Condition. See Exercise 1.7 for the equivalence of ascending chain condition

(wqo.4) with the other characterisations.
Upward- and downward-closed sets are important algorithmic tools: they are

subsets of A that can be finitely represented and handled. The simplest generic
representation is by minimal elements:

Lemma 1.7 (Finite Basis Property). Let (A,≤) be a wqo. Any upward-closed U ⊆
A can be written under the form U = ↑{x1, . . . , xn} for some x1, . . . , xn ∈ A, i.e.,
as the upward-closure of finitely many elements.

(See Exercise 1.8 for a proof.) One can see how, using this representation, the
comparison of possibly infinite (but upward-closed) sets can be reduced to finitely
many comparisons of elements.

The complement of a downward-closed setD is upward-closed. Hence down-
ward-closed subsets of a wqo can be characterised by so-called excluded minors. excluded minor

That is, every downward-closedD is associatedwith a finite set {x1, . . . , xn} such
that x ∈ D iff x1 ̸≤ x ∧ · · · ∧ xn ̸≤ x. Here the xis are the excluded minors and
D is “everything that does not have one of them as a minor”. In Chapter 4 we
consider other representations for downward-closed sets.

1.1.3 Constructing wqos
There are several well-known ways of building new wqos out of simpler ones.

We already mention how the product
∏

i= 1m(Ai,≤i) of finitely many wqos
is a wqo (see Exercise 1.3).

Lemma 1.8 (Dickson’s Lemma). Let (A,≤A) and (B,≤B) be two wqos. Then Dickson’s Lemma

(A×B,≤A×B) is a wqo.

There is a more general way of relating tuples of different lengths, which are
then better understood as finite sequences overA. These can be well-quasi-ordered
thanks to a fundamental result by G. Higman:

Lemma 1.9 (Higman’s Lemma). Let (A,≤) be a wqo. Then (A∗,≤∗) is a wqo. Higman’s Lemma

See Exercise 1.12 for a proof; here the sequence extension A∗ is the set of all finite sequence extension

sequences over A, and these sequences are ordered via the subword embedding: subword embedding

(a1 · · · an) ≤∗ (b1 · · · bm)
def⇔
{

∃1 ≤ i1 < i2 < · · · < in ≤ m
s.t. ai ≤ bi1 ∧ · · · ∧ an ≤ bin .

(1.1)

Example 1.10 (Subword ordering). Weuse ε to denote the empty sequence. Over
(Σ,=), where Σ = {a,b,c} is a 3-letter alphabet and where different letters are
incomparable, the word abb is a subword of cabcab, as witnessed by the un-
derlined letters, and written abb ≤∗ cabcab. On the other hand bba ̸≤∗
cabcab. Over (N,≤), examples are ε ≤∗ 4·1·3 ≤∗ 1·5·0·3·3·0·0 and 4·1·3 ̸≤∗
1·5·0·3·0·0. Over (N2,≤×), one checks that

(0
1
)
·
(2
0
)
·
(0
2
)
̸≤∗

(2
0
)
·
(0
2
)
·
(0
2
)
·
(2
2
)
·
(2
0
)
·
(0
1
)
·
(1
0
)
.

http://en.wikipedia.org/wiki/Ascending_chain_condition
http://en.wikipedia.org/wiki/Graham_Higman
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It is also possible to order finite and infinite subsets of a wqo in several differ-
ent ways, see Exercise 1.15.

Higman’s original lemma was actually more general and handled homeomor-
phisms between finite trees with fixed arities, but this was extended by Kruskal
to finite trees with variadic labels:
Theorem1.11 (Kruskal’s TreeTheorem). The set T (A) of finite trees node-labelledKruskal’s Tree Theorem

from a wqo (A,≤) and partially ordered by homeomorphic embeddings is a wqo.

(See Exercise 1.16 for the definition of homeomorphic embeddings and a proof of
Kruskal’s Theorem.)

Finally, a further generalisation of Kruskal’s TreeTheorem exists for graphs (Robert-
son and Seymour, 2010):
Theorem 1.12 (Robertson and Seymour’s Graph-Minor Theorem). The set of (fi-Graph Minor Theorem

nite undirected) graphs node-labelled from a wqo (A,≤) and ordered by the graph-
minor relation is a wqo.

1.2 Well-Structured Transition Systems

In the field of algorithmic verification of program correctness, wqos figure promi-
nently in well-structured transition systems (WSTS). These are transition systemwell-structured transition

system

transition system ⟨S,−→⟩, where S is a set of states and −→ ⊆ S × S is a transition relation, further
endowed with a wqo ≤ ⊆ S × S that satisfies a compatibility condition:compatibility

s −→ s′ ∧ s ≤ t implies ∃t′ ≥ s′, t −→ t′ . (compatibility)

Put together, this defines a WSTS S = ⟨S,−→,≤⟩. In other words, the states
of S are well quasi ordered in a way such that “larger” states can simulate the
behaviour of “smaller” states.

Several variants of the basicWSTS notion exist (backward compatibility, strict
compatibility, . . . ) and we shall mention some of them in exercises 1.17 to 1.20.
Example 1.13. A d-dimensional vector addition system with states (VASS) is avector addition system with

states
finite-state system that manipulates d counters with only increment and decre-
ment operations. Formally, it is a tuple V = ⟨Q, δ, q0,x0⟩ where Q is a finite set
of states, δ ⊆ Q× Zd ×Q is a finite set of translations, q0 in Q is an initial state,
and x0 in Nd describes the initial counter contents.

The semantics of a VASS define a transition system ⟨Q× Nd,−→⟩where a tran-
sition −→ holds between two configurations (q,x) and (q′,x′) if and only if there
exists a translation (q, a, q′) in δ with x′ = x+a; note that this transition requires
x+ a non negative.

We can check that this transition system is a WSTS for the product ordering
≤ over Q × Nd, i.e. for (q,x) ≤ (q′,x′) iff q = q′ and x(j) = x′(j) for all
j = 1, . . . , d. Indeed, whenever (q,x) −→ (q′,x′) and x ≤ y, then there exists
(q, a, q′) in δ s.t. x′ = x+ a, and y′ = y+ a ≥ x+ a ≥ 0, thus (q, y) −→ (q′,y′).

http://en.wikipedia.org/wiki/Robertson%E2%80%93Seymour_theorem
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1.2.1 Termination
A transition system ⟨S,−→⟩ terminates from some state s0 in S, if every transition termination

sequence s0 −→ s1 −→ · · · is finite. This gives rise to the following, generally
undecidable, problem:
[Term] Termination
instance: A transition system ⟨S,−→⟩ and a state s0 in S.
question: Does ⟨S,−→⟩ terminate from s0?
In a WSTS, non-termination can be witnessed by increasing pairs in a finite run:

Lemma 1.14. Let S = ⟨S,−→,≤⟩ be a WSTS and s0 be a state in S. Then S has an
infinite run starting from s0 iff S has a run s0 −→ s1 −→ · · · −→ sj with si ≤ sj for
some 0 ≤ i < j.

Proof. Thedirect implication follows from (wqo.1) applied to the infinite run s0 −→
s1 −→ · · · . The converse implication follows from repeated applications of the
compatibility condition to build an infinite run: first there exists sj+1 ≥ si+1 s.t.
sj −→ sj+1, and so on and so forth.

There is therefore a simple procedure to decide Term, pending some effective-
ness conditions: in a transition system ⟨S,−→⟩, define the (existential) successor
set successor set

Post(s) def
= {s′ ∈ S | s −→ s′} (1.2)

of any s in S. A transition system is image-finite if Post(s) is finite for all s in S. image-finite

It is Post-effective if these elements can effectively be computed from s. Post-effective

Proposition 1.15 (Decidability of Termination forWSTSs). LetS = ⟨S,−→,≤⟩ be
a WSTS and s0 be a state in S. If S is image-finite, Post-effective, and≤ is decidable,
then termination of S from s0 is also decidable.

Proof. The algorithm consists of two semi-algorithms. The first one attempts to
prove termination and builds a reachability tree starting from s0; if S terminates reachability tree

from s0, then every branch of this tree will be finite, and since S is image-finite
this tree is also finitely branching, hence finite overall by Kőnig’s Lemma. The
second one attempts to prove non-termination, and looks nondeterministically
for a finite witness matching Lemma 1.14.

1.2.2 Coverability
The second decision problem we consider on WSTSs is also of great importance,
as it encodes safety checking: can an error situation occur in the system?
[Cover] Coverability coverability

instance: A transition system ⟨S,−→⟩, a qo (S,≤), and two states s, t in S.
question: Is t coverable from s, i.e. is there a run s = s0 −→ s1 −→ · · · −→ sn ≥ t?

http://en.wikipedia.org/wiki/K%C3%B6nig%27s_lemma
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In the particular case of a WSTS over state space Q × A for some finite set
of control states Q and some wqo domain (A,≤A), the Control-state Reachabil-
ity Problem asks whether some input state q can be reached, regardless of thecontrol-state reachability

associated data value. This immediately reduces to coverability of the finitely
many minimal elements of {q} × A for the product ordering over Q × A, i.e.
(q, x) ≤ (q′, x′) iff q = q′ and x ≤A x′.

The decidability of Cover for WSTS uses a set-saturation method, whose ter-
mination relies on (wqo.4). This particular algorithm is called the backward cover-
ability algorithm, because it essentially computes all the states s′ s.t. s′ −→∗ t′ ≥ t.backward coverability

For a set of states U ⊆ S, define its (existential) predecessor setpredecessor set

Pre∃(U)
def
= {s ∈ S | ∃s′ ∈ U, s −→ s′} . (1.3)

The backward analysis computes the limit Pre∗∃(U) of the sequence

U = U0 ⊆ U1 ⊆ · · · where Un+1
def
= Un ∪ Pre∃(Un) . (1.4)

There is no reason for (1.4) to converge in general, but for WSTSs, this can be
solved when U is upward-closed:

Lemma 1.16. If U ⊆ S is an upward-closed set of states, then Pre∃(U) is upward-
closed.

Proof. Assume s ∈ Pre∃(U). Then s −→ t for some t ∈ U . By compatibility of S ,
if s′ ≥ s, then s′ −→ t′ for some t′ ≥ t. Thus t′ ∈ U and s′ ∈ Pre∃(U).

A corollary is that sequence (1.4) stabilises to Pre∗∃(U) after a finite amount of
time thanks to (wqo.4). The missing ingredient is an effectiveness one: a WSTS
has effective pred-basis if there exists an algorithm accepting any state s ∈ S andeffective pred-basis

returning pb(s), a finite basis of ↑Pre∃(↑{s}).2

Proposition 1.17 (Decidability of Coverability for WSTSs). Let S = ⟨S,−→,≤⟩
be a WSTS and s, t be two states in S. If S has effective pred-basis and decidable ≤,
then coverability of t from s in S is also decidable.

Proof. Compute a finite basis B for Pre∗∃(↑{t}) using sequence (1.4) and calls to
pb, and test whether s ≥ b for some b in B.

Exercises 1.18 and 1.20 present variants of this algorithm for different notions of
compatibility.

2This definition is slightly more demanding than required, in order to accommodate for weaker
notions of compatibility.
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simple (a,b)
c←− 1
while a > 0 ∧ b > 0

l : ⟨a,b,c⟩ ←− ⟨a− 1,b, 2c⟩
or

r : ⟨a,b,c⟩ ←− ⟨2c,b− 1, 1⟩
end

Figure 1.1: simple: A nondeterministic while program.

1.3 Examples of Applications

Let us present three applications of wqos in three different areas: one is quite
generic and is concerned with proving program termination (Section 1.3.1). The
other two are more specialised: we present applications to relevance logic (Sec-
tion 1.3.2) and vector addition systems (Section 1.3.3).

1.3.1 Program Termination
Bad Seqences and Termination. Recall from Definition 1.1 that one of the
characterisations for (A,≤) to be a wqo is that every infinite sequence a0, a1, . . .
over A contains an increasing pair ai1 ≤ ai2 for some i1 < i2. We say that (finite
or infinite) sequences with an increasing pair ai1 ≤ ai2 are good sequences, and good sequence

call bad a sequence where no such increasing pair can be found. Therefore every bad sequence

infinite sequence over the wqo A is good, i.e., bad sequences over A are finite.
In order to see how bad sequences are related to termination, consider the

simple program presented in Figure 2.1. We can check that every run of simple
terminates, this for any choice of initial values ⟨a0, b0⟩ of a and b. Indeed, we can
consider any sequence

⟨a0, b0, c0⟩, . . . , ⟨aj , bj , cj⟩, . . . (1.5)

of successive configurations of simple, project away its third component, yielding
a sequence

⟨a0, b0⟩, . . . , ⟨aj , bj⟩, . . . , (1.6)
and look at any factor ⟨ai1 , bi1⟩, . . . , ⟨ai2 , bi2⟩ inside it:

• either only the first transition l is ever fired between steps i1 and i2, in
which case ai2 < ai1 ,

• or the second transition r was fired at least once, in which case bi2 < bi1 .

Thus ⟨ai1 , bi1⟩ ̸≤ ⟨ai2 , bi2⟩, which means that (1.6) is a bad sequence over (N2,≤),
and is therefore a finite sequence. Consequently, (1.5) is also finite, which means
that simple always terminates.
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Ranking Functions. Program termination proofs essentially establish that the
program’s transition relation R is well-founded (aka Noetherian), i.e. that therewell-founded relation

Noetherian relation does not exist an infinite sequence of program configurations x0Rx1Rx2R · · · .
In the case of the integer program simple, this relation is included in Z3×Z3 and
can be easily read from the program:

⟨a, b, c⟩R ⟨a′, b′, c′⟩ iff a > 0 ∧ b > 0 ∧ ((a′ = a− 1 ∧ b′ = b ∧ c′ = 2c) (1.7)
∨ (a′ = 2c ∧ b′ = b− 1 ∧ c′ = 1)) .

The classical, “monolithic” way of proving well-foundedness is to exhibit a
ranking function ρ from the set of program configurations x0, x1, . . . into a well-ranking function

founded order (O,≤) such that

R ⊆ {(xi, xj) | ρ(xi) > ρ(xj)} . (1.8)

Then R is well-founded, otherwise we could exhibit an infinite decreasing se-
quence in (O,≤).

This is roughly what we did in (1.6), by projecting away the third component
and using N2 as codomain; this does not satisfy (1.8) for the product ordering
(N2,≤), but it does satisfy it for the lexicographic ordering (N2,≤lex). Equiva-
lently, one could define ρ:Z3 → ω2 by ρ(a, b, c) = ω · b + a if a, b ≥ 0 and
ρ(a, b, c) = 0 otherwise.

However our argument with (1.6) was rather to use bad sequences: we rather
require ρ to have a wqo (A,≤) as co-domain, and check that the transitive closure
R+ of R verifies

R+ ⊆ {(xi, xj) | ρ(xi) ̸≤ ρ(xj)} (1.9)
instead of (1.8). Again, (1.9) proves R to be well-founded, as otherwise we could
exhibit an infinite bad sequence in (A,≤).

Proving termination with these methods is done in two steps: first find a rank-
ing function, then check that it yields termination through (1.8) for well-founded
orders or (1.9) for wqos. As it turns out that finding an adequate ranking function
is often the hardest part, this second option might be preferable.

Transition Invariants. A generalisation of these schemes with a simpler search
for ranking functions is provided by disjunctive termination arguments: in orderdisjunctive termination

argument
to prove that R is well-founded, one rather exhibits a finite set of well-founded
relations T1, . . . , Tk and prove that

R+ ⊆ T1 ∪ · · · ∪ Tk . (1.10)

Each of the Tj , 1 ≤ j ≤ k, is proved well-founded through a ranking function
ρj , but these functions might be considerably simpler than a single, monolithic
ranking function for R. In the case of simple, choosing

T1 = {(⟨a, b, c⟩, ⟨a′, b′, c′⟩) | a > 0 ∧ a′ < a} (1.11)
T2 = {(⟨a, b, c⟩, ⟨a′, b′, c′⟩) | b > 0 ∧ b′ < b} (1.12)
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fits, their well-foundedness being immediate by projecting on the first (resp. sec-
ond) component.

Let us prove the well-foundedness of R when each of the Tj is proven well-
founded thanks to a ranking function ρj into somewqo (Aj ,≤j) (see Exercise 1.23
for a generic proof that only requires each Tj to be well-founded). Then with a
sequence

x0, x1, . . . (1.13)

of program configurations one can associate the sequence of tuples

⟨ρ1(x0), . . . , ρk(x0)⟩, ⟨ρ1(x1), . . . , ρk(x1)⟩, . . . (1.14)

in A1 × · · · × Ak, the latter being a wqo for the product ordering by Dickson’s
Lemma. Since for any indices i1 < i2, (xi1 , xi2) ∈ R+ is in some Tj for some
1 ≤ j ≤ k, we have ρj(xi1) ̸≤j ρj(xi2) by definition of a ranking function.
Therefore the sequence of tuples is bad for the product ordering and thus finite,
and the program terminates.

Different strategies can be used in practice to find a disjunctive termination
invariant of the form (1.10). One that works well in the example of simple is to
use the structure of the program relation R: if R can be decomposed as a union
R1∪· · ·∪Rk, then applying rank function synthesis to eachRj , thereby obtaining
a well-founded over-approximation wf(Rj) ⊇ Rj , provides an initial candidate
termination argument

wf(R1) ∪ · · · ∪wf(Rk) . (1.15)

Applying this idea to simple, we see that R in (1.7) is the union of

R1 = {(⟨a, b, c⟩, ⟨a′, b′, c′⟩) | a > 0 ∧ b > 0 ∧ a′ = a− 1 ∧ b′ = b ∧ c′ = 2c}
(1.16)

R2 = {(⟨a, b, c⟩, ⟨a′, b′, c′⟩) | a > 0 ∧ b > 0 ∧ a′ = 2c ∧ b′ = b− 1 ∧ c′ = 1} ,
(1.17)

which can be over-approximated by T1 and T2 in (1.11) and (1.12).
It remains to check that (1.10) holds. If it does not, we can iterate the previous

approximation technique, computing an over-approximation wf(wf(Rj1) # Rj2)
of the composition of Rj1 with Rj2 , then wf(wf(wf(Rj1) # Rj2) # Rj3) etc. until
their union reaches a fixpoint or proves termination.

1.3.2 Relevance Logic
Relevance logics provide different semantics of implication, where a factB is said
to follow from A, written “A ⊃ B”, only if A is actually relevant in the deduction
of B. This excludes for instance A ⊃ (B ⊃ A), (A ∧ ¬A) ⊃ B, etc.

We focus here on the implicative fragment R⊃ of relevance logic, which can
be defined through a substructural sequent calculus in Gentzen’s style. We use
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upper-case letters A,B,C, . . . for formulæ and α, β, γ, . . . for possibly empty
sequences of formulæ; a sequent is an expression α ⊢ A. The rules for R⊃ are:

A ⊢ A
(Ax)

α ⊢ A βA ⊢ B

αβ ⊢ B
(Cut)

αABβ ⊢ C

αBAβ ⊢ C
(Ex)

αAA ⊢ B

αA ⊢ B
(Con)

α ⊢ A βB ⊢ C

αβ(A ⊃ B) ⊢ C
(⊃L)

αA ⊢ B

α ⊢ A ⊃ B
(⊃R)

where (Ex) and (Con) are the structural rules of exchange and contraction. Noteexchange

contraction that the weakening rule (W) of propositional calculus is missing: otherwise we
weakening would have for instance the undesired derivation

(Ax)
A ⊢ A (W)
AB ⊢ A (⊃R)

A ⊢ B ⊃ A (⊃R)⊢ A ⊃ (B ⊃ A)

There are two important simplifications possible in this system: the first one
is to redefine α, β, . . . to bemultisets of formulæ, which renders (Ex) useless; thus
juxtaposition in (Ax–⊃R) should be interpreted as multiset union.

The second one is cut elimination, i.e. any sequent derivable inR⊃ has a deriva-cut elimination

tion that does not use (Cut). This can be seen by the usual arguments, where cuts
are progressively applied to “smaller” formulæ, thanks to a case analysis. For
instance,

...
γA ⊢ B

(⊃R)
γ ⊢ A ⊃ B

...
α ⊢ A

...
βB ⊢ C

(⊃L)
αβ(A ⊃ B) ⊢ C

(Cut)
αβγ ⊢ C

can be rewritten into
...

γA ⊢ B

...
α ⊢ A

(Cut)
αγ ⊢ B

...
βB ⊢ C

(Cut)
αβγ ⊢ C

A consequence of cut elimination is that R⊃ enjoys the subformula property:subformula property

Lemma 1.18 (Subformula Property). If α ⊢ A is a derivable sequent in R⊃, then
there is a cut-free derivation ofα ⊢ Awhere every formula appearing in any sequent
is a subformula of some formula of αA.



1.3. Examples of Applications 11

The Decision Problem we are interested in solving is whether a formula A is a
theorem of R⊃; it is readily generalised to whether a sequent α ⊢ A is derivable
using (Ax–⊃R).
[RI] Relevant Implication
instance: A formula A of R⊃.
question: Can the sequent ⊢ A be derived in R⊃?

A natural idea to pursue for deciding RI is to build a proof search tree with
nodes labelled by sequents, and reversing rule applications from the root ⊢ A
until only axioms are found as leaves. An issue with this idea is that the tree
grows to an unbounded size, due in particular to contractions. See Exercise 1.26
for an algorithm that builds on this idea.

We reduce here RI to a WSTS coverability problem. Given A, we want to
construct a WSTS S = ⟨S,→,≤⟩, a target state t of S, and an initial state s in S
s.t. t can be covered in S from s if and only if A is a theorem of R⊃.

Write Sub(A) for its finite set of subformulæ. Then, by the Subformula Prop-
erty, any sequent α ⊢ B that derives A in a cut-free proof can be seen as an
element of Seq(A) def

= NSub(A) × Sub(A); we let

S
def
= Pf (Seq(A)) (1.18)

be the set of finite subsets of Seq(A).
Given a finite set s′ of sequents, we say that

s′ → s′ ∪ {α ⊢ B} (1.19)

if some rule among (Ax–⊃R) ((Cut) excepted) can employ some premise(s) in s′

to derive the sequent α ⊢ B.
For a multiset α, define its multiset support σ(α) as its underlying set of ele- multiset support

ments σ(α) = {B | α(B) > 0}. We define the contraction qo≪ over sequents by contraction ordering

α ⊢ B ≪ α′ ⊢ B′ iff α ⊢ B can be obtained from α′ ⊢ B′ by some finite, possibly
null, number of contractions. Over Seq(A), this is equivalent to having α ≤ α′

(for the product ordering over NSub(A)), σ(α) = σ(α′), and B = B′: ≪ over
Seq(A) is thus defined as a product ordering between the three wqos (NSub(A),≤),
(P(Sub(A)),=), and (Sub(A),=), and therefore by Dickson’s Lemma:

Lemma 1.19 (Kripke’s Lemma). The qo (Seq(A),≪) is a wqo.

Then, by Exercise 1.15, the qo (S,≤), where ≤ is Hoare’s ordering applied to
≪, is a wqo, and we easily see that S = ⟨S,→,≤⟩ is a WSTS with effective pred-
basis and a decidable ordering (see Exercise 1.25), thus the coverability problem
for

s
def
= {B ⊢ B | B ∈ Sub(A)} t

def
= {⊢ A} (1.20)

is decidable by Proposition 1.17.
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It remains to check that coverability of ⟨S, s, t⟩ is indeed equivalent to deriv-
ability of ⊢ A. Clearly, if s = s0 → s1 → · · · → sn, then any sequent appearing
in any si along this run is derivable in R⊃, and if t ≤ sn—which is equivalent to
the existence of a sequent α ⊢ B in sn, s.t. ⊢ A ≪ α ⊢ B, which by definition
of≪ is equivalent to σ(α) = ∅ and A = B, i.e. to ⊢ A being in sn—, then A is
indeed a theorem ofR⊃. Conversely, if ⊢ A is derivable by a cut-free proof inR⊃,
then we can reconstruct a run in S by a breadth-first visit starting from the leaves
of the proof tree, which starts from the set s0 ⊆ s of leaves of the proof tree,
applies→ along the rules (Ax–⊃R) of the proof tree, and ends at the root of the
proof tree with a set s′ of sequents that includes ⊢ A. Finally, by compatibility of
S , since s0 ≤ s, there exists a run s→ · · · → s′′ such that t = {⊢ A} ⊆ s′ ≤ s′′,
proving that t is indeed coverable from s in S .

1.3.3 Karp & Miller Trees
Vector Addition Systems (VAS) are systems where d counters evolve by non-vector addition system

deterministically applying d-dimensional translations from a fixed set, i.e. they
are single-state VASSs. They can be seen as an abstract presentation of Petri nets,
and are thus widely used to model concurrent systems, reactive systems with re-
sources, etc. They also provide an example of systems for whichWSTS algorithms
work especially well.

Formally, a d-dimensional VAS is a pair V = ⟨x0,A⟩ where x0 is an initial
configuration inNd andA is a finite set of translations in Zd. A translation a inA
can be applied to a configuration x in Nd if x′ = x+ a is in Nd, i.e. non-negative.
The resulting configuration is then x′, and we write x a−→V x′. A d-dimensional
VAS V clearly defines a WSTS ⟨Nd,→,≤⟩ where → def

=
∪

a∈A
a−→V and ≤ is the

product ordering overNd. A configuration x is reachable, denoted x ∈ Reach(V),
if there exists a sequence

x0
a1−→ x1

a2−→ x2
a3−→ · · · an−→ xn = x . (1.21)

That reachability is decidable for VASs is a major result of computer science but
we are concerned here with computing a covering of the reachability set.

Coverings. In order to define what is a “covering”, we consider the completion
Nω

def
= N∪{ω} ofN and equip it with the obvious ordering. Tuples y ∈ Nd

ω , called
ω-markings, are ordered with the product ordering. Note that Nω is a wqo, and
thus Nd

ω as well by Dickson’s Lemma.
Whileω-markings are not proper configurations, it is convenient to extend the

notion of steps and write y a−→ y′ when y′ = y+a (assuming n+ω = ω+n = ω
for all n).

Definition 1.20 (Covering). Let V be a d-dimensional VAS. A set C ⊆ Nd
ω of

ω-markings is a covering for V ifcovering
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⟨1, 0, 1⟩

⟨2, 1, 0⟩ ⟨0, 0, 2⟩

⟨1, ω, 1⟩ ⟨1, ω, 1⟩

⟨2, ω, 0⟩ ⟨0, ω, 2⟩ ⟨2, ω, 0⟩ ⟨0, ω, 2⟩

a b

b a

a b a b

Figure 1.2: A Karp & Miller tree constructed for the VAS ⟨{a, b, c}, ⟨1, 0, 1⟩⟩ with
translations a = ⟨1, 1,−1⟩, b = ⟨−1, 0, 1⟩, and c = ⟨0,−1, 0⟩.

1. for any x ∈ Reach(V), C contains some y with x ≤ y, and

2. any y ∈ C is in the adherence of the reachability set, i.e. y = limi=1,2,... xi
for some infinite sequence of configurations x1,x2, . . . in Reach(V).

Hence a covering is a rather precise approximation of the reachability set (pre-
cisely, the adherence of its downward-closure). A fundamental result is that finite
coverings always exist and are computable. This entails several decidability re-
sults, e.g. whether a counter value remains bounded throughout all the possible
runs.

The Karp & Miller Tree constructs a particular covering of V . Formally, this Karp & Miller tree

tree has nodes labelled with ω-markings in Nd
ω and edges labelled with transla-

tions in A. The root s0 is labelled with x0 and the tree is grown in the following
way:

Assume a node s of the tree is labelled with some y and let y0,y1, . . . ,yn be
the sequence of labels on the path from the root s0 to s, with x0 = y0 and yn = y.
For any translation a ∈ A such that there is a step y a−→ y′, we consider whether
to grow the tree by adding a child node s′ to s with a a-labelled edge from s to s′:

1. If y′ ≤ yi for one of the yi’s on the path from s0 to s, we do not add s′ (the
branch ends).

2. Otherwise, if y′ > yi for some i = 0, . . . , n, we build y′′ from y′ by setting,
for all j = 1, . . . , d,

y′′(j) def
=

{
ω if y′(j) > yi(j)
y′(j) otherwise.

(1.22)

Formally, y′′ can be thought as “yi+ω · (y′−yi).” We add s′, the edge from
s to s′, and we label s′ with y′′.

3. Otherwise, y′ is not comparable with any yi: we simply add the edge and
label s′ with y′.
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See Figure 1.2 for an example of tree constructed by this procedure.

Theorem 1.21. The above algorithm terminates and the set of labels in the Karp &
Miller tree is a covering for V .

Proof of termination. First observe that the tree is finitely branching (a node has
at most |A| children), thus by Kőnig’s Lemma the tree can only be infinite by
having an infinite branch. Assume, for the sake of contradiction, that there is
such an infinite branch labelled by some y0,y1, . . . By (wqo.2) applied to Nd

ω , we
can exhibit an infinite subsequence yi0 ≤ yi1 ≤ · · · with i0 < i1 < · · · . Any
successive pair yik ≤ yik+1

requires yik+1
to be inserted at step 2 of the algorithm,

hence yik+1
has more ω-components than yik . Finally, since an ω-marking has

at most d ω-components, this extracted sequence is of length at most d + 1 and
cannot be infinite.

We leave the second part of the proof as Exercise 1.28.

Exercises
Exercise 1.1 (Examples of QOs). Among the following quasi orders, which ones are par-
tial orders? Are they total? Well-founded? Wqo?

(1) the natural numbers (N,≤), the integers (Z,≤), the positive reals (R+,≤);

(2) the natural numbers (N, |), where a | b means that a divides b;

(3) given a linearly ordered finite alphabet Σ —e.g., a < b < · · · < z— the set of finite
sequences Σ∗ with prefix ordering ≤pref or lexicographic ordering ≤lex;prefix ordering

lexicographic ordering

(4) (P(N),⊆), the subsets of N ordered with inclusion;subsets

(5) (P(N),⊑S), where ⊑S, called Smyth’s ordering, is given by U ⊑S V
def⇔ ∀m ∈Smyth’s ordering

V, ∃n ∈ U, n ≤ m;

(6) (Pf (N),⊆) and (Pf (N),⊑S), where we restrict to finite subsets.

Exercise 1.2. Let (A,≤1) and (A,≤2) be two wqos over the same support set. Show that
(A,≤1 ∩ ≤2) is a wqo.

Exercise 1.3 (Generalised Dickson’s Lemma). If (Ai,≤i)i=1,...,m are m quasi-orderings,
their product is

∏m
=1(Ai,≤i) = (A,≤×) given by A = A1 × · · · ×Am, and

⟨x1, . . . , xm⟩ ≤× ⟨x′
1, . . . , x

′
m⟩

def⇔ x1 ≤1 x′
1 ∧ · · · ∧ xm ≤m x′

m .

(1) Show that
∏m

=1(Ai,≤i) is well-founded when each (Ai,≤i) is.

(2) Show that
∏m

=1(Ai,≤i) is a wqo when each (Ai,≤i) is.

http://en.wikipedia.org/wiki/K%C3%B6nig%27s_lemma
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Exercise 1.4 (Lexicographic Sum and Product). Let (A1,≤1) and (A2,≤2) be two qos.
The lexicographic sum A1 + A2 is the qo (A1 + A2,≤≤lex) with same support set {1} ×lexicographic sum

A1 ∪ {2} ×A2 as for the disjoint sum but with an ordering defined with

⟨i, x⟩ ≤+≤lex
⟨j, y⟩ def⇔ i < j ∨ i = j ∧ x ≤i y .

Similarly, the lexicographic product A1 ×≤lex A2 has the same support set A1 ×A2 as for lexicographic product

the Cartesian product but ordered with

⟨x, y⟩ ≤×≤lex
⟨x′, y′⟩ def⇔ x <1 x′ ∨ x ≡1 x′ ∧ y ≤2 y′

(1) Show that A1 +≤lex A2 is a linear ordering iff A1 and A2 are.

(2) Show thatA1×≤lex A2 is a linear ordering whenA1 andA2 are but that the reciprocal
does not hold.

(3) Show that A1 +≤lex A2 and A1 ×≤lex A2 are wqos when A1 and A2 are.

Exercise 1.5 (Equivalence of (wqo.1), (wqo.2), and (wqo.3)). Assume that (A,≤) is a wqo
in the sense of Definition 1.1. We want to show that it satisfies Definition 1.3 without
invoking Ramsey’s Theorem as was done in Section 1.1.1. For this we follow Erdös et al.
(1950):

(1) Consider an infinite sequence x0, x1, x2, . . . over A and write M for the set {i ∈
N | xi ̸≤ xj for all j > i}. Show that M is finite.

(2) Conclude and show that (wqo.1) implies (wqo.2).

(3) Prove, using similar ideas, that (wqo.3) implies (wqo.1).

Exercise 1.6 (HowManyAntichains?). Assume that (A,≤) is countable andwell-founded.
Show that (A,≤) is wqo iff the set of its antichains is countable.

Exercise 1.7 (Ascending Chain Condition). Show that (wqo.4) is equivalent with the
other definition(s) of wqos.

Exercise 1.8 (Finite Basis Property).

(1) For a qo (A,≤) and a subset U ⊆ A, we say that x is a “minimal element of U” if
x ∈ U and there is no y ∈ U with y < x. Show that every element of a well-founded
qo is larger than or equal to a minimal element of the qo.

(2) (wqo.5) Prove that a qo (A,≤) is a wqo iff every non-empty subset U of A contains
at least one, and at most finitely many (up to equivalence), minimal elements.

(3) Prove Lemma 1.7: any upward-closed subset U of a wqo (A,≤) can be written under
the form U = ↑{x1, . . . , xn}.

Exercise 1.9 (Linear WQOs).

(1) Prove that a linear ordering is a wqo iff it is well-founded.
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(2) (wqo.6) Prove that a qo is a wqo iff all its linearisations are well-founded (a result
from (Wolk, 1967)), where a linearisation of (A,≤) is any linear qo (A,≼) with samelinearisation

support set and such that x ≤ y implies x ≼ y (and such that x < y implies x ≺ y).
Here one may assume the Order-extension principle: “every qo has a linearisation”.order-extension principle

Exercise 1.10 (Zk,≤sparse). Weconsider the sparser-than ordering. Given a = (a1, . . . , ak)sparser-than ordering

and b = (b1, . . . , bk) two tuples in Zk , we define

a ≤sparse b
def⇔ ∀i, j ∈ {1, . . . , k} :

(
ai ≤ aj iff bi ≤ bj

)
and

(
|ai − aj | ≤ |bi − bj |

)
.

Show that (Zk,≤sparse) is a wqo.

Exercise 1.11 (Rado’s Structure). We consider the following set R = {(a, b) ∈ N2 | a <
b} ordered with

(a, b) ≤R (a′, b′)
def⇔ (a = a′ ∧ b ≤ b′) ∨ b < a′ .

This structure (R,≤R) appeared in (Rado, 1954) and is called Rado’s structure, see exer-

http://en.wikipedia.org/wiki/Linear_extension
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Rado’s structurecises 1.13 and 1.15 for applications.
Show that (R,≤R) is a wqo.

Exercise 1.12 (Higman’s Lemma). Recall that for a qo (A,≤), the set A∗ of finite se- ⋆
quences (“words”) over A can be ordered by the subword embedding ≤∗ defined with
(1.1). We shall prove Higman’s Lemma: (A∗,≤∗) is wqo iff (A,≤) is.

(1) Show that (A∗,≤∗) is well-founded if (A,≤) is.

(2) Assume, by way of contradiction, that (A,≤) is wqo but (A∗,≤∗) is not. Then there
exist some infinite bad sequences over A∗, i.e., sequences of the form w0, w1, w2, . . .
where wi ̸≤∗ wj for all i, j ∈ N s.t. i < j.
Consider all words that can start such an infinite bad sequence, pick a shortest one
among them, and call it v0. Consider now all infinite bad sequences that start with v0
and, among all words that can appear after the initial v0, pick a shortest one and call
it v1. Repeat the process and at stage k pick vk as one among the shortest words that
can appear after v0, . . . , vk−1 inside an infinite bad sequence. Show that this process
can be continued forever and that is generates an infinite sequence S = v0, v1, . . .

(3) Show that S itself is a bad sequence.

(4) We now write every vi under the form vi = aiui where ai ∈ A is the first “let-
ter” of vi and ui is the first strict suffix (this is possible since an infinite bad sequence
cannot contain the empty word). We now pick an infinite increasing sequence ak0 ≤
ak1 ≤ ak2 ≤ · · · from (ai)i∈N (possible since A is wqo) and we write S′ for the se-
quence uk0 , uk1 , . . . of corresponding suffixes. Show that if S′ is good—i.e., contains
an increasing pair—, then S is good too.

(5) We deduce that S′ must be an infinite bad sequence over A∗. Use this to derive a
contradiction (hint: recall the definition of vi0 ).

At this point we conclude that our assumption “A is wqo butA∗ is not” was contradictory,
proving Higman’s Lemma.

Exercise 1.13 (Higman’s Lemma forω-Sequences?). Let (A,≤) be awqo. For two infinite
words v = (xi)i∈N and w = (yi)i∈N in Aω , we let

v ≤ω w
def⇔
{

there are some indexes n0 < n1 < n2 < · · ·
s.t. xi ≤ yni for all i ∈ N.

(1) We start with the ω-sequence extension of (N,≤) and consider ω-words v, w ∈ Nω of
natural numbers. We say that an ω-word v ∈ Nω is unbounded if it contains arbitrarily
large natural numbers. What can you say about unbounded ω-words and ≤ω?

(2) With a bounded ω-word v ∈ Nω , of the form v = x0, x1, x2, . . ., we associate L(v),
defined as L(v) def

= lim sup
i
xi = limk→∞ maxi≥k xi (note that L(v) is a finite number

since v is bounded), we letM(v) be the first index such that xi ≤ L(v) for all i ≥M(v).
The finite sequence v̇ def

= x0, . . . , xM(v)−1 is the shortest prefix of v such that v can be
written v = v̇.v̈ with v̈ an ω-length suffix having all its elements bounded by L(v).
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Assume that w = y0, y1, y2, . . . is a second bounded ω-word and show that

L(v) ≤ L(w) implies v̈ ≤ω ẅ , (E)(
L(v) ≤ L(w) ∧ v̇ ≤∗ ẇ

)
implies v ≤ω w . (E′)

(3) Eq. (E′) gives a sufficient condition for v ≤ω w. Is it a necessary condition?

(4) Show that (Nω,≤ω) is a wqo.

(5) Generalise the previous question and show that (Aω,≤ω) is a wqo when (A,≤) is a
linear wqo.

(6) We consider a finite alphabet (Σ,=) equipped with the empty ordering. Show that
its ω-sequence extension (Σω,≤ω) is a wqo.

(7) Show that (Rω,≤R,ω), the ω-sequence extension of Rado’s structure (R,≤R) —see
Exercise 1.11—, is not a wqo.

(8) We return to the general case where (A,≤) is a wqo. Show that (Aω,≤ω) is well-
founded.

Exercise 1.14 (Higman’s Lemma for Matrices?). A quasi-ordering (A,≤) leads to a nat-
ural notion of embedding on Mat[A] —the set of rectangular matrices M,N, . . . with
elements from A— by letting M ≤Mat N when there is a submatrix N ′ of N (i.e., a ma-
trix derived from N by removing some lines and columns) s.t. M ≤× N ′ (i.e., M and
N ′ have same dimensions and M [i, j] ≤ N ′[i, j] for all i, j). Does (A,≤) wqo imply
(Mat[A],≤Mat) wqo?

Exercise 1.15 (Ordering Powersets). Recall from Exercise 1.1 the definition of Smyth’s
ordering on the powerset P(A): if (A,≤) is a qo and U, V ⊆ A we let:Hoare ordering

Egli-Milner ordering

U ⊑S V
def⇔ ∀m ∈ V, ∃n ∈ U, n ≤ m . (∗)

There also exists the (more natural) Hoare ordering (also called Egli-Milner ordering):

U ⊑H V
def⇔ ∀n ∈ U, ∃m ∈ V, n ≤ m . (†)

(1) Show that (P(A),⊑H) and (P(A),⊑S) are qos. Are they antisymmetric when (A,≤)
is? Are they total when (A,≤) is? Are they well-founded when (A,≤) is?

(2) What are the equivalences generated by ⊑S and by ⊑H?

(3) Express ⊑S in terms of ⊑H (and reciprocally), using set-theoretic operations like
upward-closure, intersection, etc.

(4) Prove the following characterisation of wqos:

A qo (A,≤) is wqo if, and only if, (P(A),⊑H) is well-founded. (wqo.7)

(5) Further show that (Pf (A),⊑H) is wqo iff (A,≤) is wqo—recall that Pf (A) only con-
tains the finite subsets of A.
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(6) Show that (Pf (R),⊑S) and (P(R),⊑H) are not wqos, where R is Rado’s structure
—see Exercise 1.11.

Exercise 1.16 (Kruskal’s Tree Theorem). For a qo (A,≤), we write T (A) for the set of
finite trees node-labelled by A. Formally, T (A) = {t, u, v, . . .} is the smallest set such
that if a ∈ A, m ∈ N and t1, . . . , tm ∈ T (A) then the tree with root labelled by a
and subtrees t1, . . . , tm, denoted a(t1, . . . , tm), is in T (A). We order T (A) with ≤T , the
homeomorphic embedding that extends ≤. The definition of u ≤T t is by induction on
the structure of t, with

a(u1, . . . , um) ≤T b(t1, . . . , tk)
def⇔
{
a ≤ b and (u1, . . . , um) ≤T,∗ (t1, . . . , tk)
or ∃i ∈ {1, . . . , k} : a(u1, . . . , um) ≤T ti .

(‡)

Here ≤T,∗ denotes the sequence extension of ≤T .

(1) We now assume that (A,≤) is a wqo and prove that (T (A),≤T ) is a wqo too. For
this we assume, by way of contradiction, that (T (A),≤T ) is not wqo. We proceed as
in the proof of Higman’s Lemma (Exercise 1.12) and construct a “minimal infinite bad
sequence” S = t0, t1, t2, . . . where t0 is a smallest tree that can be used to start an
infinite bad sequence, and at stage k, tk is a smallest tree that can continue an infinite
bad sequence starting with t0, . . . , tk−1. By construction S is infinite and is bad.
Let us now write every ti in S under the form ti = ai(ui,1, . . . , ui,mi) and collect all
the immediate subtrees in U

def
= {ti,j | i ∈ N ∧ 1 ≤ j ≤ mi}. Show that (U,≤T ) is

wqo.

(2) Derive a contradiction, i.e, show that S contains an increasing pair.

At this point we conclude that our assumptions “A is wqo but T (A) is not” was contra-
dictory, proving Kruskal’s Theorem.

Well Structured Transition Systems

Exercise 1.17 (Transitive Compatibility). We relax in this exercise (compatibility) to a
weaker notion of compatibility, but show that Term remains decidable in this setting.
Consider the following replacement for (compatibility): transitive compatibility

s −→ s′ ∧ s ≤ t implies s′ ≤ t ∨ ∃t′ ≥ s′, t −→+ t′ , (tc)

where −→+ is the transitive closure of −→.
Show that, if S = ⟨S,−→,≤⟩ is a WSTS for (tc), which is image-finite and Post-

effective and has decidable≤, then one can decide whether S terminates from some state
s0 in S.

Exercise 1.18 (Reflexive Transitive Compatibility). Let us relax (compatibility) to: reflexive transitive
compatibility

s −→ s′ ∧ s ≤ t implies s′ ≤ t ∨ ∃t′ ≥ s′, t −→∗ t′ , (rtc)

where −→∗ is the reflexive transitive closure of −→. We assume throughout this exercise
that S = ⟨S,−→,≤⟩ is a WSTS under (rtc).
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(1) Show that, ifU is upward-closed, then Pre∗∃(U) is also upward-closed. Does Lemma 1.16
still hold?

(2) Let K0 be a finite basis of U . Lift pb—recall the effective pred-basis function from
page 6—to operate on finite sets. The sequence

K0 ⊆ K1 ⊆ · · · where Kn+1
def
= Kn ∪ pb(Kn) (§)

converges by (wqo.4) after finitely many steps to some finite set K . Show that ↑K =
↑
∪

i∈N Ki.

(3) Show that ↑K = Pre∗∃(U).

(4) Conclude that Cover is decidable for WSTS with (rtc), effective pred-basis, and decid-
able ≤.

Exercise 1.19 (Strict Compatibility). We strengthen in this exercise (compatibility) to a
stronger notion of compatibility that allows the decidability of finiteness. Consider the
following replacement for (compatibility):strict compatibility

s −→ s′ ∧ s < t implies ∃t′, s′ < t′, t −→ t′ . (sc)

Assume that S is image-finite and has strict compatibility. We further assume, for sim-
plification purposes, that ≤ is antisymmetric (i.e., it is a partial order, where different
elements cannot be equivalent). A run s0 −→ s1 −→ s2 −→ · · · is repeats-free if si ̸= sj
whenever i ̸= j.

(1) Show that S has an infinite repeats-free run starting from s0 iff Post∗(s0) is infinite.

(2) Show that S has an infinite repeats-free run from s0 iff it has a finite repeats-free run
that contains an increasing pair, i.e., some i < j with si ≤ sj .

(3) Conclude that the following problem is decidable for image-finite, Post-effectiveWSTSs
with strict compatibility and decidable and antisymmetric ≤:
[Fin] Finiteness
instance: A transition system ⟨S,−→⟩, a qo (S,≤), and a state s0 in S.
question: Is Post∗(s0) finite?

(4) Generalise the previous result so that one does not require antisymmetry of ≤.

Exercise 1.20 (Downward WSTSs). Let ⟨S,−→⟩ be a transition system and (S,≤) be a
wqo. The definition of compatibility is also known as “upward-compatibility”, by contrast
with its dual reflexive downward compatibility :reflexive downward

compatibility

s −→ s′ ∧ s ≥ t implies s′ ≥ t ∨ ∃t′ ≤ s′, t −→ t′ . (rdc)

that defines a downward WSTS S = ⟨S,−→,≤⟩.downward WSTS

Show that the following problem is decidable for image-finite, Post-effective down-
ward WSTSs with decidable ≤:
[SCover] Sub-Coverability
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instance: A transition system ⟨S,−→⟩, a qo (S,≤), and two states s, t in S.
question: Is there a run s = s0 −→ s1 −→ · · · −→ sn ≤ t?

Exercise 1.21 (WSTSs Everywhere). We consider a transition system S = (S,−→) where
S is a recursive (but otherwise arbitrary) set of configurations. For s ∈ S, letmaxtime(s)
be the length of the longest run starting from s. We let maxtime(s) = ω when arbitrary
long runs exist. Define s ≤T t when maxtime(s) ≤ maxtime(t) assuming the obvious
total ordering over N ∪ {ω}.

(1) Show that (S,−→,≤T ) is a WSTS.

(2) Can we use WSTS theory and decide whether S terminates (starting from some s0)
when it is Post-effective and image-finite?

Program Termination
Exercise 1.22. Show that the weaker condition

R ⊆ T1 ∪ · · · ∪ Tk (¶)

with each Tj is well-founded does not imply R well-founded.

Exercise 1.23 (Disjunctive Termination Arguments). Assume that a binary relation R
verifies (1.10) on page 8, where each Tj is well-founded. Prove using the Infinite Ramsey
Theorem that R is well-founded.

Relevance Logic
Exercise 1.24 (Cut Elimination & Subformula Property). Prove Lemma 1.18.

Exercise 1.25 (AWSTS forRelevant Implication). Prove thatS defined by equations (1.18)
and (1.19) is a WSTS with effective pred-basis and decidable ordering.

Exercise 1.26 (Proof Search for Relevant Implication). The purpose of this exercise is to ⋆
find an alternative algorithm for RI. The key idea in this algorithm is to remove (Con)
from R⊃ and apply contractions only when needed, i.e. modify the rules (⊃L) and (⊃R) to
contract their conclusion, but only inasmuch as could not be obtained by first contracting
their premises. Doing so we define an alternative proof system R′

⊃ that includes the
unmodified (Ax) and (⊃R), and a modified version of (⊃L):

α ⊢ A βB ⊢ C

γ ⊢ C
(⊃′

L)

where γ ⊢ C ≪ αβ(A ⊃ B) ⊢ C is such that, for all formulæ D, γ(D) ≥ α(D) +
β(D)− 1.

(1) Show how any derivation of a sequent α ⊢ B in R⊃ ∪R′
⊃ can be transformed into a

derivation in R′
⊃ of no larger height.

http://en.wikipedia.org/wiki/Ramsey's_theorem
http://en.wikipedia.org/wiki/Ramsey's_theorem
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(2) Deduce that R′
⊃ and R⊃ derive the same sequents.

(3) Deduce that, if α ⊢ B ≪ α′ ⊢ B′ and α′ ⊢ B′ has a derivation of height n in R′
⊃,

then α ⊢ B has a derivation of height at most n in R′
⊃.

(4) We work now in the modified calculus R′
⊃. We say that a derivation in R′

⊃ is irre-
dundant if, by following any branch starting from the root to the leaves, we never first
meet α ⊢ B and later α′ ⊢ B′ with α ⊢ B ≪ α′ ⊢ B′. Show that RI is decidable by
proof search using Kőnig’s Lemma and Kripke’s Lemma.

Karp & Miller Trees
Exercise 1.27. Show that Nω is a wqo.

Exercise 1.28 (Covering). The aim of this exercise is to complete the proof of Theo-⋆⋆
rem 1.21 and show that the set of labels C ⊆ Nd

ω of the Karp & Miller tree T forms a
covering according to Definition 1.20.

(1) Let neg(a) be the vector in Nd defined by

neg(a)(j) =
{
−a(j) if a(j) ≤ 0

0 otherwise
(∗∗)

for a in Zd and j in {1, . . . , d}. The threshold Θ(u) of a transition sequence u in A∗
threshold

is the minimal configuration x in Nd s.t. u is enabled from x, i.e. there exists x′ s.t.
x u−→V x′. Show how to compute Θ(u). Show that Θ(uv) ≤ Θ(u) + Θ(v) for all u, v
in A∗.

(2) In order to prove thatC satisfies Definition 1.20.1, we will prove a stronger statement.
For an ω-marking y in Nd

ω , first define

Ω(y) def
= {j = 1, . . . , d | y(j) = ω} (††)

the set of ω-components of y, and

Ω(y) def
= {1, . . . , d}∖ Ω(y) (‡‡)

its set of finite components. We introduce for this question a variant of the construction
found in the main text, which results in a Karp & Miller graph G instead of a tree: inKarp & Miller graph

step 1 we rather add an edge s
a−→G si. Observe that this does not change C nor the

termination of the algorithm.
Show that, if x0

u−→V x for some translation sequence u in A∗, then there exists a node
s in G labelled by y such that x(j) = y(j) for all j in Ω(y) and s0

u−→G s is a path in
the graph.

(3) Let us prove that C satisfies Definition 1.20.2. The idea is that we can find reachable
configurations of V that agree with y on its finite components, and that can be made
arbitrarily high on its ω-components. For this, we focus on the graph nodes where new
ω values are introduced by step 2, which we call ω-nodes.ω-node

Prove that, if s0
u−→T s labelled y for some u inA∗ in the tree and z in NΩ(y) is a partial

configuration on the components of Ω(y), then there are

http://en.wikipedia.org/wiki/K%C3%B6nig%27s_lemma
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• n in N,
• a decomposition u = u1u2 · · ·un+1 with each ui in A∗ where the nodes si

reached by s0
u1···ui−−−−→T si for i ≤ n are ω-nodes,

• sequences w1, . . . , wn in A+,
• numbers k1, . . . , kn in N,

such that x0
u1w

k1
1 u2···unw

kn
n un+1−−−−−−−−−−−−−−−→V x with x(j) = y(j) for all j in Ω(y) and x(j) ≥

z(j) for all j in Ω(y). Conclude.
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As seen in Chapter 1, many algorithms rely on well quasi orderings for their
proof of termination. Although it is true that the classical proofs of Dickson’s
Lemma, Higman’s Lemma, and other wqos, are infinistic in nature, the way they
are typically applied in algorithms lends itself to constructive proofs, from which
complexity upper bounds can be extracted and applied to evaluate algorithmic
complexities.

We present in this chapter how one can derive complexity upper bounds for
these algorithms as a side-product of the use of Dickson’s Lemma over tuples
of integers. The techniques are however quite generic and also apply to more
complex wqos; see the Bibliographic Notes at the end of the chapter.

Bad Seqences and Termination. Recall from Definition 1.1 that one of the
characterisations for (A,≤) to be a wqo is that every infinite sequence a0, a1, . . .
over A contains an increasing pair ai1 ≤ ai2 for some i1 < i2. We say that (finite
or infinite) sequences with an increasing pair ai1 ≤ ai2 are good sequences, and
call bad a sequence where no such increasing pair can be found. Therefore every
infinite sequence over the wqo A is good, i.e., bad sequences over A are finite.

simple (a,b)
c←− 1
while a > 0 ∧ b > 0

l : ⟨a,b,c⟩ ←− ⟨a− 1,b, 2c⟩
or

r : ⟨a,b,c⟩ ←− ⟨2c,b− 1, 1⟩
end

Figure 2.1: simple: A simple while program, repeated from Figure 1.1.
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Recall the simple program from Figure 1.1 on page 7, repeated here in Fig-
ure 2.1. We argued on page 7 that, in any run, the sequence of values taken by a
and b

⟨a0, b0⟩, . . . , ⟨aj , bj⟩, . . . , (2.1)

is a bad sequence over (N2,≤), and by Dickson’s Lemma, it is finite, which means
that simple always terminates.

In this chapter, we are going to see that the very fact that we applied Dickson’s
Lemma yields more than just the termination of simple: it also yields an upper
bound on the number of times its main loop can be unrolled as a function of its
initial input ⟨a0, b0⟩, i.e. a bound on the length of the bad sequence (2.1). Better,
the upper bounds we will prove are highly generic, in that we only need to find
out the complexity of the operations (i.e. only linear operations in simple) and the
dimension we are working with (i.e. in dimension 2 in (2.1)), to provide an upper
bound.

A Lower Bound. Before we investigate these upper bounds, let us have a look at
how long simple can run: for instance, for ⟨a0, b0⟩ = ⟨2, 3⟩, we find the following
run

⟨2, 3, 20⟩ l−→ ⟨1, 3, 21⟩ r−→ ⟨22, 2, 20⟩ l2
2−1r−−−−→ ⟨222 , 1, 1⟩ l2

22−1r−−−−→ ⟨222
2

, 0, 1⟩ ,

of length
2 + 22 + 22

2
, (2.2)

which is non-elementary in the size of the initial values. This is instructive: linear
operations and dimension 2 constitute the simplest case we care about, and the
complexities we find are already beyond the elementary hierarchies, where the
distinctions time vs. space resources, or deterministic vs. nondeterministic com-
putations, become irrelevant. Hierarchies for non-elementary complexities are
maybe not so well-known, so we will introduce one such hierarchy, the Grzegor-
czyk hierarchy (Fk)k∈N of classes of functions (see Figure 2.2).

As we will see, in the case of Simple, we can show there exists a function
bounding the length of all runs and residing in F3, which is the lowest level to
contain non-elementary functions. Chapter 3 will be devoted to further matching
complexity lower bounds for decision problems on monotonic counter systems.

Outline.The upcoming Section 2.1 surveys all the notions (controlled sequences,
polynomial normed wqos, and the Grzegorczyk hierarchy) needed in order to
state the Length Function Theorem, and later apply it to several algorithms in
Section 2.2. The proof of the theorem is delayed until Section 2.3, which ends with
the definition of a bounding functionM on the length of controlled bad sequences,
and Section 2.4 that classifies this function inside the Grzegorczyk hierarchy.
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F0 = F1
(linear)

F2
(elementary)

F3

∪
k Fk

(primitive-recursive)

⊊
⊊

· · ·

Figure 2.2: The Grzegorczyk hierarchy of primitive-recursive functions.

2.1 The Length of Controlled Bad Seqences

As seen with the example of Simple, wqo-based termination arguments rely on
the finiteness of bad sequences. In order to further provide a complexity analysis,
our goal is thus to bound the length of bad sequences.

2.1.1 Controlled Seqences
Our first issue with our program is that one can construct arbitrarily long bad
sequences, even when starting from a fixed first element. Consider N2 and fix
x0 = ⟨0, 1⟩. Then the following

⟨0, 1⟩, ⟨L, 0⟩, ⟨L− 1, 0⟩, ⟨L− 2, 0⟩, . . . , ⟨2, 0⟩, ⟨1, 0⟩ (2.3)

is a bad sequence of length L + 1. What makes such examples possible is the
“uncontrolled” jump from an element like x0 to an arbitrarily large next element,
here x1 = ⟨L, 0⟩. Indeed, when one only considers bad sequences displaying
some controlled behaviour (in essence, bad sequences of bounded complexity, as
with the linear operations of Simple), upper bounds on their lengths certainly
exist.

Norms and Controls. In order to control the growth of the values in a sequence
a0, a1, a2, . . . over some wqo (A,≤), we introduce two main ingredients:

1. the first is a norm |.|A:A → N on the elements to represent their size. We
always assume A≤n

def
= {a ∈ A | |a|A ≤ n} to be finite for every n; we call

the resulting structure (A,≤, |.|A) a normed wqo (nwqo). For instance, for normed wqo

N2 we will use the infinity norm |⟨m,n⟩|N2
def
= |⟨m,n⟩|∞ = max(m,n);

2. the second is a control function g:N → N used to bound the growth of control function

elements as we iterate through the sequence. We always assume g to be
strictly increasing: g(x+ 1) ≥ 1 + g(x) for all x.
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Mixing these together, we say that a sequence a0, a1, a2, . . . over A is (g, n)-
controlled for some initial norm n ∈ N def⇔controlled sequence

∀i = 0, 1, 2, . . . : |ai|A ≤ gi(n)
def
=

i times︷ ︸︸ ︷
g(g(· · · g(n))) . (2.4)

In particular, |a0|A ≤ n, hence the name “initial norm” for n. For instance, the
bad sequence (2.1) over N2 extracted from the runs of simple is (g, n)-controlled
for g(x) = 2x and n = max(a0, b0). Observe that the empty sequence is always
a controlled sequence.

Definition 2.1 (Basic nwqos). We note [k] the nwqo ({0, . . . , k − 1},≤, |.|[k])
defined over the initial segment of the natural numbers, where |j|[k]

def
= j for all

0 ≤ j < k, and Γk the generic k-elements nwqo ({a0, . . . , ak−1},=, |.|Γk
) where

|aj |Γk

def
= 0 for all 0 ≤ j < k.

Length Function. The outcome of these definitions is that, unlike in the un-
controlled case, there is a longest (g, n)-controlled bad sequence over any nwqo
(A,≤A, |.|A): indeed, we can organise such sequences in a tree by sharing com-
mon prefixes; this tree has

• finite branching degree, bounded by the cardinal of A≤gi(n) for a node at
depth i, and

• finite depth thanks to the wqo property.

By Kőnig’s Lemma, this tree of bad sequences is therefore finite, of some height
Lg,n,A representing the length of the maximal (g, n)-controlled bad sequence(s)
overA. In the following, sincewe aremostly interested in this length as a function
of the initial norm, we will see this as a length Lg,A(n) depending on n (and
parameterized by g and A), or as a length function Lg,A : N → N. Our purposelength function

will then be to obtain complexity bounds on Lg,A.
Remark 2.2 (Monotonicity of L). It is easy to see that Lg,A(n) is monotone in
the initial norm n (because g is increasing), but also in the choice of the control
function: if h(x) ≥ g(x) for all x, then a (g, n)-controlled bad sequence is also an
(h, n)-controlled one, thus Lg,A(n) ≤ Lh,A(n).

2.1.2 Polynomial nwqos
Before we go any further in our investigation of the length function, let us first
restrict the scope of our analysis.

Isomorphims. For one thing, we will work up to isomorphism: we write A ≡ B
when the two nwqos A and B are isomorphic structures. For all practical pur-nwqo isomorphism

poses, isomorphic nwqos can be identified. Let us stress that, in particular, norm
functions must be preserved by nwqo isomorphisms. Obviously, the length func-
tions Lg,A and Lg,B are the same for isomorphic nwqos.

http://en.wikipedia.org/wiki/K%C3%B6nig%27s_lemma


2.1. The Length of Controlled Bad Sequences 29

Example 2.3 (Isomorphisms). On the positive side, [0] ≡ Γ0 and also [1] ≡ Γ1

since |a0|Γ1 = 0 = |0|[1].
However, [2] ̸≡ Γ2: not only these two have non-isomorphic orderings, but

they also have different norm functions. This can be witnessed by their associated
length functions: one can see for instance that “a1, a0” is a (g, 0)-controlled bad
sequence over Γ2, but that the longest (g, 0)-controlled bad sequence over [2] is
the sequence “0” of length 1.

Polynomial nwqos. We are now ready to define the class of normed wqos we
are interested in. We will need the empty nwqo Γ0 = ∅, and a singleton nwqo empty nwqo

singleton nwqoΓ1 containing a single element with norm 0, and using equality as ordering as
in Example 2.3. The exact element found in this singleton is usually irrelevant; it
could be for instance a letter in an alphabet, or a state in a finite state set.

The disjoint sum of two nwqos (A1,≤A1 , |.|A1) and (A2,≤A2 , |.|A2) is the disjoint sum

nwqo (A1 +A2,≤A1+A2 , |.|A1+A2) defined by
A1 +A2

def
= {⟨i, a⟩ | i ∈ {1, 2} and a ∈ Ai} , (2.5)

⟨i, a⟩ ≤A1+A2 ⟨j, b⟩
def⇔ i = j and a ≤Ai b , (2.6)

|⟨i, a⟩|A1+A2

def
= |a|Ai . (2.7)

We writeA ·k for
k times︷ ︸︸ ︷

A+ · · ·+A; then, any finite nwqo Γk can be defined as a k-ary
disjoint sum Γk

def
= Γ1 · k.

The cartesian product of two nwqos (A1,≤A1 , |.|A1) and (A2,≤A2 , |.|A2) is cartesian product

the nwqo (A1 ×A2,≤A1×A2 , |.|A1×A2) defined by
A1 ×A2

def
= {⟨a1, a2⟩ | a1 ∈ A1, a2 ∈ A2} , (2.8)

⟨a1, a2⟩ ≤A1×A2 ⟨b1, b2⟩
def⇔ a1 ≤A1 b1 and a2 ≤A2 b2 , (2.9)

|⟨a1, a2⟩|A1×A2

def
= max

i∈{1,2}
|ai|Ai . (2.10)

The fact thatA1×A2 is indeed a wqo is known as Dickson’s Lemma. We note the
d-fold Cartesian product of a nwqo A with itself Ad def

= A× · · · ×A︸ ︷︷ ︸
d times

; in particular

A0 ≡ Γ1 is a singleton set containing only the empty tuple, of size 0 by (2.10).
Last, as we will be working on natural numbers, we also need the naturals

nwqo N along with its usual ordering and the norm |k|N
def
= k for all k in N. naturals nwqo

Definition 2.4. The set of polynomial nwqos is the smallest set of nwqos contain- polynomial nwqo

ing Γ0, Γ1, and N and closed under the + and × operations.

Example 2.5 (VASS Configurations). One can see that the set of configurations
Conf of a d-dimensional VASS over a set of states Q with |Q| = p, along with its
ordering, is isomorphic to the polynomial nwqo Nd × Γp.

Remark 2.6 (nwqo Semiring). Observe that the definitions are such that all the
expected identities of + and × hold: the class of all nwqos when considered up
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to isomorphism forms a commutative semiring: Γ0 is neutral for+ and absorbing
for ×:

Γ0 +A ≡ A+ Γ0 ≡ A Γ0 ×A ≡ A× Γ0 ≡ Γ0 , (2.11)
Γ1 is neutral for ×:

Γ1 ×A ≡ A× Γ1 ≡ A , (2.12)
+ is associative and commutative:

A+ (B + C) ≡ (A+B) + C A+B ≡ B +A , (2.13)
× is associative and commutative:

A× (B × C) ≡ (A×B)× C A×B ≡ B ×A , (2.14)
and × distributes over +:

(A+B)× C ≡ (A× C) + (B × C) . (2.15)

Remark 2.7 (Normal Form for Polynomial nwqos). An easy consequence of the
identities from Remark 2.6 for polynomial nwqos is that any polynomial nwqo A
can be put in a polynomial normal form (PNF)polynomial normal form

A ≡ Nd1 + · · ·+ Ndm (2.16)

for m, d1, · · · , dm ≥ 0. In particular, we denote the PNF of Γ0 by “0.” In Sec-
tion 2.3.3 and later sections we will deal exclusively with nwqos in PNF; since
A ≡ A′ implies Lg,A = Lg,A′ this will be at no loss of generality.

2.1.3 Subrecursive Functions
We already witnessed with simple that the complexity of some programs imple-
mentable as monotone counter systems can be quite high—more than a tower of

exponentials 22.
. .2
}

b times for simple(2, b) in Equation (2.2) on page 26, which is a
non-elementary function of b. However there is a vast space of functions that
are non-elementary but recursive—and even primitive recursive, which will be
enough for our considerations.

The Grzegorczyk Hierarchy (Fk)k<ω is a hierarchy of classes of primitive-
recursive functions f with argument(s) and images in N. Their union is exactly
the set of primitive-recursive functions:∪

k<ω

Fk = FPR . (2.17)

The lower levels correspond to reasonable classes, F0 = F1 being the class of
linear functions, and F2 that of elementary functions. Starting at level 1, the
hierarchy is strict in that Fk ⊊ Fk+1 for k > 0 (see Figure 2.2 on page 27).

At the heart of each Fk lies the kth fast-growing function Fk:N→ N, whichfast-growing function
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is defined for finite k by

F0(x)
def
= x+ 1 , Fk+1(x)

def
= F x+1

k (x) =

x+1 times︷ ︸︸ ︷
Fk(Fk(· · ·Fk(x))) . (2.18)

This hierarchy of functions continues with ordinal indices, e.g.
Fω(x)

def
= Fx(x) . (2.19)

Observe that
F1(x) = 2x+ 1 , F2(x) = 2x+1(x+ 1)− 1 , (2.20)

F3(x) > 22
. .

.2}
x times etc. (2.21)

For k ≥ 2, each level of the Grzegorczyk hierarchy can be characterised as

Fk = {f | ∃i, f is computed in time/space ≤ F i
k} , (2.22)

the choice between deterministic and nondeterministic or between time-bounded
and space-bounded computations being irrelevant because F2 is already a func-
tion of exponential growth.

On the one hand, because the fast-growing functions Fk are honest, i.e. can honest function

be computed in time bounded by a function elementary in Fk, Fk ∈ Fk for all
k. On the other hand, every function f in Fk is eventually bounded by Fk+1, i.e.
there exists a rank xf s.t. for all x1, . . . , xn, if maxi xi ≥ xf , then f(x1, . . . , xn) ≤
Fk+1(maxi xi). However, for all k > 0,

Fk+1 ̸∈ Fk . (2.23)

In particular, Fω is (akin to) the diagonal Ackermann function: it is not primitive-
recursive and eventually bounds every primitive recursive function.

We delay more formal details on (Fk)k until Section 2.4 on page 40 and Ex-
ercise 2.3 on page 48 and turn instead to the main theorem of the chapter.

2.1.4 Upper Bounds for Dickson’s Lemma
Length Function TheoremTheorem 2.8 (Length Function Theorem). Let g be a control function bounded by

some function in Fγ for some γ ≥ 1 and d, p ≥ 0. Then Lg,Nd×Γp
is bounded by a

function in Fγ+d.

The Length Function Theorem is especially tailored to give upper bounds for
VASS configurations (recall Example 2.5 on page 29), but can also be used for VASS
extensions. For instance, the runs of simple can be described by bad sequences
in N2, of form described by Equation (2.1) on page 26. As these sequences are
controlled by the linear function g(x) = 2x in F1, the Length Function Theorem
with p = γ = 1 entails the existence of a bounding function in F3 on the length
of any run of simple, which matches the non-elementary length of the example
run we provided in (2.2).
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2.2 Applications

Besides providing complexity upper bounds for various problems, the results pre-
sented in this chapter also yield new “combinatorial” algorithms: we can now
employ an algorithm that looks for a witness of bounded size. We apply this tech-
nique in this section to the two WSTS algorithms presented in Section 1.2.

Exercise 2.4 investigates the application of the Length Function Theorem to
the program termination proofs of Section 1.3.1, and Exercise 2.14 to the Karp &
Miller trees of Section 1.3.3. These applications remain quite generic, thus tomake
matters more concrete beforehand, let us mention that, in the case of vector addi-
tion systems with states (Example 1.13), lossy counter machines (Section 3.1), re-
set machines (Section 3.5), or other examples of well-structured counter machines
with transitions controlled by g(x) = x + b for some b—which is a function in
F1—, with d counters, and with p states, the Length Function Theorem yields an
upper bound in Fd+1 on the length of controlled bad sequences. This is improved
to Fd by Corollary 2.36 on page 46. When b or p is part of the input, this rises
to Fd+1, and when d is part of the input, to Fω , which asymptotically dominates
every primitive-recursive function.

2.2.1 Termination Algorithm

Let us consider the Termination problem of Section 1.2.1. Let S = ⟨S,−→,≤⟩
be a WSTS over a normed wqo (S,≤, |.|) where the norm |.| is also the size for
a concrete representation of elements in S, let s0 be an initial state in S with
n = |s0|+ 1, and let g(|s|) be an upper bound on the space required to compute
some s′ from s verifying s −→ s′. We can reasonably expect g to be increasing
and honest, and use it as a control over sequences of states: we compute an upper
bound

f(n) ≥ Lg,S(n) . (2.24)

As the Length Function Theorem and all the related results allow to derive honest
upper bounds, this value can be computed in space elementary-recursive in f .

Because any run of S of length ℓ
def
= f(n) + 1 is necessarily good, we can

replace the algorithm in the proof of Proposition 1.15 by an algorithm that looks
for a finite witness of non-termination of form

s0 −→ s1 −→ · · · −→ sℓ . (2.25)

This algorithm requires space at most gℓ(n) at any point i to compute some si+1,
which yields a nondeterministic algorithm working in space elementary in gℓ(n).
This falls in the same class as f(n) itself in our setting—see Exercise 2.13 for an
analysis of gℓ.
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2.2.2 Coverability Algorithm

Recall that the algorithm of Section 1.2.2 for WSTS coverability of t from s, relied
on the saturation of a sequence (1.4) on page 6 of subsets ofS. In order to derive an
upper complexity bound on this problem, we look instead at how long we might
have to wait until this sequence proves coverability, i.e. consider the length of

↑{t} = I0 ⊊ I1 ⊊ · · · ⊊ Iℓ, where s ∈ Iℓ but s ̸∈ Ii for any i < ℓ . (2.26)

For each i = 1, . . . , ℓ, let si be a minimal element in the non-empty set Ii ∖ Ii−1;
then there must be one such sℓ ≤ s that does not appear in any of the Ii for i < ℓ,
and we consider a particular sequence

s1, s2, . . . , sℓ ≤ s . (2.27)

Note that sj ̸≥ si for j > i, since sj ̸∈ Ii and the sequence s1, s2, . . . in (2.27) is
bad—this also proves the termination of the (Ii)i sequence in (2.26).

We now need to know how the sequence in (2.27) is controlled. Note that in
general si ̸→ si+1, thus we really need to consider the sets of minimal elements
in (2.26) and bound more generally the length of any sequence of si’s where each
si is a minimal element of Ii∖ Ii−1. Assume again that S = ⟨S,−→,≤⟩ is a WSTS
over a normed wqo (S,≤, |.|) where the norm |.| is also the size for a concrete
representation of states in S. Also assume that s′ ≤ s can be tested in space
elementary in |s′| + |s|, and that elements of pb(s) can be computed in space
g(|s|) for a honest increasing g: then ℓ ≤ Lg,S(|t|+ 1).

There is therefore a sequence

t = s′0, s
′
1, . . . , s

′
ℓ = sℓ ≤ s where s′i+1 ∈ pb(s′i) (2.28)

of minimal elements in (Ii)i that eventually yields sℓ ≤ s. We derive again a non-
deterministic algorithm that looks for a witness (2.28) of bounded length. Further-
more, each s′i verifies |s′i| ≤ gℓ(|t| + 1), which means that this algorithm works
in nondeterministic space elementary in gℓ(|t|+ 1) + |s|.

2.3 Bounding the Length Function

This section and the next together provide a proof for the Length Function The-
orem. The first part of this proof investigates the properties of bad controlled
sequences and derives by induction over polynomial nwqos a bounding function
Mg,A(n) on the length of (g, n)-controlled bad sequences over A (see Proposi-
tion 2.20 on page 40). The second part, detailed in Section 2.4, studies the prop-
erties of theMg,A functions, culminating with their classification in the Grzegor-
czyk hierarchy.
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2.3.1 Residual nwqos and a Descent Eqation

Returning to the length function, let us consider a very simple case, namely the
case of sequences over N: one can easily see that

Lg,N(n) = n (2.29)

because the longest (g, n)-controlled bad sequence over N is simply

n, n− 1, . . . , 1, 0 (2.30)

of length n+ 1.
Formally, (2.30) only proves one direction of (2.29), which is thatLg,N(n) ≥ n;

an argument for the converse inequality could use roughly the following lines: in
any (g, n)-controlled bad sequence of natural integers k, l,m, . . . over N, once
the first element k ≤ n has been fixed, the remaining elements l,m, . . . have to
be chosen inside a finite set {0, . . . , k − 1} of cardinal k—or the sequence would
be good. Thus this suffix, which itself has to be bad, is of length at most

Lg,Γk
(n) = k (2.31)

by the pigeonhole principle. Choosing k = n maximises the length of the bad
sequence in (2.31), which shows that Lg,N(n) ≤ n+ 1.

This argument is still a bit blurry (and will soon be cleared out), but it already
contains an important insight: in a (g, n)-controlled bad sequence a0, a1, a2, . . .
over some nwqoA, we can distinguish between the first element a0, which verifies
|a0|A ≤ n, and the suffix sequence a1, a2, . . . , which

1. verifies a0 ̸≤ ai for all i > 0,

2. is itself a bad sequence—otherwise the full sequence a0, a1, a2, . . . would
be good,

3. is controlled by (g, g(n))—otherwise the full sequence a0, a1, a2, . . . would
not be (g, n)-controlled.

Item 1 motivates the following definition:

Definition 2.9 (Residuals). For a nwqo A and an element a ∈ A, the residual
nwqo A/a is the substructure (a nwqo) induced by the subset A/a

def
= {a′ ∈ A |residual nwqo

a ̸≤ a′} of elements that are not above a.

Example 2.10 (Residuals). For all l < k and i ∈ {1, . . . , k}:

N/l = [k]/l = [l] , Γk/ai ≡ Γk−1 . (2.32)
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The conditions 1–3 on the suffix sequence a1, a2, . . . show that it is a (g, g(n))-
controlled bad sequence over A/a0. Thus by choosing an a′0 ∈ A≤n that max-
imises Lg,A/a′0

(g(n)) through some suffix sequence a′1, a′2, . . . , we can construct
a (g, n)-controlled bad sequence a′0, a′1, a′2, . . . of length 1+Lg,A/a′0

(g(n)), which
shows

Lg,A(n) ≥ max
a∈A≤n

{
1 + Lg,A/a(g(n))

}
. (2.33)

The converse inequality is easy to check: consider a maximal (g, n)-controlled
bad sequence a′′0, a

′′
1, . . . over A, thus of length Lg,A(n). If this sequence is not

empty, i.e. if Lg,A(n) > 0, then a′′0 ∈ A≤n and its suffix a′′1, a
′′
2, . . . is of length

Lg,A/a′′0
(g(n))—or we could substitute a longer suffix. Hence:

Proposition 2.11 (Descent Equation). Descent Equation

Lg,A(n) = max
a∈A≤n

{
1 + Lg,A/a(g(n))

}
. (2.34)

This reduces the Lg,A function to a finite combination of Lg,Ai ’s where the
Ai’s are residuals of A, hence “smaller” sets. Residuation is well-founded for
nwqos: a sequence of successive residuals A ⊋ A/a0 ⊋ A/a0/a1 ⊋ · · · is
necessarily finite since a0, a1, . . .must be a bad sequence. Hence the recursion in
the Descent Equation is well-founded and can be used to evaluate Lg,A(n). This
is our starting point for analysing the behaviour of length functions.
Example 2.12. Let us consider the case of Lg,[k](n) for k ≤ n+ 1: by induction
on k, we can see that

Lg,[k](n) = k . (2.35)
Indeed, this holds trivially for [0] = ∅, and for the induction step, it also holds for
k + 1 ≤ n+ 1, since then [k + 1]≤n = [k + 1] and thus by the Descent Equation

Lg,[k+1](n) = max
l∈[k+1]

{
1 + Lg,[k+1]/l(g(n))

}
= max

l∈[k+1]

{
1 + Lg,[l](g(n))

}
= max

l∈[k+1]
{1 + l}

= 1 + k

using (2.32) and the induction hypothesis on l ≤ k ≤ n ≤ g(n).
Example 2.13. Let us consider again the case of Lg,N: by the Descent Equation,

Lg,N(n) = max
k∈N≤n

{
1 + Lg,N/k(g(n))

}
= max

k∈N≤n

{
1 + Lg,[k](g(n))}

= max
k∈N≤n

{1 + k}

= n+ 1
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thanks to (2.32) and (2.35) on k ≤ n.

2.3.2 Reflecting nwqos
The reader might have noticed that Example 2.13 does not quite follow the rea-
soning that led to (2.29) on page 34: although we started by decomposing bad
sequences into a first element and a suffix as in the Descent Equation, we rather
used (2.31) to treat the suffix by seeing it as a bad sequence over Γn and to deduce
the value of Lg,N(n). However, as already mentioned in Example 2.3 on page 29,
Γn ̸≡ [n] in general.

We can reconcile the analyses made for (2.29) on page 34 and in Example 2.13
by noticing that bad sequences are never shorter in Γn than in [n]. We will prove
this formally using reflections, which let us simplify instances of theDescent Equa-
tion by replacing all A/a for a ∈ A≤n by a single (or a few) A′ that is larger than
any of the considered A/a’s—but still reasonably small compared to A, so that a
well-founded inductive reasoning remains possible.

Definition 2.14. A nwqo reflection is a mapping h:A → B between two nwqosnwqo reflection

that satisfies the two following properties:

∀a, a′ ∈ A : h(a) ≤B h(a′) implies a ≤A a′ , (2.36)
∀a ∈ A : |h(a)|B ≤ |a|A . (2.37)

In otherwords, a nwqo reflection is an order reflection that is also norm-decreasing
(not necessarily strictly).

We write h:A ↪→ B when h is a nwqo reflection and say that B reflects A.
This induces a relation between nwqos, written A ↪→ B.

Reflection is transitive since h:A ↪→ B and h′:B ↪→ C entails h′ ◦h:A ↪→ C .
It is also reflexive, hence reflection is a quasi-ordering. Any nwqo reflects its
induced substructures since Id:X ↪→ A when X is a substructure of A. Thus
Γ0 ↪→ A for any A, and Γ1 ↪→ A for any non-empty A.

Example 2.15 (Reflections). Among the basic nwqos from Example 2.3, we note
the following relations (or absences thereof). For any k ∈ N, [k] ↪→ Γk, while
Γk ̸↪→ [k] when k ≥ 2. The reflection of induced substructures yields [k] ↪→ N
and Γk ↪→ Γk+1. Obviously, N ̸↪→ [k] and Γk+1 ̸↪→ Γk.

Reflections preserve controlled bad sequences. Let h:A ↪→ B, consider a
sequence s = a0, a1, . . . over A, and write h(s) for h(a0), h(a1), . . ., a sequence
over B. Then by (2.36), h(s) is bad when s is, and by (2.37), it is (g, n)-controlled
when s is. Hence we can complete the picture of the monotonicity properties of
L started in Remark 2.2 on page 28:

Proposition 2.16 (Monotonicity of L in A).

A ↪→ B implies Lg,A(n) ≤ Lg,B(n) for all g, n . (2.38)
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⟨3, 2⟩

N × (N/2)

(N/3) × N

Figure 2.3: The elements of the bad sequence (2.42) and the two regions for the
decomposition of N2/⟨3, 2⟩.

This is the last missing piece for deducing (2.29) from (2.31): since [k] ↪→ Γk,
Lg,[k](n) ≤ Lg,Γk

(n) by Proposition 2.16—the converse inequality holds for k ≤
n+1, as seen with (2.31) and (2.35), but not for k > n+1 as seen in Example 2.3.
Remark 2.17 (Reflection is a Preconguence). Reflections are compatible with prod-
uct and sum:

A ↪→ A′ and B ↪→ B′ imply A+B ↪→ A′ +B′ and A×B ↪→ A′ ×B′ .
(2.39)

Inductive Residual Computations. We may now tackle our first main problem:
computing residualsA/a. The Descent Equation, though it offers a powerful way
of computing the length function, can very quickly lead to complex expressions,
as the nwqosA/a0/a1/ · · · /an become “unstructured”, i.e. have no nice definition
in terms of + and ×. Residuation allows us to approximate these sets, so that the
computation can be carried out without leaving the realm of polynomial nwqos,
leading to an inductive computation of A/a over the structure of the polynomial
nwqo A.

The base cases of this induction were already provided as (2.32) for finite sets
Γk, and

N/k ↪→ Γk (2.40)
for the naturalsN—becauseN/k = [k] by (2.32), and then [k] ↪→ Γk as seen in Ex-
ample 2.15—, which was implicit in the computation of Lg,N in (2.29). Regarding
disjoint sums A+B, it is plain that

(A+B)/⟨1, a⟩ = (A/a) +B , (A+B)/⟨2, b⟩ = A+ (B/b) , (2.41)

and reflections are not required.
The case of Cartesian productsA×B is different: Let g(x) = 2x and consider

the following (g, 3)-controlled bad sequence over N2

⟨3, 2⟩, ⟨5, 1⟩, ⟨0, 4⟩, ⟨17, 0⟩, ⟨1, 1⟩, ⟨16, 0⟩, ⟨0, 3⟩ . (2.42)

Our purpose is to reflect N2/⟨3, 2⟩ into a simpler polynomial nwqo. The main
intuition is that, for each tuple ⟨a, b⟩ in the suffix, ⟨3, 2⟩ ̸≤ ⟨a, b⟩ entails that
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3 ̸≤ a or 2 ̸≤ b. Thus we can partition the elements of this suffix into two groups:
the pairs where the first coordinate is in N/3, and the pairs where the second
coordinate is in N/2—an element might fulfil both conditions, in which case we
choose an arbitrary group for it. Thus the elements of the suffix can be either
from (N/3) × N or from N × (N/2), and the whole suffix can be reflected into
their disjoint sum (N/3)× N+ N× (N/2).

For our example (2.42), we obtain the decomposition (see also Figure 2.3)

⟨3, 2⟩,
{
⟨5, 1⟩, . ⟨17, 0⟩,⟨1, 1⟩,⟨16, 0⟩, . ∈ N× (N/2)

. ⟨0, 4⟩, . . . ⟨0, 3⟩ ∈ (N/3)× N (2.43)

We could have put ⟨1, 1⟩ in either N × (N/2) or (N/3) × N but we had no
choice for the other elements of the suffix. Observe that the two subsequences
⟨0, 4⟩⟨0, 3⟩ and ⟨5, 1⟩, ⟨17, 0⟩, ⟨1, 1⟩, ⟨16, 0⟩ are indeed bad, but not necessarily
(g, g(3))-controlled: |⟨17, 0⟩| = 17 ≥ 12 = g(g(3)). However, we do not see
them as independent sequences but consider their disjoint sum instead, so that
their elements inherit their positions from the original sequence, and indeed the
suffix sequence in (2.43) is (g, g(3))-controlled.

By a straightforward generalisation of the argument:

(A×B)/⟨a, b⟩ ↪→
(
(A/a)×B

)
+
(
A× (B/b)

)
. (2.44)

Since it provides reflections instead of isomorphisms, (2.44) is not meant to sup-
port exact computations of A/a by induction over the structure of A (see Exer-
cise 2.5). More to the point, it yields over-approximations that are sufficiently
precise for our purposes while bringing important simplifications when we have
to reflect the A/a for all a ∈ A≤n.

2.3.3 A Bounding Function

It is time to wrap up our analysis of L. We first combine the inductive residuation
and reflection operations into derivation relations ∂n: intuitively, the relationA ∂nnwqo derivation

A′ is included in the relation “A/a ↪→ A′ for some a ∈ A≤n” (see Lemma 2.19
for the formal statement). More to the point, the derivation relation captures
a particular way of reflecting residuals, which enjoys some good properties: for
everyn, givenA a nwqo in polynomial normal form (recall Remark 2.7 on page 30),
∂nA is a finite set of polynomial nwqos also in PNF, defined inductively by

∂n0
def
= ∅ , (2.45)

∂nN0 def
= {0} , (2.46)

∂nNd def
= {Nd−1 · nd} , (2.47)

∂n(A+B)
def
=
(
(∂nA) +B

)
∪
(
A+ (∂nB)

)
, (2.48)



2.3. Bounding the Length Function 39

for d > 0 and A,B in PNF; in these definitions the + operations are lifted to act
upon nwqo sets S by A+ S

def
= {A+ A′ | A′ ∈ S} and symmetrically. Note that

(2.46) can be seen as a particular case of (2.47) if we ignore the undefined N0−1

and focus on its coefficient 0.
An important fact that will become apparent in the next section is

Fact 2.18 (Well-Foundedness). The relation ∂
def
=
∪

n ∂n is well-founded.

The definition of ∂n verifies:

Lemma 2.19. Let A be a polynomial nwqo in PNF and a ∈ A≤n for some n. Then
there exists A′ in ∂nA s.t. A/a ↪→ A′.

Proof. Let A ≡ Nd1 + · · · + Ndm in PNF and let a ∈ A≤n for some n; note that
the existence of a rules out the case of m = 0 (i.e. A ≡ Γ0), thus (2.45) vacuously
verifies the lemma.

We proceed by induction on m > 0: the base case is m = 1, i.e. A ≡ Nd, and
perform a nested induction on d: if d = 0, thenA ≡ Γ1, thusA/a ≡ Γ0 by (2.32):
this is in accordance with (2.46), and the lemma holds. If d = 1, i.e. A ≡ N, then
A/a ↪→ Γa by (2.40), and then Γa ↪→ Γn ≡ N0 · n as seen in Example 2.15 since
a ≤ n, thus (2.47) verifies the lemma. For the induction step on d > 1,

A ≡ Nd = N× Nd−1

and thus a = ⟨k, b⟩ for some k ∈ N≤n and b ∈ Nd−1
≤n . By (2.44),

A/a ↪→
(
(N/k)× Nd−1

)
+
(
N× (Nd−1/b)

)
.

Using the ind. hyp. on N/k along with Remark 2.17,
↪→
(
(N0 · n)× Nd−1

)
+
(
N× (Nd−1/b)

)
≡ (Nd−1 · n) +

(
N× (Nd−1/b)

)
.

Using the ind. hyp. on Nd−1/b along with Remark 2.17,
↪→ (Nd−1 · n) +

(
N× (Nd−2 · n(d− 1))

)
≡ Nd−1 · nd ,

in accordance with (2.47).
For the induction step on m > 1, i.e. if A ≡ B + C , then wlog. a = ⟨1, b⟩ for

some b ∈ B≤n and thus by (2.41) A/a = (B/b) + C . By ind. hyp., there exists
B′ ∈ ∂nB s.t. B/b ↪→ B′, thus A/a ↪→ B′ + C by Remark 2.17, the latter nwqo
being in ∂nA according to (2.48).

The computation of derivatives can be simplified by replacing (2.45) and (2.48)
by a single equation (see Exercise 2.6):

∂nA = {B + ∂nNd | A ≡ B + Nd, d ≥ 0} . (2.49)
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The Bounding Function Mg,A for A a polynomial nwqo in PNF is defined bybounding function

Mg,A(n)
def
= max

A′∈∂nA

{
1 +Mg,A′(g(n))

}
. (2.50)

This functionM is well-defined as a consequence of Fact 2.18 and of the finiteness
of ∂nA for all n and A; its main property is

Proposition 2.20. For any polynomial nwqoA in PNF, any control function g, and
any initial control n,

Lg,A(n) ≤Mg,A(n) . (2.51)

Proof. Either A≤n is empty and then Lg,A(n) = 0 ≤ Mg,A(n), or there exists
some a ∈ A≤n that maximises Lg,A/a(g(n)) in the Descent Equation, i.e.

Lg,A(n) = 1 + Lg,A/a(g(n)) .

By Lemma 2.19 there exists A′ ∈ ∂nA s.t. A/a ↪→ A′, thus by Proposition 2.16
Lg,A(n) ≤ 1 + Lg,A′(g(n)) .

By well-founded induction on A′ ∈ ∂nA, Lg,A′(g(n)) ≤Mg,A′(g(n)), thus
Lg,A(n) ≤ 1 +Mg,A′(g(n)) ≤Mg,A(n)

by definition of M .

2.4 ⋆ Classification in the Grzegorczyk Hierarchy

Now equipped with a suitable bound Mg,A(n) on the length of (g, n)-controlled
bad sequences overA, the only remaining issue is its classification inside the Grze-
gorczyk hierarchy. We first exhibit a very nice isomorphism between polynomial
nwqos (seen up to isomorphism) and theirmaximal order types, which are ordinals
below ωω .

2.4.1 Maximal Order Types
Consider a wqo (A,≤): it defines an associated strict ordering <

def
= {(a, a′) ∈

A2 | a ≤ a′ and a′ ̸≤ a}. There are many possible linearisations ≺ of<, i.e. linear
orders with< ⊆ ≺, obtained by equating equivalent elements and “orienting” the
pairs of incomparable elements (a, a′) of (A,≤). Each of these linearisations is
a well-ordering and is thus isomorphic to some ordinal, called its order type, thatorder type

intuitively captures its “length.” Themaximal order type of (A,≤) is then definedmaximal order type

as the maximal such order type over all the possible linearisations; it provides a
measure of the complexity of the (n)wqo.

Example 2.21 (Maximal Order Types). In a finite set Γk, the strict ordering is
empty and the k! different linear orders overΓk are all of order type k. In an initial
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segment of the naturals [k] (respectively in the naturals N), the only linearisation
is the natural ordering < itself, which is of order type k (respectively ω):

o(Γk) = o([k]) = k , o(N) = ω . (2.52)

Remark 2.22. By definition of the maximal order type of a nwqo A, if A ≡ A′

then o(A) = o(A′).
As seenwith our example, themaximal order type of a polynomial nwqo is not

necessarily finite, which prompts us to recall a few elements of ordinal notations.

Ordinal Terms. Let ε0 be the supremumof the family of ordinals {0, 1, ω, ωω, ωωω
,

. . .} (in other words ε0 is the smallest solution of the equation ωx = x). It is well-
known that ordinals below ε0 can be written down in a canonical way as ordinal
terms in Cantor Normal Form (CNF), i.e. sums Cantor Normal Form

α = ωβ1 + · · ·+ ωβm =
m∑
i=1

ωβi (2.53)

with α > β1 ≥ · · · ≥ βm ≥ 0 and each βi itself a term in CNF. We write 1 for

ω0 and α · n for
n times︷ ︸︸ ︷

α+ · · ·+ α. Recall that the direct sum operator + is associative
((α + β) + γ = α + (β + γ)) and idempotent (α + 0 = α = 0 + α) but not
commutative (e.g. 1+ω = ω ̸= ω+1). An ordinal term α of form γ +1 is called
a successor ordinal. Otherwise, if not 0, it is a limit ordinal, usually denoted λ. We successor ordinal

limit ordinalwrite CNF(α) for the set of ordinal terms α′ < α in CNF (which is in bijection
with the ordinal α, and we use ordinal terms in CNF and set-theoretic ordinals
interchangeably).

Also recall the definitions of the natural sum α⊕α′ and natural product α⊗α′
natural sum

natural productof two terms in CNF:
m∑
i=1

ωβi ⊕
n∑

j=1

ωβ′
j

def
=

m+n∑
k=1

ωγk ,

m∑
i=1

ωβi ⊗
n∑

j=1

ωβ′
j

def
=

m⊕
i=1

n⊕
j=1

ωβi⊕β′
j , (2.54)

where γ1 ≥ · · · ≥ γm+n is a reordering of β1, . . . , βm, β′
1, . . . , β

′
n.

Maximal Order Types. We map polynomial nwqos (A,≤, |.|A) to ordinals in ωω

using themaximal order type o(A) of the underlying wqo (A,≤). Formally, o(A)
can be computed inductively using (2.52) and the following characterisation:

Fact 2.23. For any wqos A and B

o(A+B) = o(A)⊕ o(B) , o(A×B) = o(A)⊗ o(B) . (2.55)

Example 2.24. Given a polynomial nwqo in PNF A ≡
∑m

i=1Ndi , its associated
maximal order type is o(A) =

⊕m
i=1 ω

di , which is in ωω . It turns out that o is a
bijection between polynomial nwqos and ωω (see Exercise 2.7).
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It is more convenient to reason with ordinal arithmetic rather than with poly-
nomial nwqos, and we lift the definitions of ∂ and M to ordinals in ωω . Define
for all α in ωω and all d, n in N

∂nω
d def
=

{
0 if d = 0

ωd−1 · (nd) otherwise
(2.56)

∂nα
def
=
{
γ ⊕ ∂nω

d | α = γ ⊕ ωd
}

(2.57)
Mg,α(n)

def
= max

α′∈∂nα

{
1 +Mg,α′(g(n))

}
. (2.58)

Equation (2.56) restates (2.46) and (2.47) using maximal order types, while (2.57)
and (2.58) mirror respectively (2.49) and (2.50) but work in ωω ; one easily obtains
the following slight variation of Proposition 2.20:

Corollary 2.25. For any polynomial nwqoA, any control function g, and any initial
control n,

Lg,A(n) ≤Mg,o(A)(n) . (2.59)

A benefit of ordinal notations is that the well-foundedness of ∂ announced in
Fact 2.18 is now an immediate consequence of < being a well ordering: one can
check that for any n, α′ ∈ ∂nα implies α′ < α (see Exercise 2.8).

Example 2.26. One can check that

Mg,k(n) = k Mg,ω(n) = n+ 1 . (2.60)
(Note that if n > 0 this matches Lg,Γk

(n) exactly by (2.31)). This follows from

∂nk =

{
∅ if k = 0

{k − 1} otherwise
, ∂nω = n . (2.61)

2.4.2 The Cichoń Hierarchy
A second benefit of working with ordinal indices is that we can exercise a richer
theory of subrecursive hierarchies, for which many results are known. Let us first
introduce the basic concepts.

Fundamental Seqences. Subrecursive hierarchies are defined through assign-
ments of fundamental sequences (λx)x<ω for limit ordinal terms λ, verifying λx <fundamental sequence

λ for all x and λ = sup
x
λx. The usual way to obtain families of fundamental se-

quences is to fix a particular sequence ωx for ω and to define on ordinal terms in
CNF

(γ + ωβ+1)x
def
= γ + ωβ · ωx , (γ + ωλ)x

def
= γ + ωλx . (2.62)

We always assume the standard assignment ωx
def
= x + 1 in the remainder of the

chapter. Note that this assignment implies λx > 0 for all x.
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Predecessors. Given an assignment of fundamental sequences, one defines the
(x-indexed) predecessor Px(α) < α of an ordinal α ̸= 0 as ordinal predecessor

Px(α+ 1)
def
= α , Px(λ)

def
= Px(λx) . (2.63)

Thus in all cases Px(α) < α since λx < λ. One can check that for all α > 0 and
x (see Exercise 2.9)

Px(γ + α) = γ + Px(α) . (2.64)

Observe that predecessors of ordinals in ωω are very similar to our derivatives:
for d = 0, Pn(ω

d) = 0 and otherwise Pn(ω
d) = ωd−1 · n + Pn(ω

d−1), which is
somewhat similar to (2.56), and more generally (2.64) is reminiscent of (2.57) but
chooses a particular strategy: always derive the ωd summand with the smallest d.
The relationship will be made more precise in Section 2.4.3 on the following page.

The Cichoń Hierarchy. Fix a unary function h:N → N. We define the Cichoń
hierarchy (hα)α∈ε0 by Cichoń hierarchy

h0(x)
def
= 0, hα+1(x)

def
= 1 + hα

(
h(x)

)
, hλ(x)

def
= hλx(x). (2.65)

In the initial segment ωω , this hierarchy is closely related to (Mg,α)α∈ωω : indeed,
we already noted the similarities between Pn(α) and ∂nα, and furthermore

Lemma 2.27. For all α > 0 in ε0 and x,

hα(x) = 1 + hPx(α)

(
h(x)

)
. (2.66)

Proof. By transfinite induction over α > 0. For a successor ordinal α′ + 1,
hα′+1(x) = 1+hα′

(
h(x)

)
= 1+hPx(α′+1)

(
h(x)

)
. For a limit ordinal λ, hλ(x) =

hλx(x) is equal to 1 + hPx(λx)

(
h(x)

)
by ind. hyp. since 0 < λx < λ, which is the

same as 1 + hPx(λ)

(
h(x)

)
by definition of Px(λ).

Example 2.28 (Cichoń Hierarchy). First note that hk(x) = k for all k < ω, x,
and h. This can be shown by induction on k: it holds for the base case k = 0 by
definition, and also for the induction step as hk+1(x) = 1 + hk(h(x)) = 1 + k
by induction hypothesis. Therefore hω(x) = hx+1(x) = x + 1 regardless of the
choice of h.

For ordinals greater than ω, the choice of h becomes significant. Setting
H(x)

def
= x+ 1, we obtain a particular hierarchy (Hα)α that verifies for instance

Hω·2(x) = Hω+x+1(x) = Hω(2x+ 1) + x = 3x+ 1 , (2.67)
Hω2(x) = (2x+1 − 1)(x+ 1) . (2.68)

The functions in the Cichoń hierarchy enjoy many more properties, of which
we will use the following two:
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Fact 2.29 (Argument Monotonicity). If h is monotone, then each hα function is
also monotone in its argument: if x ≤ x′ then hα(x) ≤ hα(x

′).

Fact 2.30 (Classification in the Grzegorczyk Hierarchy). Let 0 < γ < ω. If h is
bounded by a function in Fγ and α < ωd+1, then hα is bounded by a function in
Fγ+d.

2.4.3 Monotonicity
One obstacle subsists before we can finally prove the Length Function Theorem:
the functions Mg,α and hα are not monotone in the parameter α. Indeed, α′ < α
does not imply Mg,α′(n) ≤ Mg,α(n) for all n: witness the case α = ω and α′ =
n+2: Mg,ω(n) = 1+Mg,n(g(n)) = 1+n butMg,n+2(n) = n+2 by Example 2.26.
Similarly with hα, as seen with Example 2.28, hx+2(x) = x+2 > x+1 = hω(x),
although x+ 2 < ω.

In our case a rather simple ordering is sufficient: we define a structural order-
ing ⊑ for ordinals in ωω bystructural ordering

ωd1 + · · ·+ ωdm ⊑ ωd′1 + · · ·+ ωd′n def⇔ m ≤ n and ∀1 ≤ i ≤ m, di ≤ d′i
(2.69)

for ordinal terms in CNF(ωω), i.e. ω > d1 ≥ · · · ≥ dm ≥ 0 and ω > d′1 ≥
· · · ≥ d′n ≥ 0. A useful observation is that ⊑ is a precongruence for ⊕ (see
Exercise 2.10):

α ⊑ α′ and γ ⊑ γ′ imply α⊕ γ ⊑ α′ ⊕ γ′ . (2.70)

The structural ordering rules out the previous examples, as x + 2 ̸⊑ ω for
any x. This refined ordering yields the desired monotonicity property forM—see
Lemma 2.31 next (it can also be proven for h; see Exercise 2.11)—but let us first
introduce some notation: we write α′ = ∂d,nα if α = γ⊕ωd and α′ = γ⊕ ∂nω

d.
Then (2.58) can be rewritten as

Mg,α(n) = max
α=γ⊕ωd

{
1 +Mg,∂d,nα (g(n))

}
. (2.71)

Lemma 2.31 (Structural Monotonicity). Let α, α′ be in ωω and x > 0. If α ⊑ α′,
then Mg,α(x) ≤Mg,α′(x).

Proof. Let us proceed by induction. If α = 0, then Mg,α(x) = 0 and the lemma
holds vacuously. Otherwise, for the induction step, write α =

∑m
i=1 ω

di and
α′ =

∑n
j=1 ω

dj ; there is some maximising index 1 ≤ i ≤ m ≤ n such that

Mg,α(x) = 1 +Mg,∂di,xα
(g(x)) .
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As i ≤ n and di ≤ d′i, observe that ∂di,xα ⊑ ∂d′i,xα
′, and by Fact 2.18, we can

apply the induction hypothesis:

Mg,α(x) ≤ 1 +Mg,∂d′
i
,xα

′ (g(x))

≤Mg,α′(x) .

An important consequence of Lemma 2.31 is that there is a maximising strat-
egy for M , which is to always derive along the smallest term:

Lemma 2.32 (Maximizing Strategy). If α = γ + ωd for some d ≥ 0, then

Mg,α(n) = 1 +Mg,γ+∂nωd (g(n)) . (2.72)

Proof. Let α = γ ⊕ ωd′ ⊕ ωd. We claim that if d ≤ d′ and n ≤ n′, then

∂d,n′∂d′,nα ⊑ ∂d′,n′∂d,nα . (2.73)

The lemma follows immediately from the claim, Lemma 2.31, and the fact that g
is increasing.

The claim itself is easy to check using (2.70): abusing notations for the cases
of d = 0 or d′ = 0,

∂d,n′∂d′,nα = γ ⊕ (ωd′−1 · nd′ + ωd−1 · n′d)

∂d′,n′∂d,nα = γ ⊕ (ωd′−1 · n′d′ + ωd−1 · nd) .

Observe that nd′ + n′d ≤ n′d′ + nd, i.e. that the second line has at least as many
terms as the first line, and thus fulfils the first condition of the structural ordering
in (2.69). Furthermore, it has at least as many wd′−1 terms, thus fulfilling the
second condition of (2.69).

Let us conclude with a comparison between derivatives and predecessors:

Corollary 2.33. If 0 < α < ωd+1, then Mg,α(n) ≤ 1 +Mg,Pnd(α) (g(n)).

Proof. Since 0 < α < ωd+1, it can be written in CNF as α = γ + ωd′ for some
γ < α and d′ ≤ d. By Lemma 2.32, Mg,α(n) = 1 +Mg,γ+∂nωd′ (g(n)). If d′ = 0,
i.e. α = γ + 1, then

γ + ∂n1 = Pnd(α) = γ

and the statement holds. Otherwise, by (2.70)

γ + ∂nω
d′ = γ + ωd′−1 · nd′

⊑ γ + ωd′−1 · nd+ Pnd(ω
d′−1)

= Pnd(α) ,

from which we deduce the result by Lemma 2.31.
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2.4.4 Wrapping Up
We have now all the required ingredients for a proof of the Length Function The-
orem. Let us start with a uniform upper bound on Mg,α:

Theorem 2.34 (Uniform Upper Bound). Let d > 0, g be a control function and
select a monotone function h such that h(x · d) ≥ g(x) · d for all x. If α < ωd+1,
then

Mg,α(n) ≤ hα(nd) . (2.74)

Proof. We proceed by induction on α: if α = 0, then Mg,α(n) = 0 ≤ hα(nd) for
all n. Otherwise, by Corollary 2.33,

Mg,α(n) ≤ 1 +Mg,Pnd(α) (g(x)) .

Because Pnd(α) < α, we can apply the induction hypothesis:

Mg,α(n) ≤ 1 + hPnd(α) (g(n)d)

≤ 1 + hPnd(α) (h(nd))

sinceh(nd) ≥ g(n)d andhPnd(α) ismonotone by Fact 2.29. Finally, by Lemma 2.27,

Mg,α(n) ≤ hα(nd) .

For instance, for α = ω, (and thus d = 1), we can choose h = g, and Theo-
rem 2.34 yields that

Mg,ω(n) ≤ gω(n) = n+ 1 , (2.75)

which is optimal (recall examples 2.26 and 2.28).
Other exampleswhere settingh = g fits are g(x) = 2x, g(x) = x2, g(x) = 2x,

etc. More generally, Theorem 2.34 can use h = g if g is super-homogeneous, i.e. ifsuper-homogeneous
function it verifies g(dx) ≥ g(x)d for all d, x ≥ 1:

Corollary 2.35. Let d > 0, g be a super-homogeneous control function, and α <
ωd+1. Then Lg,α(n) ≤ gα(nd).

We sometimes need to choose h different from g: In a d-dimensional VASS
with p states, sequences of configurations are controlled by g(x) = x + b for
some maximal increment b > 0, and then h(x) = x+ db is also a suitable choice,
which verifies

Lg,Nd×Γp
(n) ≤Mg,ωd·p(n) ≤ hωd·p(nd) ≤ F dbp

d (nd)− nd , (2.76)

the latter being a function in Fd when d, b, p are fixed according to (2.22):

Corollary 2.36. Let g(x) = x+ b for some b > 0, and fix d, p ≥ 0. Then Lg,Nd×Γp

is bounded by a function in Fd.



Exercises 47

Finally, we can choose a generic h(x) = g(x)d, as in the following proof of
the Length Function Theorem:

Theorem 2.8 (Length Function Theorem). Let g be a control function bounded by
some function in Fγ for some γ ≥ 1 and d, p ≥ 0. Then Lg,Nd×Γp

is bounded by a
function in Fγ+d.

Proof. Let A ≡ Nd × Γp. The case of d = 0 is handled through (2.31), which
shows that Lg,A is a constant function in Fγ .

For d > 0 we first use Corollary 2.25:

Lg,A(n) ≤Mg,o(A)(n) . (2.77)
Observe that o(A) < ωd+1, thus by Theorem 2.34,

Lg,A(n) ≤ ho(A)(nd) , (2.78)

where h(xd) = d · g(xd) ≥ d · g(x) since g is strictly monotone and d > 0.
Because h is defined from g using linear operations, for all γ ≥ 1, g is bounded
in Fγ if and only if h is bounded in Fγ , and thus by Fact 2.30, Lg,A is bounded in
Fγ+d.

How good are these upper bounds? We already noted that they were optimal
forN in (2.75), and the sequence (2.1) extracted from the successive configurations
of simple was an example of a bad sequence with length function in F3. Exer-
cise 2.15 generalises simple to arbitrary dimensions d and control functions g and
shows that a length gωd(n) can be reached using the lexicographic ordering; this
is very close to the upper bounds found for instance in (2.75) and Corollary 2.35.
The next chapter will be devoted to complexity lower bounds, showing that for
many decision problems, the enormous generic upper bounds we proved here are
actually unavoidable.

Exercises
Exercise 2.1 (Disjoint Sums). Let (A1,≤A1) and (A2,≤A2) be two nwqos. Prove that
(A1 +A2,≤A1+A2) is a nwqo (see (2.5–2.7)).

Exercise 2.2 (Fast-Growing Functions). ⋆

(1) Show that F1(x) = 2x+1 and F2(x) = 2x+1(x+1)− 1 (stated in (2.20)). What are
the values of Fk(0) depending on k?

(2) Show that each fast-growing function is strictly expansive, i.e. that Fk(x) > x for all
k and x.

(3) Show that each fast-growing function is strictly monotone in its argument, i.e. that
for all k and x′ > x, Fk(x

′) > Fk(x).
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(4) Show that the fast-growing functions are strictly monotone in the parameter k, more
precisely that Fk+1(x) > Fk(x) for all k, provided that x > 0.

Exercise 2.3 (Grzegorczyk Hierarchy). Each class Fk of theGrzegorczyk hierarchy is for-⋆
Grzegorczyk hierarchy mally defined as the closure of the constant zero function 0, the sum function+:x1, x2 7→

zero function

sum function
x1 + x2, the projections πn

i :x1, . . . , xn 7→ xi for all 0 < i ≤ n, and the fast-growing

projection function
function Fk , under two basic operations:
substitution: if h0, h1, . . . , hp belong to the class, then so does f ifsubstitution

f(x1, . . . , xn) = h0(h1(x1, . . . , xn), . . . , hp(x1, . . . , xn)) ,

limited primitive recursion: if h1, h2, and h3 belong to the class, then so does f iflimited primitive recursion

f(0, x1, . . . , xn) = h1(x1, . . . , xn) ,

f(y + 1, x1, . . . , xn) = h2(y, x1, . . . , xn, f(y, x1, . . . , xn)) ,

f(y, x1, . . . , xn) ≤ h3(y, x1, . . . , xn) .

Observe that primitive recursion is defined by ignoring the last limitedness condition inprimitive recursion

the previous definition.
(1) Define cut-off subtraction x .− y as x − y if x ≥ y and 0 otherwise. Show that thecut-off subtraction

following functions are in F0:

predecessor : x 7→ x .− 1,
cut-off subtraction : x, y 7→ x .− y,
odd: x 7→ xmod 2.

(2) Show that Fj ∈ Fk for all j ≤ k.

(3) Show that, if a function f(x1, . . . , xn) is linear, then it belongs to F0. Deduce that
F0 = F1.

(4) Show that if a function f(x1, . . . , xn) belongs to Fk for k > 0, then there exists a
constant c in N s.t. for all x1, . . . , xn, f(x1, . . . , xn) < F c

k (maxi xi + 1). Why does
that fail for k = 0?

(5) Deduce that Fk+1 does not belong to Fk for k > 0.

Exercise 2.4 (Complexity of while Programs). Consider a program like simple that
consists of a loop with variables ranging over Z and updates of linear complexity. As-
sume we obtain a k-ary disjunctive termination argument like (1.10) on page 8, where we
synthesised linear ranking functions ρj into N for each Tj .

What can be told on the complexity of the program itself?

Exercise 2.5 (Residuals of Cartesian Products). For a nwqo A and an element a ∈ A,
define the nwqo ↑A a (a substructure of A) by ↑A a

def
= {a′ ∈ A | a ≤ a′}. Thus

A/a = A∖ (↑A a). Prove the following:

A×B/⟨a, b⟩ ̸≡ (A/a× ↑B b) + (A/a×B/b) + (↑A a×B/b) , (∗)
A×B/⟨a, b⟩ ̸≡ (A/a×B) + (A×B/b) . (†)
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Exercise 2.6 (Derivatives). Prove Equation (2.49): ∂nA = {B + ∂nNd | A ≡ B + Nd}.

Exercise 2.7 (Maximal Order Types). The mapping from nwqos to their maximal order
types is in general not a bijection (recall o(Γk) = o([k]) = k in Example 2.21). Prove that,
if we restrict our attention to polynomial nwqos, then o is a bijection from polynomial
nwqos (up to isomorphism) to CNF(ωω).

Exercise 2.8 (Well Foundedness of ∂). Recall that, when working with terms in CNF, the
ordinal ordering <, which is a well ordering over ordinals, has a syntactic characterisation ordinal ordering

akin to a lexicographic ordering:
m∑
i=1

ωβi <

n∑
i=1

ωβ′
i ⇔

{
m < n and ∀1 ≤ i ≤ m,βi = β′

i, or
∃1 ≤ j ≤ min(m,n), βj < β′

j and ∀1 ≤ i < j, βi = β′
i .

(‡)

Prove Fact 2.18: The relation ∂
def
=
∪

n ∂n is well-founded.

Exercise 2.9 (Predecessors). Prove Equation (2.64): For allα > 0, Px(γ+α) = γ+Px(α).

Exercise 2.10 (Structural Ordering). Prove Equation (2.70): ⊑ is a precongruence for ⊕.

Exercise 2.11 (Structural Monotonicity). Let α, α′ be in ωω and h be a strictly monotone ⋆
unary function. Prove that, if α ⊑ α′, then hα(x) ≤ hα′(x).

Exercise 2.12 (r-Bad Sequences). We consider in this exercise a generalisation of good ⋆
sequences: a sequence a0, a1, . . . over a qo (A,≤) is r-good if we can extract an in- r-good sequence

creasing subsequence of length r + 1, i.e. if there exist r + 1 indices i0 < · · · < ir s.t.
ai0 ≤ · · · ≤ air . A sequence is r-bad if it is not r-good. Thus “good” and “bad” stand for r-bad sequence

“1-good” and “1-bad” respectively.
By wqo.2 (stated on page 1), r-bad sequences over a wqo A are always finite, and

using the same arguments as in Section 2.1.1, r-bad (g, n)-controlled sequences over a
nwqo A have a maximal length Lg,r,A(n). Our purpose is to show that questions about
the length of r-bad sequences reduce to questions about bad sequences:

Lg,r,A(n) = Lg,A×Γr (n) . (§)

(1) Show that such a maximal (g, n)-controlled r-bad sequence is (r − 1)-good.

(2) Given a sequence a0, a1, . . . , aℓ over a nwqo (A,≤A, |.|A), an index i is p-good if it
starts an increasing subsequence of length p + 1, i.e. if there exist indices i = i0 <
· · · < ip s.t. ai0 ≤ · · · ≤ aip . The goodness γ(i) of an index i is the largest p s.t. i is
p-good. Show that Lg,r,A(n) ≤ Lg,A×Γr (n).

(3) Show the converse, i.e. that Lg,r,A(n) ≥ Lg,A×Γr
(n).

Exercise 2.13 (Hardy Hierarchy). A well-known variant of the Cichoń hierarchy is the ⋆
Hardy hierarchy (hα)α defined using a unary function h:N→ N by

h0(x)
def
= x , hα+1(x)

def
= hα

(
h(x)

)
, hλ(x)

def
= hλx(x) .
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Observe that hα is intuitively the αth (transfinite) iterate of the function h. As with the
Cichoń hierarchy, one case is of particular interest: that of (Hα)α forH(x)

def
= x+1. The

Hardy hierarchy will be used in the following exercises and, quite crucially, in Chapter 3.

(1) Show that Hα(x) = Hα(x) − x for all α, x. What about hα(x) and hα(x) − x if
h(x) > x?

(2) Show that hγ+α(x) = hγ
(
hα(x)

)
for all h, γ, α, x with γ + α in CNF.

(3) Extend the fast-growing hierarchy to (Fα)α by Fα+1(x)
def
= Fωx

α (x) and Fλ(x)
def
=

Fλx(x). Show that Hωα

(x) = Fα(x) for all α, x.

(4) Show that hγ+α(x) = hγ

(
hα(x)

)
+ hα(x) for all h, γ, α, x with γ + α in CNF.

(5) Show that hα measures the finite length of the iteration in hα, i.e. that hα(x) =
hhα(x)(x) for all h, α, x—which explains why the Cichoń hierarchy is also called the
length hierarchy.

Exercise 2.14 (Finite Values in Coverability Trees). Consider the Karp & Miller cover-
ability tree of a d-dimensional VAS ⟨A,x0⟩ with maximal increment b = maxa∈A |a|, and
maximal initial counter value n = |x0|. Show using Exercise 2.13 that the finite values in
this tree are bounded by hωd·d(nd) for h(x) = x+ db.

Exercise 2.15 (Bad Lexicographic Sequences). Weconsider in this exercise bad sequences⋆⋆
overNd for the lexicographic ordering ≤lex (with most significant element last) defined bylexicographic ordering

x <lex y
def⇔ x(d) < y(d) or (x(d) = y(d)

and ⟨x(1), . . . ,x(d− 1)⟩ <lex ⟨y(1), . . . ,y(d− 1)⟩) .

This is a linearisation of the product ordering over Nd; writing Nd
lex for the associated

nwqo (Nd,≤lex, |.|), we see that

Lg,Nd
lex
(n) ≤ Lg,Nd(n)

for all control functions g and initial norms n.
Since ≤lex is linear, there is a unique maximal (g, n)-controlled bad sequence over

Nd
lex, which will be easy to measure. Our purpose is to prove that for all n,

Lg,Nd
lex
(n) = gωd(n) . (¶)

(1) Let n > 0, and write a program lexd(g, n) with d counters x(1), . . . ,x(d) whose
configurations encode the d coordinates of the maximal (g, n)-controlled bad sequence
over Nd

lex, along with an additional counter c holding the current value of the control.
The run of lexd(g, n) should be a sequence (x1,c1), (x2,c2), . . . , (xℓ,cℓ) of pairs
(xi,ci) composed of a vector xi in Nd and of a counter ci.

(2) Let (x1,c1), (x2,c2), . . . , (xℓ,cℓ) be the unique run of lexd(g, n) for n > 0. Define

α(x) = ωd−1 · x(d) + · · ·+ ω0 · x(1) (∗∗)
for any vector x in Nd. Show that, for each i > 0,

gωd(n) = i+ gα(xi)
(
ci

)
. (††)
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(3) Deduce (¶).

(4) Show that, if (x1,c1), (x2,c2), . . . , (xℓ,cℓ) is the run of lexd(g, n) for n > 0, then
cℓ = gω

d

(n).
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and Tahhan Bittar (1998) and Weiermann (1994); furthermore the latter provides upper
bounds for the more general Kruskal’s Tree Theorem.

The hierarchy (Fk)k≥2 described as the Grzegorczyk hierarchy in Section 2.1.3 and
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The previous chapter has established some very high complexity upper bounds
on algorithms that rely on Dickson’s Lemma over d-tuples of natural numbers
for termination. The Length Function Theorem shows that these bounds can be
found in every level of the Grzegorczyk hierarchy when d varies, which means
that these bounds are Ackermannian when d is part of the input.

Given how large these bounds are, one should wonder whether they are useful
at all, i.e. whether there exist natural decision problems that require Ackerman-
nian resources for their resolution. It turns out that such Ackermann complexities
pop up regularly with counter systems and Dickson’s Lemma—see Section B.2 for
more examples. We consider in this chapter the case of lossy counter machines.

Lossy counter machines and Reset Petri nets are two computational models
that can be seen as weakened versions of Minsky counter machines. This weak-
ness explains why some problems (e.g. termination) are decidable for these two
models, while they are undecidable for the Turing-powerful Minsky machines.

While these positive results have been used in the literature, there also ex-
ists a negative side that has had much more impact. Indeed, decidable verifica-
tion problems for lossy counter machines are Ackermann-hard and hence cannot
be answered in primitive-recursive time or space. The construction can also be
adapted to Reset Petri nets, incrementing counter machines, etc.

Theorem 3.1 (Hardness Theorem). Reachability, termination and coverability for Hardness Theorem

lossy counter machines are Ackermann-hard.
Termination and coverability for Reset Petri nets are Ackermann-hard.

These hardness results turn out to be relevant in several other areas; see the
Bibliographic Notes at the end of the chapter.
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Outline. Section 3.1 defines counter machines, both reliable and lossy. Sec-
tion 3.2 builds counter machines that compute Ackermann’s function. Section 3.3
puts Minsky machines on a budget, a gadget that is essential in Section 3.4 where
the main reduction is given and the hardness of reachability and coverability for
lossy counter machines is proved. We then show how to deal with reset nets in
Section 3.5 and how to prove hardness of termination in Section 3.6.

3.1 Counter Machines

Counter machines are a model of computation where a finite-state control actscounter machine

upon a finite number of counters, i.e. storage locations that hold a natural num-
ber. The computation steps are usually restricted to simple tests and updates.
For Minsky machines, the tests are zero-tests and the updates are increments andMinsky machine

decrements.
For our purposes, it will be convenient to use a slightly extended model that

allows more concise constructions, and that will let us handle reset nets smoothly.

3.1.1 Extended Counter Machines
Formally, an extended counter machine with n counters, often just called a counter
machine (CM), is a tuple M = (Loc, C,∆) where Loc = {ℓ1, . . . , ℓp} is a finite
set of locations, C = {c1, . . . ,cn} is a finite set of counters, and ∆ ⊆ Loc ×
OP(C) × Loc is a finite set of transition rules. The transition rules are depicted
as directed edges (see figs. 3.1 to 3.3 below) between control locations labelled
with an instruction op ∈ OP(C) that is either a guard (a condition on the current
contents of the counters for the rule to be firable), or an update (a method that
modifies the contents of the counters), or both. For CMs, the instruction setOP(C)
is given by the following abstract grammar:

OP(C) ∋ op ::= c=0? /* zero test */ | c:=0 /* reset */
| c>0? c-- /* decrement */ | c=c′? /* equality test */
| c++ /* increment */ | c:=c′ /* copy */

where c,c′ are any two counters in C . (We also allow a no op instruction that
does not test or modify the counters.)

AMinskymachine is a CM that only uses instructions among zero tests, decre-
ments and increments (the first three types). Petri nets and Vector Addition Sys-
temswith States (VASS) can be seen as countermachines that only use decrements
and increments (i.e. Minsky machines without zero-tests).

3.1.2 Operational Semantics
The operational semantics of a CM M = (Loc, C,∆) is given under the form of
transitions between its configurations. Formally, a configuration (written σ, θ, . . .)
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ofM is a tuple (ℓ, a)with ℓ ∈ Loc representing the “current” control location, and
a ∈ NC , aC-indexed vector of natural numbers representing the current contents
of the counters. If C is some {c1, . . . ,cn}, we often write (ℓ, a) under the form
(ℓ, a1, . . . , an). Also, we sometimes use labels in vectors of values to make them
more readable, writing e.g. a = (0, . . . , 0,ck:1, 0, . . . , 0).

Regarding the behaviour induced by the rules from ∆, there is a transition
(also called a step) σ δ−→std σ′ if, and only if, σ is some (ℓ, a1, . . . , an), σ′ is some
(ℓ′, a′1, . . . , a

′
n), ∆ ∋ δ = (ℓ, op, ℓ′) and either:

op is ck=0? (zero test): ak = 0, and a′i = ai for all i = 1, . . . , n, or

op is ck>0? ck-- (decrement): a′k = ak − 1, and a′i = ai for all i ̸= k, or

op is ck++ (increment): a′k = ak + 1, and a′i = ai for all i ̸= k, or

op is ck:=0 (reset): a′k = 0, and a′i = ai for all i ̸= k, or

op is ck=cp? (equality test): ak = ap, and a′i = ai for all i = 1, . . . , n, or

op is ck:=cp (copy): a′k = ap, and a′i = ai for all i ̸= k.

(The steps carry a “std” subscript to emphasise that we are considering the usual,
standard, operational semantics of counter machines, where the behaviour is re-
liable.)

As usual, we write σ
∆−→std σ′, or just σ −→std σ′, when σ

δ−→std σ′ for some
δ ∈ ∆. Chains σ0 −→std σ1 −→std · · · −→std σm of consecutive steps, also called
runs, are denoted σ0 −→∗

std σm, and also σ0 −→+
std σm when m > 0. Steps may also

be written more precisely under the form M ⊢ σ −→std σ′ when several counter
machines are at hand and we want to be explicit about where the steps take place.

For a vector a = (a1, . . . , an), or a configuration σ = (ℓ, a), we let |a| = |σ| =∑n
i=1 ai denote its size. For N ∈ N, we say that a run σ0 −→ σ1 −→ · · · −→ σm is

N -bounded if |σi| ≤ N for all i = 0, . . . , n.

3.1.3 Lossy Counter Machines

Lossy counter machines (LCM) are counter machines where the contents of the lossy counter machine

counters can decrease non-deterministically (the machine can “leak”, or “lose
data”).

Technically, it is more convenient to see lossy machines as counter machines
with a different operational semantics (and not as a special class of machines):
thus it is possible to use simultaneously the two semantics and relate them. Incre-
menting errors too are handled by introducing a different operational semantics,
see Exercise 3.4.
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Formally, this is defined via the introduction of a partial ordering between the
configurations of M :

(ℓ, a1, ..., an) ≤ (ℓ′, a′1, ..., a
′
n)

def⇔ ℓ = ℓ′ ∧ a1 ≤ a′1 ∧ · · · ∧ an ≤ a′n. (3.1)

σ ≤ σ′ can be read as “σ is σ′ after some losses (possibly none).”
Now “lossy” steps, denoted M ⊢ σ

δ−→lossy σ′, are given by the following
definition:

σ
δ−→lossy σ

′ def⇔ ∃θ, θ′, (σ ≥ θ ∧ θ
δ−→std θ

′ ∧ θ′ ≥ σ′). (3.2)

Note that reliable steps are a special case of lossy steps:

M ⊢ σ −→std σ
′ implies M ⊢ σ −→lossy σ

′. (3.3)

3.1.4 Behavioural Problems on Counter Machines
We consider the following decision problems:

Reachability: given a CM M and two configurations σini and σgoal, is there a run
M ⊢ σini −→∗ σgoal?

Coverability: given a CM M and two configurations σini and σgoal, is there a run
M ⊢ σini −→∗ σ for some configuration σ ≥ σgoal that covers σgoal?

(Non-)Termination: given a CM M and a configuration σini, is there an infinite
run M ⊢ σini −→ σ1 −→ · · · −→ σn −→ · · · ?

These problems are parameterized by the class of counter machines we consider
and, more importantly, by the operational semantics that is assumed. Reacha-
bility and termination are decidable for lossy counter machines, i.e. counter ma-
chines assuming lossy steps, because they are well-structured. Observe that, for
lossy machines, reachability and coverability coincide (except for runs of length
0). Coverability is often used to check whether a control location is reachable
from some σini. For the standard semantics, the same problems are undecidable
for Minsky machines but become decidable for VASS and, except for reachability,
for Reset nets (see Section 3.5).

3.2 Hardy Computations

The Hardy hierarchy (Hα:N → N)α<ε0 is a hierarchy of ordinal-indexed func-Hardy hierarchy

tions, much like the Cichoń hierarchy introduced in Section 2.4.2. Its definition
and properties are the object of Exercise 2.13 on page 49, but let us recall the
following:

H0(n)
def
= n, Hα+1(n)

def
= Hα(n+ 1), Hλ(n)

def
= Hλn(n). (3.4)
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Observe that H1 is the successor function, and more generally Hα is the αth
iterate of the successor function, using diagonalisation to treat limit ordinals. Its
relation with the fast growing hierarchy (Fα)α<ε0 is that

Hωα
(n) = Fα(n) (3.5)

while its relation with the Cichoń hierarchy (Hα)α<ε0 is that

Hα(n) = Hα(n) + n . (3.6)

ThusHω(n) = Hn(n) = 2n+1,Hω2
(n) = 2n+1(n+1)−1 is exponential,Hω3

non-elementary, and Hωω Ackermannian; in fact we set in this chapter

Ack(n) def
= Fω(n) = Hωω

(n) = Hωn
(n). (3.7)

Two facts that we will need later can be deduced from (3.6) and the corre-
sponding properties for the functions in the Cichoń hierarchy: Hardy functions
are monotone in their argument:

Fact 3.2 (see Fact 2.29). If n ≤ n′ then Hα(n) ≤ Hα(n′) for all α < ε0.

They are also monotone in their parameter relatively to the structural ordering
defined in Section 2.4.3 on page 44:

Fact 3.3 (see Exercise 2.11). If α ⊑ α′, then Hα(n) ≤ Hα′
(n) for all n.

The (Fα)α hierarchy provides a more abstract packaging of the main stops of
the (extended)Grzegorczyk hierarchy and requires lighter notation than the Hardy
hierarchy (Hα)α. However, with its tail-recursive definition, the Hardy hierarchy
is easier to implement as a while-program or as a counter machine. Below we
weakly implement Hardy computations with CMs. Formally, a (forward) Hardy
computation is a sequence Hardy computation

α0;n0 −→ α1;n1 −→ α2;n2 −→ · · · −→ αℓ;nℓ (3.8)

of evaluation steps implementing the equations in (3.4) seen as left-to-right rewrite
rules. It guarantees α0 > α1 > α2 > · · · and n0 ≤ n1 ≤ n2 ≤ · · · and keeps
Hαi(ni) invariant. We say it is complete when αℓ = 0 and then nℓ = Hα0(n0)
(we also consider incomplete computations). A backward Hardy computation is
obtained by using (3.4) as right-to-left rules. For instance,

ωω;m→ ωm;m→ ωm−1 ·m;m (3.9)

constitute the first three steps of the forward Hardy computation starting from
ωω;m if m > 0.
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3.2.1 Encoding Hardy Computations
Ordinals below ωm+1 are easily encoded as vectors in Nm+1: given a vector a =
(am, . . . , a0) ∈ Nm+1, we define its associated ordinal in ωm+1 as

α(a) def
= ωm · am + ωm−1 · am−1 + · · ·+ ω0 · a0 . (3.10)

Observe that ordinals below ωm+1 and vectors in Nm+1 are in bijection through
α.

We can then expressHardy computations for ordinals belowωm+1 as a rewrite
system H−→ over pairs ⟨a;n⟩ of vectors in Nm+1 and natural numbers:

⟨am, . . . , a0 + 1;n⟩ → ⟨am, . . . , a0;n+ 1⟩ , (D1)

⟨am, . . . , ak + 1,

k>0 zeroes︷ ︸︸ ︷
0, . . . , 0 ;n⟩ → ⟨am, . . . , ak, n+ 1,

k−1 zeroes︷ ︸︸ ︷
0, . . . , 0 ;n⟩ . (D2)

The two rules (D1) and (D2) correspond to the successor and limit case of (3.4),
respectively. Computations with these rules keep Hα(a)(n) invariant.

A key property of this encoding is that it is robust in presence of “losses.” In-
deed, if a ≤ a′, then α(a) ⊑ α(a′) and Fact 3.3 shows thatHα(a)(n) ≤ Hα(a′)(n).
More generally, adding Fact 3.2 to the mix,

Lemma 3.4 (Robustness). If a ≤ a′ and n ≤ n′ then Hα(a)(n) ≤ Hα(a′)(n′).

Now, H−→ terminates since ⟨a;n⟩ H−→ ⟨a′;n′⟩ implies α(a) > α(a′). Further-
more, if a ̸= 0, one of the rules among (D1) and (D2) can be applied to ⟨a;n⟩.
Hence for all a and n there exists some n′ such that ⟨a;n⟩ H−→ ∗⟨0;n′⟩, and then
n′ = Hα(a)(n). The reverse relation H−→ −1 terminates as well since, in a step
⟨a′;n′⟩ H−→−1⟨a;n⟩, either n′ is decreased, or it stays constant and the number of
zeroes in a′ is increased.

3.2.2 Implementing Hardy Computations with Counter Machines
Being tail-recursive, Hardy computations can be evaluated via a simplewhile-loop
that implements the H−→ rewriting. Fix a level m ∈ N: we need m + 2 counters,
one for the n argument, and m+ 1 for the a ∈ Nm+1 argument.

We define a counter machineMH(m) = (LocH, C,∆H), orMH for short, with
C = {a0,a1, ...,am,n}. Its rules are defined pictorially in Figure 3.1: they im-
plement H−→ as a loop around a central location ℓH, as captured by the following
lemma, which relies crucially on Lemma 3.4:

Lemma 3.5 (Behavior of MH). For all a, a′ ∈ Nm+1 and n, n′ ∈ N:

1. If ⟨a;n⟩ H−→ ⟨a′;n′⟩ then MH ⊢ (ℓH, a, n) −→∗
std (ℓH, a′, n′).



3.3. Minsky Machines on a Budget 59

ℓH ℓ1 ℓ
′

1
ℓ
′′

1

ℓ2 ℓ
′

2
ℓ
′′

2

· · · · · ·

ℓm ℓ
′

m ℓ
′′

m

r

a0>0?

a0--

n++

am=0?

a0=0?

a1=0?

a2=0?

am−1=0?

a1>0?a1-- a0:=n+1

a2>0?a2-- a1:=n+1

am>0?am-- am−1:=n+1

...

n

a0

a1

am

Figure 3.1: MH(m), a counter machine that implements H−→.

2. If MH ⊢ (ℓH, a, n) −→∗
std (ℓH, a′, n′) then Hα(a)(n) = Hα(a′)(n′).

3. If MH ⊢ (ℓH, a, n) −→∗
lossy (ℓH, a′, n′) then Hα(a)(n) ≥ Hα(a′)(n′).

The rules (D1–D2) can also be used from right to left. Used this way, they
implement backward Hardy computations, i.e. they invertH . This is implemented
by another counter machine, MH−1(m) = (LocH−1 , C,∆H−1), or MH−1 for short,
defined pictorially in Figure 3.2.

MH−1 implements H−→−1 as a loop around a central location ℓH−1 , as captured
by Lemma 3.6. Note that MH−1 may deadlock if it makes the wrong guess as
whether ai contains n+ 1, but this is not a problem with the construction.

Lemma 3.6 (Behavior of MH−1 ). For all a, a′ ∈ Nm+1 and n, n′ ∈ N:

1. If ⟨a;n⟩ H−→ ⟨a′;n′⟩ thenMH−1 ⊢ (ℓH−1 , a′, n′) −→∗
std (ℓH−1 , a, n).

2. If MH−1 ⊢ (ℓH−1 , a, n) −→∗
std (ℓH−1 , a′, n′) then Hα(a)(n) = Hα(a′)(n′).

3. If MH−1 ⊢ (ℓH−1 , a, n) −→∗
lossy (ℓH−1 , a′, n′) then Hα(a)(n) ≥ Hα(a′)(n′).

3.3 Minsky Machines on a Budget

With a Minsky machine M = (Loc, C,∆) we associate a Minsky machine M b =
(Locb, Cb,∆b). (Note that we are only considering Minsky machines here, and
not the extended counter machines from earlier sections.)

M b is obtained by adding to M an extra “budget” counter B and by adapting
the rules of ∆ so that any increment (resp. decrement) in the original counters is
balanced by a corresponding decrement (resp. increment) on the new counter B,
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Figure 3.2: MH−1(m), a counter machine that implements H−→−1.
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Figure 3.3: From M to M b (schematically).

so that the sum of the counters remains constant. This is a classic idea in Petri
nets. The construction is described on a schematic example (Figure 3.3) that is
clearer than a formal definition. Observe that extra intermediary locations (in
grey) are used, and that a rule in M that increments some ci will be forbidden in
M b when the budget is exhausted.

We now collect the properties of this construction that will be used later. The
fact that M b faithfully simulates M is stated in lemmas 3.8 and 3.9. There and at
other places, the restriction to “ℓ, ℓ′ ∈ Loc” ensures that we only relate behaviour
anchored at the original locations in M (locations that also exist in M b) and not
at one of the new intermediary locations introduced in M b.

First, the sum of the counters in M b is a numerical invariant (that is only
temporarily disrupted while in the new intermediary locations).

Lemma 3.7. If M b ⊢ (ℓ, B, a) −→∗
std (ℓ′, B′, a′) and ℓ, ℓ′ ∈ Loc, then B + |a| =

B′ + |a′|.
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Observe that M b can only do what M would do:

Lemma 3.8. If M b ⊢ (ℓ, B, a) −→∗
std (ℓ′, B′, a′) and ℓ, ℓ′ ∈ Loc then M ⊢

(ℓ, a) −→∗
std (ℓ

′, a′).

Reciprocally, everything done by M can be mirrored by M b provided that a
large enough budget is allowed. More precisely:

Lemma 3.9. If M ⊢ (ℓ, a) −→∗
std (ℓ′, a′) is an N -bounded run of M , then M b

has an N -bounded run M b ⊢ (ℓ, B, a) −→∗
std (ℓ′, B′, a′) for B def

= N − |a| and
B′ def

= N − |a′|.

Now, the point of the construction is that M b can distinguish between lossy
and non-lossy runs in ways that M cannot. More precisely:

Lemma 3.10. Let M b ⊢ (ℓ, B, a) −→∗
lossy (ℓ′, B′, a′) with ℓ, ℓ′ ∈ Loc. Then M b ⊢

(ℓ, B, a) −→∗
std (ℓ

′, B′, a′) if, and only if, B + |a| = B′ + |a′|.

Proof Idea. The “(⇐)” direction is an immediate consequence of (3.3).
For the “(⇒)” direction, we consider the hypothesised run M b ⊢ (ℓ, B, a) =

σ0 −→lossy σ1 −→lossy · · · −→lossy σn = (ℓ′, B′, a′). Coming back to (3.2), these lossy
steps require, for i = 1, . . . , n, some reliable steps θi−1 −→std θ

′
i with σi−1 ≥ θi−1

and θ′i ≥ σi, and hence |θ′i| ≥ |θi| for i < n. Combining with |θi−1| = |θ′i| (by
Lemma 3.7), and |σ0| = |σn| (from the assumption that B + |a| = B′ + |a′|),
proves that all these configurations have same size. Hence θ′i = σi = θi and the
lossy steps are also reliable steps.

Corollary 3.11. AssumeM b ⊢ (ℓ, B, 0) −→∗
lossy (ℓ

′, B′, a) with ℓ, ℓ′ ∈ Loc. Then:

1. B ≥ B′ + |a|, and

2. if B = B′ + |a|, then M ⊢ (ℓ, 0) −→∗
std (ℓ

′, a). Furthermore, this reliable run
of M is B-bounded.

3.4 Ackermann-Hardness for Lossy Counter Machines

We now collect the ingredients that have been developed in the previous sections.
Let M be a Minsky machine with two fixed “initial” and “final” locations ℓini

and ℓfin. With M and a level m ∈ N we associate a counter machine M(m)
obtained by stringing together MH(m), M b, and MH−1(m) and fusing the extra
budget counter B from M b with the accumulator n of MH(m) and MH−1(m)
(these two share their counters). The construction is depicted in Figure 3.4.

Proposition 3.12. The following are equivalent:

1. M(m) has a lossy run (ℓH,am:1, 0,n:m, 0) −→∗
lossy θ for some configuration

θ with θ ≥ (ℓH−1 , 1, 0,m, 0).
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Figure 3.4: Constructing M(m) from M b, MH and MH−1 .

2. M b has a lossy run (ℓini,B:Ack(m), 0) −→∗
lossy (ℓfin,Ack(m), 0).

3. M b has a reliable run (ℓini,Ack(m), 0) −→∗
std (ℓfin,Ack(m), 0).

4. M(m) has a reliable run (ℓH, 1, 0,m, 0) −→∗
std (ℓH−1 , 1, 0,m, 0).

5. M has a reliable run (ℓini, 0) −→∗
std (ℓfin, 0) that is Ack(m)-bounded.

Proof Sketch.

• For “1⇒ 2”, and because coverability implies reachability by (3.2), we may
assume that M(m) has a run (ℓH, 1, 0,m, 0) −→∗

lossy (ℓH−1 , 1, 0,m, 0). This
run must go through M b and be in three parts of the following form:

(ℓH, 1, 0,m, 0) ∆H−→
∗
lossy (ℓH, a,n:x, 0) (starts in MH)

−→lossy (ℓini, . . . , B, 0) ∆b−→
∗
lossy (ℓfin, . . . , B

′, c) (goes through M b)

−→lossy (ℓH−1 , a′, x′, . . .)
∆H−1−−→

∗

lossy (ℓH−1 , 1, 0,m, 0). (ends in MH−1 )

The first part yieldsHα(1,0)(m) ≥ Hα(a)(x) (by Lemma 3.5.3), the third part
Hα(a′)(x′) ≥ Hα(1,0)(m) (by Lemma 3.6.3), and the middle part B ≥ B′ +
|c| (by Corollary 3.11.1). Lossiness further implies x ≥ B, B′ ≥ x′ and a ≥
a′. Now, the only way to reconcile Hα(a)(x) ≤ Hα(1,0)(m) = Ack(m) ≤
Hα(a′)(x′), a′ ≤ a, x′ ≤ x, and the monotonicity of F (Lemma 3.4) is by
concluding x = B = B′ = x′ = Ack(m) and c = 0. Then the middle part
of the run witnesses M b ⊢ (ℓini,Ack(m), 0) −→∗

lossy (ℓfin,Ack(m), 0).

• “2⇒ 5” is Corollary 3.11.2.

• “5⇒ 3” is given by Lemma 3.9.

• “3 ⇒ 4” is obtained by stringing together reliable runs of the components,
relying on lemmas 3.5.1 and 3.6.1 for the reliable runs of MH and MH−1 .



3.5. Handling Reset Petri Nets 63

• Finally “3⇒ 2” and “4⇒ 1” are immediate from (3.3).

With Proposition 3.12, we have a proof of the Hardness Theorem for reacha-
bility and coverability in lossy counter machines: Recall that, for a Minsky ma-
chineM , the existence of a run between two given configurations is undecidable,
and the existence of a run bounded by Ack(m) is decidable but not primitive-
recursive when m is part of the input. Therefore, Proposition 3.12, and in par-
ticular the equivalence between its points 1 and 5, states that our construction
reduces a nonprimitive-recursive problem to the reachability problem for lossy
counter machines.

3.5 Handling Reset Petri Nets

Reset nets are Petri nets extendedwith special reset arcs that empty a placewhen a
transition is fired. They can equally be seen as special counter machines, called re-
set machines, where actions are restricted to decrements, increments, and resets— reset machine

note that zero-tests are not allowed in reset machines.
It is known that termination and coverability are decidable for reset machines

while other properties like reachability of a given configuration, finiteness of the
reachability set, or recurrent reachability, are undecidable.

Our purpose is to prove the Ackermann-hardness of termination and cover-
ability for reset machines. We start with coverability and refer to Section 3.6 for
termination.

3.5.1 Replacing Zero-Tests with Resets
For a counter machine M , we let R(M) be the counter machine obtained by
replacing every zero-test instruction c=0? with a corresponding reset c:=0.
Note that R(M) is a reset machine when M is a Minsky machine.

Clearly, the behaviour of M and R(M) are related in the following way:

Lemma 3.13.

1. M ⊢ σ −→std σ
′ implies R(M) ⊢ σ −→std σ

′.

2. R(M) ⊢ σ −→std σ
′ implies M ⊢ σ −→lossy σ

′.

In other words, the reliable behaviour ofR(M) contains the reliable behaviour of
M and is contained in the lossy behaviour of M .

We now consider the counter machineM(m) defined in Section 3.4 and build
R(M(m)).

Proposition 3.14. The following are equivalent:

1. R(M(m)) has a reliable run (ℓH,am:1, 0,n:m, 0) −→∗
std (ℓH−1 , 1, 0,m, 0).
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2. R(M(m)) has a reliable run (ℓH, 1, 0,m, 0) −→∗
std θ ≥ (ℓH−1 , 1, 0,m, 0).

3. M has a reliable run (ℓini, 0) −→∗
std (ℓfin, 0) that is Ack(m)-bounded.

Proof. For 1 ⇒ 3: The reliable run in R(M(m)) gives a lossy run in M(m)
(Lemma 3.13.2), and we conclude using “1⇒5” in Proposition 3.12.

For 3 ⇒ 2: We obtain a reliable run in M(m) (“5⇒4” in Proposition 3.12)
which gives a reliable run in R(M(m)) (Lemma 3.13.1), which in particular wit-
nesses coverability.

For 2 ⇒ 1: The covering run in R(M(m)) gives a lossy covering run in
M(m) (Lemma 3.13.2), hence also a lossy run in M(m) that reaches exactly
(ℓH−1 , 1, 0,m, 0) (e.g. by losing whatever is required at the last step). From there
we obtain a reliable run in M(m) (“1⇒4” in Proposition 3.12) and then a reliable
run in R(M(m)) (Lemma 3.13.1).

We have thus reduced an Ackermann-hard problem (point 3 above) to a cov-
erability question (point 2 above).

This almost proves the Hardness Theorem for coverability in reset machines,
except for one small ingredient: R(M(m)) is not a reset machine properly be-
cause M(m) is an extended counter machine, not a Minsky machine. I.e., we
proved hardness for “extended” reset machines. Before tackling this issue, we
want to point out that something as easy as the proof of Proposition 3.14 will
prove Ackermann-hardness of reset machines by reusing the hardness of lossy
counter machines.

In order to conclude the proof of the Hardness Theorem for reset machines,
we only need to provide versions of MH and MH−1 in the form of Minsky ma-
chines (M and M b already are Minsky machines) and plug these in Figure 3.4
and Proposition 3.12.

3.5.2 From Extended to Minsky Machines
There are two reasons why we did not provide MH and MH−1 directly under the
form of Minsky machines in Section 3.2. Firstly, this would have made the con-
struction cumbersome: Figure 3.2 is already bordering on the inelegant. Secondly,
andmore importantly, this would have made the proof of lemmas 3.5 and 3.6 more
painful than necessary.

Rather than designing new versions of MH and MH−1 , we rely on a generic
way of transforming extended counter machines into Minsky machines that pre-
serves both the reliable behaviour and the lossy behaviour in a sense that is com-
patible with the proof of Proposition 3.12.

Formally, we associate with any extended counter machine M = (Loc, C,∆)
a new machine M ′ = (Loc′, C ′,∆′) such that:

1. Loc′ is Loc plus some extra “auxiliary” locations,
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Figure 3.5: From M to M ′: eliminating equality tests.

2. C ′ = C + {aux} is C extended with one extra counter,

3. M ′ only uses zero-tests, increments and decrements, hence it is a Minsky
machine,

4. For any ℓ, ℓ′ ∈ Loc and vectors c, c′ ∈ NC , the following holds:

M ⊢ (ℓ, c) −→∗
std (ℓ

′, c′) iff M ′ ⊢ (ℓ, c, 0) −→∗
std (ℓ

′, c′, 0), (3.11)
M ⊢ (ℓ, c) −→∗

lossy (ℓ
′, c′) iff M ′ ⊢ (ℓ, c, 0) −→∗

lossy (ℓ
′, c′, 0). (3.12)

The construction of M ′ from M contains no surprise. We replace equality
tests, resets and copies by gadgets simulating them and only using the restricted
instruction set of Minsky machines. One auxiliary counter aux is used for tem-
porary storage, and several additional locations are introduced each time one ex-
tended instruction is replaced.

We show here how to eliminate equality tests and leave the elimination of
resets and copies as Exercise 3.2. Figure 3.5 shows, on a schematic example, how
the transformation is defined.

It is clear (and completely classic) that this transformation satisfies (3.11). The
trickier half is the “⇐” direction. Its proof is done with the help of the following
observations:

• c− c′ is a numerical invariant in l, and also in l′,

• c+ aux is a numerical invariant in l, and also in l′,

• when M ′ moves from ℓ0 to l, aux contains 0; when it moves from l to l′,
both c and c′ contain 0; when it moves from l′ to ℓ1, aux contains 0.
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Figure 3.6: Hardness for termination: A new version of M(m).

Then we also need the less standard notion of correctness from (3.12) for this
transformation. The “⇐” direction is proved with the help of the following ob-
servations:

• c− c′ can only decrease during successive visits of l, and also of l′,

• c+ aux can only decrease during successive visits of l, and also of l′,

• when M ′ moves from ℓ0 to l, aux contains 0; when it moves from l to l′,
both c and c′ contain 0; when it moves from l′ to ℓ1, aux contains 0.

Gathering these observations, we can conclude that a runM ′ ⊢ (ℓ0, c, c
′, 0) −→∗

lossy
(ℓ1, d, d

′, 0) implies d, d′ ≤ min(c, c′). In such a case, M obviously has a lossy
step M ⊢ (ℓ0, c, c

′) −→lossy (ℓ1, d, d
′).

3.6 Hardness for Termination

We can prove hardness for termination by a minor adaptation of the proof for
coverability. This adaptation, sketched in Figure 3.6, applies to both lossy counter
machines and reset machines.

Basically,M b now uses two copies of the initial budget. One copy in B works
as before: its purpose is to ensure that losses will be detected by a budget imbalance
as in Lemma 3.10. The other copy, in a new counter T, is a time limit that is
initialised with n and is decremented with every simulated step ofM : its purpose
is to ensure that the newM b always terminates. SinceMH andMH−1 cannot run
forever (because H−→ and H−→ −1 terminate, see Section 3.2), we now have a new
M(m) that always terminate when started in ℓH and that satisfies the following
variant of propositions 3.12 and 3.14:
Proposition 3.15. The following are equivalent:
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1. M(m) has a lossy run (ℓH, 1, 0,n:m, 0) −→∗
lossy θ ≥ (ℓH−1 , 1, 0,m, 0).

2. R(M(m)) has a lossy run (ℓH, 1, 0,n:m, 0) −→∗
lossy θ ≥ (ℓH−1 , 1, 0,m, 0).

3. M has a reliable run (ℓini, 0) −→∗
std (ℓfin, 0) of length at most Ack(m).

Finally, we add a series of m + 1 transitions that leave from ℓH−1 , and check
that σgoal

def
= (ℓH−1 , 1, 0,m, 0) is covered, i.e., that am contains at least 1 and n

at least m. If this succeeds, one reaches a new location ℓω , the only place where
infinite looping is allowed unconditionally. This yields a machine M(m) that has
an infinite lossy run if, and only if, it can reach a configuration that covers σgoal,
i.e., if, and only if, M has a reliable run of length at most Ack(m), which is an
Ackermann-hard problem.

Exercises
Exercise 3.1. Describe the complete Hardy computations starting from α; 0 for α = ω,
ω · 2, ω · 3, ω2, ω3, ωω , and ωωω .

Exercise 3.2 (From Extended to Minsky Machines). Complete the translation from ex-
tended counter machines to Minsky machines given in Section 3.5.2: provide gadgets for
equality tests and resets.

Exercise 3.3 (TransferMachines). Transfer machines are extended countermachineswith transfer machine

instruction set reduced to increments, decrements, and transfers

c1+=c2;c2:=0. /* transfer c2 to c1 */

Show that transfer machines can simulate reset machines as far as coverability and
termination are concerned. Deduce that the Hardness Theorem also applies to transfer
machines.

Exercise 3.4 (Incrementing Counter Machines). Incrementing counter machines are Min- incrementing counter
machinesky machines with incrementation errors: rather than leaking, the counters may increase

nondeterministically, by arbitrary large amounts. This is captured by introducing a new
operations semantics for counter machines, with steps denoted M ⊢ σ −→inc σ′, and
defined by:

σ
δ−→inc σ

′ def⇔ ∃θ, θ′, (σ ≤ θ ∧ θ
δ−→std θ

′ ∧ θ′ ≤ σ′). (∗)

Incrementation errors are thus the symmetrical mirror of losses.
Show that, for a Minsky machine M , one can construct another Minsky machine

M−1 with

M ⊢ σ1 −→std σ2 iff M−1 ⊢ σ2 −→std σ1. (†)

What does it entail for lossy runs of M and incrementing runs of M−1? Conclude that
reachability for incrementing counter machines is Ackermannian.
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The Finite Basis Property of wqos yields finite presentations both for upward-
closed subsets, using minimal elements

∪
1≤i≤n ↑xi, and for downward-closed

subsets, using excluded minors
∩

1≤i≤nX ∖ ↑xi. The latter representation how-
ever does not lend itself nicely to algorithmic operations. For instance, represent-
ing ↓x using excluded minors is rather inconvenient.

By contrast, the ideals of a wqo provide finite decompositions for downward-
closed sets: they are used in algorithms as data structures to represent downward-
closed subsets, which mirrors the use of finite bases of minimal elements to rep-
resent upward-closed subsets.

In this section we present some basic facts about ideals of wqos and some of
their applications to coverability problems. Our emphasis is on genericity: we
show how to handle ideals for wqos of the form A∗, A × B, etc., with mild as-
sumptions on the wqos A, B, . . .

4.1 Ideals of WQOs

In classical order theory, a subset of a qo (X,≤) that is ↑x for some element x of
X is also called a principal filter . One way to rephrase the Finite Basis Property is principal filter

to say that, in any wqo, the upward-closed subsets are finite unions of principal
filters. This leads to the natural representation of upward-closed sets in wqos by
their minimal elements.

There is a dual notion of principal ideals, which are all downward-closed sub- principal ideals

sets of the form ↓x, where x is any element. In general, one cannot represent all
downward-closed subsets as finite unions of principal ideals and this is why we
need the more general notion of ideals.

Recall that we write Up(X)—or just UpwhenX is understood— for the set of
upward-closed subsets of X , with typical elements U,U ′, ... Similarly, Down(X),
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or justDown denotes the set of its downward-closed subsets, with typical elements
D,D′, . . .

4.1.1 Prime Decompositions of Order-Closed Subsets
Definition 4.1 (Prime Subsets). Let (X,≤) be a qo.prime

1. A nonemptyU ∈ Up(X) is (up) prime if for anyU1, U2 ∈ Up,U ⊆ (U1∪U2)
implies U ⊆ U1 or U ⊆ U2.

2. Similarly, a nonempty D ∈ Down(X) is (down) prime if D ⊆ (D1 ∪ D2)
implies D ⊆ D1 or D ⊆ D2.

Observe that all principal filters are up primes and that all principal ideals are
down primes.

Lemma 4.2 (Irreducibility). Let (X,≤) be a qo.

1. U ∈ Up(X) is prime if, and only if, for any U1, . . . , Un ∈ Up, U = U1 ∪
· · · ∪ Un implies U = Ui for some i.

2. D ∈ Down(X) is prime if, and only if, for any D1, . . . , Dn ∈ Down, D =
D1 ∪ · · · ∪Dn implies D = Di for some i.

Proof. We prove 1, the downward-case being identical.
“⇒”: By Definition 4.1 (and by induction on n) U prime and U = U1 ∪ · · · ∪ Un

imply U ⊆ Ui for some i, hence U = Ui.
“⇐”: We check that U meets the criterion for being prime: assume that U ⊆
U1 ∪ U2 for some U1, U2 ∈ Up. Then, letting U ′

i
def
= Ui ∩ U for i = 1, 2 gives

U = U ′
1 ∪ U ′

2. The assumption of the lemma entails that U = U ′
i for some

i ∈ {1, 2}. Then U ⊆ Ui.

We say that a collection {P1, . . . , Pn} of up (resp. down) primes is a (finite)
prime decomposition of U ∈ Up(X) (resp., ofD ∈ Down(X)) if U = P1∪· · ·∪Pn

(resp. D = P1 ∪ · · · ∪ Pn). Such decompositions always exist:

Lemma 4.3 (Finite Prime Decomposition). Let (X,≤) be a wqo.

1. Every upward-closed subset U ∈ Up(X) is a finite union of up primes.

2. Every downward-closed subsetD ∈ Down(X) is a finite union of down primes.

Proof of 2. By well-founded induction on D. For this, recall that (Down(X),⊆)
is well-founded (Definition 1.6). If D is empty, it is an empty, hence finite, union
of primes. If D ̸= ∅ is not prime, then by Lemma 4.2 it can be written as D =
D1 ∪ · · · ∪Dn with D ⊋ Di for all i = 1, . . . , n. By induction hypothesis each
Di is a finite union of primes. Hence D is too.
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Proof of 1. We take a different route: we use the Finite Basis Property, showing
that any upward-closed set is a finite union of principal filters.

A finite prime decomposition {P1, . . . , Pn} is minimal if Pi ⊆ Pj implies
i = j. We can now state and prove the Canonical Decomposition Theorem.

Theorem 4.4 (Canonical Decomposition). Let (X,≤) be a wqo. Any upward-
closed U (resp. downward-closedD) has a finite minimal prime decomposition. Fur-
thermore thisminimal decomposition is unique. We call it the canonical decomposition canonical decomposition

of U (resp. D).

Proof. By Lemma 4.3, any U (or D) has a finite decomposition: U (or D) =∪n
i=1 Pi. The decomposition can be assumed minimal by removing any Pi that

is strictly included in some Pj . To prove uniqueness we assume that
∪n

i=1 Pi =∪m
j=1 P

′
j are two minimal decompositions. From Pi ⊆

∪
j P

′
j , and since Pi is

prime, we deduce that Pi ⊆ P ′
ki

for some ki. Similarly, for each P ′
j there is ℓj

such that P ′
j ⊆ Pℓj . These inclusions are equalities since Pi ⊆ P ′

ki
⊆ Pℓki

re-
quires i = ℓki by minimality of the decomposition. Similarly j = kℓj for all j.
This one-to-one correspondence shows {P1, . . . , Pn} = {P ′

1, . . . , P
′
m}.

4.1.2 Ideals
Definition 4.5 (Directed Sets). A non-empty subset S of a qo (X,≤) is (up) di- directed

rected if for every x1, x2 ∈ S, there exists x ∈ S such that x1 ≤ x and x2 ≤ x.
It is (down) directed if for every x1, x2 ∈ S, there exists x ∈ S such that x1 ≥ x
and x2 ≥ x.

Definition 4.6 (Ideals and Filters). A downward-closed up directed subset of a ideal

qo (X,≤) is an ideal of X . An upward-closed down directed subset is a filter filter

of X .

We observe that every principal ideal ↓x is up directed and is therefore an
ideal, and similarly every principal filter ↑x is down directed and is therefore a
filter. Conversely, when (X,≤) is a wqo, any filter F is a principal filter: since it
is upward-closed, by the Finite Basis Property it has a finite basis of incomparable
minimal elements {x1, . . . , xn}, and since it is down directedwemust haven = 1,
i.e. F = ↑x1. However, not all ideals of a wqo are principal. For example, in
(N,≤), the setN itself is an ideal (it is up directed) and not of the form ↓n for any
n ∈ N. In the following, we focus on ideals and mean “up directed” when writing
“directed.” We write Idl(X) for the set of all ideals of X .

Example 4.7. If (A,≤) is a finite wqo, its ideals are exactly the principal ideals:
Idl(A) = {↓ a | a ∈ A}.

In the case of N, the ideals are exactly the principal ideals and the whole set
itself: Idl(N) = {↓n | n ∈ N} ∪ {N}.



72 Chapter 4. Ideals

We can now relate Definition 4.6 with the previous material. The following
proposition justifies our interest of ideals. We did not use it as a definition, since
many properties are easier to see in terms of directed downward-closed subsets.

Proposition 4.8. Let (X,≤) be a wqo.

1. The up primes are exactly the filters.

2. The down primes are exactly the ideals.

The first item is clear and we focus on the second.

Proof of “⊆”. We only have to check that a prime P is directed. Assume it is not.
Then it contains two elements x1, x2 such that ↑x1∩↑x2∩P = ∅. In other words,
P ⊆ (P ∖ ↑x1)∪ (P ∖ ↑x2). But P ∖ ↑xi is downward closed for both i = 1, 2,
so P , being prime, is included in one P ∖ ↑xi. This contradicts xi ∈ P .

Proof of “⊇”. Consider an ideal I ⊆ X . It is downward-closed hence has a canon-
ical prime decomposition I = P1 ∪ · · · ∪ Pn. Minimality of the decomposition
implies that, for all i = 1, . . . , n, Pi ̸⊆

∪
j ̸=i Pj , hence there is some xi ∈ Pi with

xi ̸∈
∪

j ̸=i Pj . If n ≥ 2, we consider the elements x1, x2 ∈ I as we have just de-
fined. By directedness of I , x1, x2 ≤ y for some y in I , i.e., in some Pj . Hence x1
and x2 are in Pj , which contradicts their construction. We conclude that n < 2.
The case n = 0 is impossible since ideals are nonempty. Hence n = 1 and I = P1

is prime.

Primality of ideals and the Canonical Decomposition Theorem are the key to
understanding the benefits of using ideal decompositions as a representation for
downward-closed subsets of a wqo. We will discuss implementations and data
structures later in Section 4.3 since this requires considering specific wqos, but
for the time being let us mention that deciding inclusion D ⊆ D′ between two
downward-closed subsets given via prime decompositions D = I1 ∪ · · · ∪ In and
D′ = I ′1∪· · ·∪ I ′m reduces to a quadratic number n×m of comparisons between
ideals thanks to the primality of ideals, see Eq. (4.2).

We conclude this section with two properties that are sometimes useful for
characterising the set of ideals of a given wqo:

Lemma 4.9. Let (X,≤) be a wqo, and let J ⊆ Idl(X) be such that every D ∈
Down(X) is a finite union of ideals from J . Then J = Idl(X).

Proof. Let I ∈ Idl(X). Since I ∈ Down(X), I = J1 ∪ . . . ∪ Jn with each Ji ∈ J .
By Lemma 4.2, I ⊆ Ji for some I , and hence I = Ji ∈ J .

Lemma 4.10 (Countability). Up(X), Down(X) and Idl(X) are countable whenX
is a countable wqo.
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Proof. Recall Lemma 1.7 showing that U ∈ Up(X) can be characterised by its
finite basis, and note that there are only countably many such bases when X is
countable. Hence Up(X) is countable, and then Down(X) too since complemen-
tation provides a bijection between Up(X) and Down(X). Finally, Idl(X) is a
subset of Down(X), hence is countable too.

4.2 Effective Well Quasi-Orders and Ideals

Our goal is to present generic algorithms based on the fundamental structural
properties of wqos and their ideals exhibited in the previous section.

This requires some basic computational assumptions on the wqos at hand.
Such assumptions are often summarised informally as “the wqo (X,≤) is effec-
tive” and their precise meaning is often defined at a later stage, when one gives
sufficient conditions based on the algorithm one is describing. This is just what
we did with Proposition 1.15 or Proposition 1.17 in Section 1.2. Sometimes the ef-
fectiveness assumptions are not spelled out formally, e.g., when one has in mind
applications where the wqo is (Nk,≤×) or (Σ∗,≤∗) which are obviously “effec-
tive” under all expected understandings.

In this chapter, we not only want to consider arbitrary “effective” wqos, we
also want to prove that combinations of these effective wqos produce wqos that
are effective too. For this purpose, giving a formal definition of effectiveness
cannot be avoided. We use a layered definition with a core notion—effective
wqos, see Definition 4.11—and the more complete notion of ideally effective wqos,
see Definition 4.12. Rather than being completely formal and talk of recursive
languages or Gödel numberings, we will allow considering more versatile data
structures like terms, tuples, graphs, etc., since we sometimes mention that an
algorithm runs in linear-time and these low-level complexity issues may depend
on the data structures one uses.

4.2.1 Effective WQOs
Definition 4.11 (Effective WQOs). An effective wqo is a wqo (X,≤) satisfying effective wqo

the following axioms:

(XR) There is a computational representation forX which is recursive (i.e., mem-
bership in X , is decidable);

(OD) The ordering ≤ is decidable (for the above representation);

(IR) There is a computational representation for the ideals of X , which is recur-
sive as well;

(ID) Inclusion of ideals is decidable.
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An effective wqo is usually provided via two recursive languages or some
other data structures, one forX and one for Idl(X), with two procedures, one for
comparing elements and one for comparing ideals.

Themotivation behind this first definition is to allow fixing the representation
of upward and downward closed sets that will be used in the rest of these notes.
Indeed, throughout the rest of the chapter, we assume that upward-closed sets
are represented by finite sequences of elements (denoting the union of principal
filters generated by said elements) and that downward-closed sets are represented
by finite sequences of ideals (again denoting their union), using the data structure
provided by (XR). Here we rely on Lemma 4.3, showing that any upward-closed
or downward-closed set can be represented in this way.

Note that, for an effective wqo, inclusion between upward-closed sets or be-
tween downward-closed sets is decidable. Indeed, assume that U and U ′ are
represented by some finite decompositions of principal filters: U =

∪
i Fi and

U ′ =
∪

j F
′
j . Then, by Lemma 4.2, one has the following equivalence:

U ⊆ U ′ iff ∀i : ∃j : Fi ⊆ F ′
j . (4.1)

So comparing upward-closed sets reduces to comparing principal filters which
is decidable in effective wqos. Exactly the same reasoning allows to compare
downward-closed sets:

D =
∪
i

Ii ⊆ D′ =
∪
j

I ′j iff ∀i : ∃j : Ii ⊆ I ′j . (4.2)

Note also that the chosen representation for Up(X) and Down(X) makes union
trivially computable. Of course, we may also be interested in computing intersec-
tions or complements, and for this we make more effectiveness assumptions.

4.2.2 Ideally Effective WQOs
Now that representations are fixed forX , Idl(X), and consequently also forUp(X)
and Down(X), our next definition lists effectiveness assumptions on more set-
theoretical operations.

Definition 4.12 (Ideally Effective WQOs). An ideally effective wqo is an effectiveideally effective wqo

wqo further equipped with procedures for the following operations:

(CF) Computing the complement of any filter F as a downward-closed set, de-
noted ¬F ,

(CI) Computing the complement of any ideal I as an upward-closed set, denoted
¬I ,

(XF) Providing a filter decomposition of X ,
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(XI) Providing an ideal decomposition of X ,

(IF) Computing the intersection of any two filters as an upward-closed set,

(II) Computing the intersection of any two ideals as a downward-closed set,

(IM) Deciding if x ∈ I , given x ∈ X and I ∈ Idl(X),

(PI) Computing the principal ideal ↓x given x ∈ X .

The procedures witnessing these axioms will be called an ideal (effective) presen-
tation of (X,≤).

Observe that assuming that intersection and complements are computable for
filters and ideals implies that it is computable for upward and downward closed
sets as well. Indeed, intersection distributes over unions, and complements of
a union of filters (resp. ideals) can be handled using complementation for filters
(resp. ideals) and intersection for ideals (resp. filters). It only remains the case of
an empty union, i.e. for complementing the empty set (which is both upward and
downward closed). This is achieved using (XF) and (XI).

Similarly, membership of x ∈ X in some upward or downward closed set
reduces to membership in one of the filters or ideals of its decomposition. Filters
membership simply uses (OD): x ∈ ↑x′ iff x ≥ x′. But for ideals, it is a priori
necessary to assume (IM). The same goes for computing principal filters and prin-
cipal ideals. Our representation of filters makes the function x 7→ ↑x trivial, but
x 7→ ↓x may be quite elaborate (even if it is easy in most concrete examples).

The previous definition obviously contains some redundancies. For instance,
ideal membership (IM) is simply obtained using (PI) and (ID): x ∈ I iff ↓x ⊆ I .
With the following proposition we show that we only need to assume four of the
eight axioms above to obtain an equivalent definition, and in the last proposition
of this section we prove that this is a minimal system of axioms.

Proposition 4.13. From a presentation of an effective wqo (X,≤) further equipped
with procedures for (CF), (II), (PI) and (XI), one can compute an ideal presentation
for (X,≤).

Proof. We explain how to obtain the missing procedures:

(IM) As mentioned above, membership can be tested using (PI) and (ID): x ∈ I
iff ↓x ⊆ I .

(CI) We actually show a stronger statement, denoted (CD), that complementing
an arbitrary downward closed set is computable. This strengthening is used
for (IF).
Let D be an arbitrary downward closed set. We compute ¬D as follows:

1. Initialise U := ∅;
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2. While ¬U ̸⊆ D do
(a) pick some x ∈ ¬U ∩ ¬D;
(b) set U := U ∪ ↑x

Every step of this high-level algorithm is computable. The complement ¬U
is computed using the description above: ¬

∪n
i=1 ↑xi =

∩n
i=1 ¬↑xi which

is computed with (CF) and (II) (or with (XI) in case n = 0, i.e., for U = ∅).
Then, inclusion ¬U ⊆ D is tested with (ID). If this test fails, then we know
¬U∩¬D is not empty. To implement step (a) we enumerate all the elements
x ∈ X , each time testing them for membership in U and in D. Eventually,
we will find some x ∈ ¬U ∩ ¬D.
To prove partial correctness we use the following loop invariant: U is up-
ward closed and U ⊆ ¬D. The invariant holds at initialisation and is pre-
served by the loop’s body since ↑x is upward closed, and since x /∈ D and
D downward-closed imply ↑x ⊆ ¬D. Thus when/if the loop terminates,
both the invariant U ⊆ ¬D and the loop exit condition ¬U ⊆ D hold.
Then U = ¬D is the desired result.
Finally, the algorithm terminates since it builds a strictly increasing se-
quence of upward closed sets, which must be finite (see Definition 1.6).

(IF) This follows from (CF) and (CD), by expressing intersection in terms of com-
plement and union.

(XF) Using (CD) we can compute ¬∅.

Remark 4.14 (On Definition 4.12). The above methods are generic but in many
cases there exist simpler and more efficient ways of implementing (CI), (IF), etc.
for a given wqo. This is why Definition 4.12 lists eight requirements instead of
just four: we will try to provide efficient implementations for all eight.Do we?Do we?

As seen in the above proof, the fact that (CF), (II), (PI) and (XI) entail (CI) is
non-trivial. The algorithm for (CD) computes an upward-closed set U from an
oracle answering queries of the form “Is U ∩ I empty?” for ideals I . This is an
instance of the Generalised Valk-Jantzen Lemma, an important tool for showing
that some upward-closed sets are computable.

The existence in our definition of redundancies as exhibited by Proposition 4.13
raises the question of whether there are other redundancies. The following propo-
sition answers negatively.

Proposition 4.15 (Halfon). There are no generic and effective way to produce a
procedure for axiom A given an effective wqo and procedures for axioms B,C and
D, where {A,B,C,D} = {(CF), (II), (PI), (XI)}.

An important result is that wqos obtained by standard constructions on sim-
pler wqos usually inherit the ideal effectiveness of their component under very



4.3. Some Ideally Effective WQOs 77

mild assumptions. We just show two simple but important examples in the next
section.

4.3 Some Ideally Effective WQOs

Our goal in this section is to argue that many wqos used in computer science are
in fact ideally effective, allowing the use of ideal-based representations and algo-
rithms for their downward-closed subsets. Our strategy is to consider the main
operations for constructing new wqos from earlier “simpler” wqos and show that
the new wqos inherit ideal effectiveness from the earlier ones. The whole sec-
tion is based on recent, still preliminary, work. In these notes we only describe in
details the simplest cases and give pointers to some more elaborate constructions.

4.3.1 Base Cases
Many basic wqos are easily seen to be ideally effective. We consider here a very
simple case that can help the reader understand how to prove such results.

Proposition 4.16. The wqo (N,≤) of natural numbers is ideally effective.

More elaborate examples, e.g., recursive ordinals or Rado’s structure, are con-
sidered in the exercises section.

Now to the proof of Proposition 4.16. Recall that Idl(N) consists of all ↓n for
n ∈ N, together with the setN itself. Ordered with inclusion, this is isomorphic to
(ω+1)∖{0}, i.e., the set of non-null ordinals up to and includingω. A natural data
structure for Idl(N) is thus to use the number “n” to denote ↓n and the symbol
“ω” to denote N.1

There remains to check that the axioms for ideal effectiveness are satisfied.
First, (XR) and (OD) are obvious since they are about the data structure for (N,≤)
itself. Also, the data structure we just provided for Idl(N) obviously satisfies (IR),
and regarding (ID) (inclusion test for the ideals), we note that it reduces to com-
paring naturals complemented with I ⊆ ω for all I ∈ Idl(N) and ω ̸⊆ n for all
n ∈ N.

To show that the remaining axioms are satisfied, we rely on Proposition 4.13
and only have exhibit four procedures:

(CF) the complement of ↑n for n > 0 is simply ↓(n−1) and is empty otherwise;

(II) the intersection of two ideals amounts to computing greatest lower bounds
in N ∪ {ω};

(PI) obtaining ↓n from n is immediate with our choice of a data structure;
1From the ordinal viewpoint where α is exactly ↓< α, it would make more sense to use n + 1

to denote ↓n, but this would go against the established practice in the counter systems literature.
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(XI) the set N itself is represented by ω.

The same easy techniques can be used to show that any finite qo and any
recursive ordinal is an ideally effective wqo. Or that Rado’s structure is, see Ex-
ercise 4.8.

4.3.2 Sums and Products

Recall that, when A1 and A2 are wqos, the disjoint sum A1 + A2—see (2.5–2.7)
for the definition—is a wqo. The following proposition is easy to prove (see Exer-
cise 4.4):

Proposition 4.17 (Disjoint Sum). The ideals of A1 + A2 are all sets of the form
{i} × I for i = 1, 2 and I an ideal of Ai. Thus Idl(A1 +A2) ≡ Idl(A1) + Idl(A2).

Furthermore, if A1 and A2 are ideally effective then A1 +A2 is.

Cartesian products behave equally nicely:

Proposition 4.18 (Cartesian Product). The ideals ofA1×A2 are all sets of the form
I1× I2 for I1 ∈ Idl(A1) and I2 ∈ Idl(A2). Thus Idl(A1×A2) ≡ Idl(A1)× Idl(A2).

Furthermore, if A1 and A2 are ideally effective then A1 ×A2 is.

Proof Sketch. We leave the characterisation of Idl(A1 ×A2,≤×) as an exercise.
Regarding effectiveness, we assume that we are given an ideal presentation of

each basic Ai set and use these procedures to implement an ideal presentation of
X

def
= A1 × A2. Clearly, elements of X , and ideals of Idl(X), can be represented

as pairs of basic elements and as pairs of basic ideals respectively.
All the required procedures are very easy to provide. For example (CF) for X

relies on
¬(F1 × F2) = (¬F1)×A2 ∪A1 × (¬F2) . (4.3)

We now use (CF) at the basic level to replace each ¬Fi in (4.3) by an ideal decom-
position ¬Fi = Ii,1 ∪ · · · ∪ Ii,ℓi , and also (XF) to replace each Ai by some ideal
decomposition. Once these replacements are done, there only remains to invoke
distributivity of cartesian product over unions. (We let the reader check that none
of the other required procedures is more involved than this implementation for
(CF).)

With the above, one sees why N∪ ω is such an ubiquitous set in the VAS and
Petri Net literature: handling order-closed sets of configurations is like handling
list of tuples in (N ∪ ω)k.

The following proposition shows two other simple instances of hierarchical
constructions that accommodate our ideally effective wqos.



4.3. Some Ideally Effective WQOs 79

Proposition 4.19 (More Sums and Products). If A1 and A2 are ideally effective,
then the lexicographic sum A1 +lex A2 and the lexicographic product A1 ×lex A2lexicographic sum

lexicographic product are ideally effective.

For completeness, we should recall 2 that A1 +lex A2 and A1 ×lex A2 have
the same support set as, respectively, the disjoint sum A1 +A2 and the cartesian
product A1 ×A2, but their ordering is more permissive:

⟨i, a⟩ ≤A1+lexA2 ⟨j, b⟩
def⇔ i < j or i = j ∧ a ≤Ai b , (4.4)

⟨a, b⟩ ≤A1×lexA2 ⟨a′, b′⟩
def⇔ a <A1 a′ or a ≡A1 a′ ∧ b ≤A2 b′ . (4.5)

We refer to Exercises 4.6 and 4.7 for a proof of Proposition 4.19: the reader should
easily work out a characterisation of the ideals of A1 +lex A2 and A1 ×lex A2 in
terms of the basic ideals in A1 and A2.

4.3.3 Seqence Extensions
Let us start with some finite alphabet, say Σ = {a, b, c, d} and consider the ideals
of (Σ∗,≤∗). As usual, they include all principal ideals, of the form ↓w for a word
w ∈ Σ∗. We note that all these ↓w are finite languages so these cannot be all the
ideals, see Exercise 4.1.

For starters, Σ∗ itself is an infinite ideal: one only has to check that this is a
directed subset.

Another infinite subset is, say, S = {ε, ab, abab, ababab, . . .}, the language
denoted by the regular expression (ab)∗. The reader can check that S is directed
but it is not an ideal (not downward-closed). However its downward-closure ↓S
obviously is. Note that ↓S coincide with (a + b)∗, the set of words that can be
written using only a’s and b’s. One can generalise this observation: for any subset
Γ ⊆ Σ of letters, Γ∗ is an ideal of Σ∗.

Let us continue our exploration. Downward-closed sets can be obtained by
taking the complement of an upward-closed set. So let us look at, say, D = Σ∗ ∖
↑ ab, i.e., all words that do not have ab as a subword. One sees that D consists of
all words with no a’s, i.e., (b + c + d)∗, all words with no b’s, i.e., (a + c + d)∗,
and all words possibly having a’s and b’s but where the a’s are after the b’s, i.e.,
(b+ c+ d)∗(a+ c+ d)∗. Actually, that third part contains the earlier two and we
can summarise with

D
def
= Σ∗ ∖ ↑ ab = (b+ c+ d)∗(a+ c+ d)∗ . (4.6)

NowD is an ideal. Oneway to show this is to recall that (b+c+d)∗ and (a+c+d)∗,
being some Γ∗, are ideals and apply the following lemma.

Lemma 4.20. For any wqo (X,≤), if I, J are ideals of (X∗,≤∗), their concatena-
tion I · J is an ideal too.

2See also Exercise 1.4.
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Proof Sketch. Let us check that I · J is directed. For this consider two words
u, v ∈ I · J . They can be factored under the form u = u1u2 and v = v1v2 for
some u1, v1 ∈ I and u2, v2 ∈ J . Since I is directed, it contains some w1 with
u1 ≤∗ w1 and u2 ≤∗ w2. Similarly J contains some w2 above u2 and v2. We
deduce u ≤∗ w1w2 ≥∗ v. And since w1w2 ∈ I · J , we have proved that I · J is
directed. One shows similarly that I ·J is downward-closed because I and J are,
and that it is nonempty since I and J are.

Observe that Lemma 4.20 applies to (X∗,≤∗) with an arbitrary underlying
wqo (X,≤), not just a finite alphabet with trivial ordering. This suggests gener-
alising our earlier observation that Γ∗ is an ideal of (Σ∗,≤∗):

Lemma 4.21. For any wqo (X,≤), if D ⊆ X is downward-closed then D∗ is an
ideal of (X∗,≤∗).

We are now ready to characterise the set of ideals for arbitrary sequence ex-
tensions. Fix a wqo (X,≤).

Proposition 4.22 (Ideals of (X∗,≤∗)). The ideals of (X∗,≤∗) are exactly the con-
catenations A1 · · ·An of atoms, where an atom of X∗ is any language of the formatoms

A = D∗ for some downward-closed D ∈ Down(X), or of the form A = I + ε for
some ideal I of X .

Here “I + ε” is our denotation for the set of all sequences of length 1 that
consists of a “letter” from I , together with the empty sequence ε.

Proof Sketch. We let the reader check that any I + ε atom is an ideal of X∗, and
we saw that theD∗ atoms too are ideals (Lemma 4.21), and that all concatenations
(we also say products) of atoms are ideals (Lemma 4.20).

To show that these products generate all of Idl(X∗), we prove that the com-
plements of upward-closed sets can be expressed as a finite union of products of
atoms. Since upward-closed sets have a finite basis, it suffices to show that, (1)
for any sequence w = x1 · · ·xn in X∗, the complement X∗ ∖ ↑w is a product,
and that (2) finite unions of products are closed under intersection.

For (1) we assume |w| ≥ 1 and use

X∗ ∖ ↑X∗(x1 · · ·xn) = (X ∖ ↑X x1)
∗ · · · (X ∖ ↑X xn)

∗ , (4.7)

generalising the earlier example in (4.6). We note that any (X ∖ ↑xi)∗ is indeed
D∗ for some D ∈ Down(X). The special case |w| = 0 leads to X∗ ∖ ↑X∗ ε = ∅.
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For (2) we use induction on the length of products, distributivity of concate-
nation over union, and basic language-theoretical properties like

D∗ ·P ∩ D′∗ ·P ′ =
(D ∩D′)∗ ·[D∗ ·P ∩ P ′]
∪ (D ∩D′)∗ ·[P ∩ D′∗ ·P ′] ,

(I + ε)·P ∩ (I ′ + ε)·P ′ = [(I ∩ I ′) + ε]·[P ∩ P ′] , (4.8)
(I + ε)·P ∩ D′∗ ·P ′ = [(I ∩D′) + ε]·[P ∩ D′∗ ·P ′] .

We are now ready to state and prove the main result of this section.

Theorem 4.23. If (X,≤) is ideally effective then (X∗,≤∗) is.

To prove that (X∗,≤∗) is ideally effective, we have to provide a series of
procedures and data structures. As data structure for X∗, we shall use finite se-
quences of elements of X , relying on the fact that X is recursive by assumption.
Deciding ≤∗ is easy once we know, by assumption, how to compare elements
occurring in sequences.

The data structure for Idl(X∗) is only slightly more involved. We rely on
Proposition 4.22 and represent products of atoms like A1 · · ·An by sequences,
using the representation of ideals of X for atoms of the form I + ε, and finite
unions of ideals of X for the downward-closed subsets of X that generate atoms
of the form D∗.

The next step is to show that inclusion between ideals of X∗ is decidable (as-
suming the above representation). First we see that inclusion tests between atoms
of X∗ reduce to inclusion tests between ideals and downward-closed subsets of
X , thanks to the following equivalences.

I + ε ⊆ I ′ + ε iff I ⊆ I ′ D∗ ⊆ I + ε iff D ⊆ ∅
I + ε ⊆ D∗ iff I ⊆ D D∗ ⊆ D′∗ iff D ⊆ D′

Building on this, one can compare products via the following equivalences
(proofs omitted), where P, P ′ denote arbitrary products, and where ε is the empty
product.

ε ⊆ P always
(I + ε).P ⊆ ε never

D∗.P ⊆ ε iff D = ∅ ∧ P ⊆ ε

(I + ε).P ⊆ (I ′ + ε).P ′ iff
[
I ⊆ I ′ ∧ P ⊆ P ′] ∨ [(I + ε).P ⊆ P ′]

(I + ε).P ⊆ D∗.P ′ iff
[
I ⊆ D ∧ P ⊆ P ′] ∨ [(I + ε).P ⊆ P ′]

D∗.P ⊆ (I ′ + ε).P ′ iff
[
D = ∅ ∧ P ⊆ (I + ε).P ′] ∨ [D∗.P ⊆ P ′]

D∗.P ⊆ D′∗.P ′ iff
[
D ⊆ D′ ∧ P ⊆ D′∗.P ′] ∨ [D∗.P ⊆ P ′]

Note that the above equalities directly lead to a dynamic programming procedure
that will perform at most n2 tests between atoms when comparing two ideals that
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are denoted by products of at most n atoms each.

Thus far, we have provided an effective presentation for (X∗,≤∗) and (Idl(X∗),⊆).
We continue with

(CF): Equation (4.7) can be turned into an algorithm for expressing the comple-
ment X∗ ∖ ↑w of any principal filter ↑w as a union of ideals. Here the
assumption that (X,≤) is ideally effective is used to express X ∖ x as a
downward-closed subset of X .

(II): Eq. (4.8) can be turned into an algorithm for computing the intersection of
ideals of X∗. It only uses the primitive for the intersection of downward-
closed sets inX , and simple procedures for distributing concatenations over
unions.

(PI): For an arbitrary w = x1 · · ·xn, the (principal) ideal ↓w is represented by
the product (↓x1 + ε) · · · (↓xn + ε), where now a downward-closure of
the form ↓xi returns an ideal of X . We thus rely on the procedure that
witnesses (PI) for (X,≤).

(XI): ExpressingX∗ with ideals is easy since this is just one singleD∗ atom: recall
that X ∈ Down(X). We only need to express X itself as a finite union of
filters of X , i.e., rely on (XI) for X .

The proof ofTheorem 4.23 is completed since, thanks to Proposition 4.13, we have
provided enough procedures to know that an ideal presentation of (X∗,≤∗) can
be obtained from an ideal presentation of (X,≤).

4.4 Some Algorithmic Applications of Ideals

We present in this section two applications of wqo ideals to the Cover problem
for WSTS.

4.4.1 Forward Coverability
Our first ideal-based algorithm for coverability is a forward coverability one: it
relies on the effectiveness of Post computations to avoid requiring effective pred-
bases. Compared to the backward algorithm of Section 1.2.2 on page 5, one ad-
vantage is that it is often easier in practice to compute successor states than pre-
decessor states. Another interest is that, since the algorithm proceeds forward
from the initial state, it is likely to prune the search space more efficiently.

Consider an instance of Cover: we are given a WSTS ⟨S,→,≤⟩ and a source
state s and a target state t from S. We shall assume that ⟨S,≤⟩ is effective in the
sense of Definition 4.11 plus (PI), and that it is ideally Post-effective, meaning thatideally Post-effective
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Post computations as defined in (1.2) on page 5 can be carried over ideals. More
precisely, if we define

Post∃(I)
def
= {s2 ∈ S | ∃s1 ∈ I, s1 −→ s2} , (4.9)

then we require the canonical decomposition of ↓ Post∃(I) to be computable for
all I ∈ Idl(S).

Proposition 4.24. Coverability is decidable for ideally Post-effective WSTS with
(PI).

We proceed by showing the problem to be both recursive and co-recursive
and thus decidable. We thus exhibit two procedures that will be run in parallel:
the first one attempts to show that s cover t, while the second attempts to prove
that s does not cover t.

Proof of recursivity. Our first procedure computes a sequence of downward-closed
sets

D0
def
= ↓ s Dn+1

def
= ↓ Post∃(Dn) (4.10)

until t ∈ Dn. These operations are effective using (PI), (ID), and the computability
of ↓ Post∃(D) = ↓ Post∃(I1) ∪ · · · ∪ ↓ Post∃(Iℓ) for any downward-closed D =
I1 ∪ · · · ∪ Iℓ. Regarding correctness, if s = s0 → s1 → · · · → sn ≥ t, then for all
0 ≤ i ≤ n, si ∈ Di and thus the procedure will terminate; conversely, if t ∈ Dn

for some n, then there exists sn ∈ Dn and s′n−1 ∈ Dn−1 with s′n−1 → sn ≥ t,
which in the same way is such that there exists sn−1 ∈ Dn−1 and s′n−2 ∈ Dn−2

such that s′n−2 → sn−1 ≥ s′n−1, etc. We can therefore exhibit a sequence s0 ≥
s′0 → s1 ≥ s′1 → s2 ≥ s′2 → · · · → sn ≥ t with si ∈ Di for all i. By
compatibility, we can delay all the≥ relations above until the very end and exhibit
a coverability witness.

Proof of co-recursivity. Our second procedure enumerates downward-closed sets
D ∈ Down(S) until we find a (forward) inductive invariant, i.e. D such that
↓ Post∃(D) ⊆ D, s ∈ D, and t ̸∈ D. All these operations are effective using (IR),
(PI), (CI), and the computability of the canonical decomposition of ↓ Post∃(D).

The procedure halts if and only if s cannot cover t. Indeed, if it halts, then
Post∃(D) ⊆ D. Defining Post∗∃(D)

def
= {s2 ∈ S | ∃s1 ∈ D, s1 →∗ s2}, this shows

that ↓ Post∗∃(D) ⊆ D. Therefore t ̸∈ ↓ Post∗∃(s) ⊆ D, which is the equivalent
to s not covering t. Conversely, it suffices to show that ↓ Post∗∃(s) is an induc-
tive invariant, and thus it suffices to show that ↓ Post∃(↓ Post∗∃(s)) ⊆ ↓ Post∗∃(s).
Consider for this some s′2 ∈ ↓ Post∃(↓ Post∗∃(s)): there exist s2, s1, and s′1 such
that s →∗ s1 ≥ s′1 → s2 ≥ s′2. By compatibility, there exists s′′2 ≥ s2 such
that s1 → s′′2 , i.e. such that s →∗ s′′2 ≥ s′2, which shows that s′2 belongs to
↓ Post∗∃(s).
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Example 4.25 (VAS). By propositions 4.16 and 4.18, Nd along with the product
ordering is ideally effective, with ideal representations in (N ∪ {ω})d. In order
to apply Proposition 4.24 to VASS, we merely have to show that they are ideally
Post-effective. Observe for this that, for any u in (N ∪ {ω})d,

↓ Post∃(u) = {u+ a | a ∈ A} (4.11)

where ω+ k = ω for all k ∈ Z. This illustrates the fact that Post∃(I) is often easy
to compute “by continuity.”

4.4.2 Dual Backward Coverability

Our second algorithm for Cover proceeds like the backward algorithm of Sec-
tion 1.2.2 on page 5, but manipulates the complements D0 ⊇ D1 ⊇ · · · of the
upward-closed sets U0 ⊆ U1 ⊆ · · · defined in (1.4) on page 6. In other words,
given a Cover instance comprising a WSTS ⟨S,→,≤⟩ and two states s and t, the
algorithm computes

D0
def
= S ∖ ↑ t Dn+1

def
= Dn ∩ Pre∀(Dn) , (4.12)

where
Pre∀(D)

def
= {s1 ∈ S | ∀s2 ∈ S, s1 → s2 implies s2 ∈ D}. (4.13)

In order to carry the operations in (4.12), we rely on (CF) to obtain the canonical
decomposition for D0, and on the fact that

Pre∀(D) = S ∖ Pre∃(S ∖D) (4.14)

along (CI) and (IF) with the effective pred-basis, followed by (CF) and (II) to obtain
the decomposition for Dn+1 given that of Dn. Finally, the descending sequence
(4.12) must eventually stabilise to Pre∗∀(D0) over the wqo (S,≤), and s covers t if
and only if s ̸∈ Pre∗∀(D0), which can be decided by (IM). Hence

Proposition 4.26. Cover is decidable for ideally effective WSTS with effective pred-
basis.

VAS Coverability
Proposition 4.26 does not improve over Proposition 1.17, since it has more strin-
gent requisites. However, this dual view of the backward coverability algorithm
sometimes exhibits properties that were hidden in its usual presentation. As we
shall see, in the case of VAS, it allows to lower the Ackermannian upper bounds
of Section 2.2.2 on page 33 down to 2ExpTime. We begin by investigating the
general properties of the dual backward algorithm, before focusing on the case of
VAS.
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Proper Ideals. Consider a computation D0 ⊋ D1 ⊋ · · · ⊋ Dn = Dn+1 of the
dual backward algorithm, where each of the Dk is represented by its canonical
decomposition. By similar arguments to those of Section 2.2.2, at each refinement
step Dk ⊋ Dk+1 of the algorithm, some of the ideals from the canonical de-
composition ofDk—which we call proper—might be removed, while others might proper ideal

remain untouched in the decomposition ofDk+1. Sequences of such proper ideals
I0, I1, . . . , In−1 are necessarily bad for inclusion.

Put differently, an ideal is proper in Dk if and only if it intersects the set of
elements excluded between steps k and k+1: by basic set operations, first observe
that (4.12) can be restated using

Dk+1 = Dk ∖ {s1 ∈ Dk | ∃s2 ̸∈ Dk . s1 → s2} . (4.15)

Moreover, noting D−1
def
= S, s2 in (4.15) must belong to Dk−1, or s1 would have

already been excluded before step k. We have therefore Dk+1 = Dk ∖Ek where

E−1
def
= ↑ t , Ek

def
= {s1 ∈ Dk | ∃s2 ∈ Ek−1, s1 → s2} , (4.16)

and an ideal Ik is proper in Dk if and only if Ik ∩ Ek ̸= ∅.

Lemma 4.27 (Proper Transition Sequences). If Ik+1 is a proper ideal in Dk+1,
then there exists J in the canonical decomposition of ↓ Post∃(Ik+1) and Ik a proper
ideal of Dk such that J ⊆ Ik.

Proof. By the previous remark, Ik+1 ∩ Ek+1 ̸= ∅. Thus ↓ Post∃(Ik+1) ∩ Ek ̸= ∅
by (4.16), and there exists J from the canonical decomposition of ↓ Post∃(Ik+1)
such that J ∩ Ek ̸= ∅.

Since Ik+1 ⊆ Dk+1 ⊆ Pre∀(Dk) by (4.12), we also know that Post∃(Ik+1) ⊆
Dk. By ideal irreducibility, it means that J ⊆ Ik for some ideal Ik from the
decomposition of Dk. Observe finally that Ik ∩ Ek ⊇ J ∩ Ek ̸= ∅, i.e. that Ik is
proper.

ω-Monotonicity. Let us turn now to the specific case of VAS. Our instance of
Cover is thus a d-dimensional VAS ⟨x0,A⟩ and a target configuration t in Nd.

As mentioned in Example 4.25, the ideals of VASS configurations can be rep-
resented through elements of (N ∪ {ω})d. For u in (N ∪ {ω})d, its ω-set is the ω-set

subset ω(u) of {1, . . . , d} such that u(i) = ω if and only if i ∈ ω(u). We say
that a descending chain D0 ⊋ D1 ⊋ · · · ⊋ Dℓ of downward-closed subsets of
Nd is ω-monotone if for all 0 ≤ k < ℓ − 1 and all proper ideals vk+1 in the ω-monotone

canonical decomposition of Dk+1, there exists a proper ideal vk in the canonical
decomposition of Dk such that ω(vk+1) ⊆ ω(vk).

Lemma 4.28 (VAS Descending Chains are ω-Monotone). The descending chains
computed by the dual backward coverability algorithm for VAS are ω-monotone.
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Proof. Let D0 ⊋ D1 ⊋ · · · ⊋ Dℓ be the descending chain computed for a VASS.
Suppose 0 ≤ k < ℓ− 1 and vk+1 is a proper ideal in the decomposition of Dk+1.
By Lemma 4.27 and (4.11), there exists a proper ideal vk in the decomposition of
Dk such that vk+1 + a ≤× vk for some a in A. We conclude that ω(vk+1) ⊆
ω(vk).

Control. As in Chapter 2, in order to derive combinatorial statements, we need
to restrict our attention to controlled sequences of downward-closed subsets. We
use as in Section 2.1 the infinity norm for ideal representations in (N ∪ {ω})d:
∥v∥ def

= max1≤i≤d|v(i)<ω v(i), and the maximal norm ∥D∥ def
= max ∥Ij∥ over the

ideals in the canonical decomposition of downward-closed sets D =
∪

j Ij . We
can observe that the sequence D0, D1, . . . constructed by the dual backward al-
gorithm according to (4.12) is controlled. Let ∥A∥ def

= maxa∈A ∥a∥; we rely for this
on ⁇⁇:

Lemma 4.29 (Control for VAS). The descending chain D0 ⊋ D1 ⊋ · · · is (g, n)-
controlled for g(x) def

= x+ ∥A∥ and n def
= ∥t∥.

Proof. The fact that ∥D0∥ ≤ ∥t∥ follows from analysing (CF). Regarding the con-
trol function g, observe that taking unions and intersections of ideals and filters
does not increase the norm. The only source of growth stems from pb computa-
tions: ∥Dk+1∥ ≤ ∥Dk∥+ ∥A∥.

Upper Bound. We are now in position to state a refinement of⁇ for ω-monotone
controlled descending chains. For a control function g:N → N, define the func-
tion g̃:N2 → N by induction on its first argument:

g̃(0, n)
def
= 1 , g̃(m+ 1, n)

def
= g̃(m,n) + (gg̃(m,n)(n) + 1)m+1 . (4.17)

Theorem 4.30 (Length Function Theorem for ω-Monotone Descending Chains).
Any (g, n)-controlled ω-monotone descending chainD0 ⊋ D1 ⊋ · · · of downward-
closed subsets of Nd is of length at most g̃(d, n).

Proof. Note thatDℓ the last element of the chain has the distinction of not having
any proper ideal, hence it suffices to bound the index k of the last set Dk with a
proper ideal vk, and add one to get a bound on ℓ. We are going to establish by
induction on d− |I| that if vk is a proper ideal from the canonical decomposition
of Dk and its ω-set is I , then k < g̃(d− |I|, n), which by monotonicity of g̃ in its
first argument entails k < g̃(d, n) as desired.

For the base case, |I| = d implies that vk is the vector with ω’s in every
coordinate, which can only occur in D0. The inductive step is handled by the
following claim, when setting k < g̃(d − |I| − 1, n) by induction hypothesis for
the last index with a proper ideal whose ω-set strictly includes I :
Claim 4.30.1. Let I and k < k′ be such that:
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(i) for all j ∈ {k+1, . . . , k′− 1}, the decomposition of Dj does not contain a
proper ideal whose ω-set strictly includes I ;

(ii) the decomposition of Dk′ contains a proper ideal whose ω-set is I .

Then we have k′ − k ≤ (∥Dk+1∥+ 1)(d−|I|).
For a proof, from assumption (ii), by applying the ω-monotonicity for j =

k′ − 1, k′ − 2, . . . , k + 1 and due to assumption (i), there exists a proper ideal vj
in the decomposition of Dj and such that ω(vj) = I for all j ∈ {k + 1, . . . , k′}.
Since they are proper, those k′ − k vectors are mutually distinct.

Consider any such vj . Since Dk+1 ⊇ Dj , by ideal irreducibility there ex-
ists a vector uj in the decomposition of Dk+1 such that vj ≤× uj . We have
that ω(uj) = I , since otherwise uj would be proper at Dj′ for some j′ ∈ {k +
1, . . . , j − 1}, which would contradict assumption (i). Hence ∥vj∥ ≤ ∥uj∥ ≤
∥Dk+1∥.

To conclude, note that there can be at most (∥Dk+1∥ + 1)(d−|I|) mutually
distinct vectors in Nd

ω with I as ω-set and norm bounded by ∥Dk+1∥.

Finally, putting together Lemma 4.29 (control for VAS), Lemma 4.28 (ω-monotonicity),
and Theorem 4.30 (lengths of controlled ω-monotone descending chains), we ob-
tain that the backward coverability algorithm for VAS runs in 2ExpTime, and in
pseudo-polynomial time if the dimension d is fixed.

Corollary 4.31. For any d-dimensional VAS A and target vector t, the backward
coverability algorithm terminates after at most ((∥A∥+ 1)(∥t∥+ 2))(d+1)! steps.

Proof. Let h(m,n) = g̃(m,n)(∥A∥ + 1)(n + 2) where g(x) = x + ∥A∥. We
have h(m + 1, n) ≤ (h(m,n))m+2, so g̃(m,n) ≤ h(m,n) ≤ ((∥A∥ + 1)(n +
2))(m+1)!.

Exercises
Exercise 4.1 (Finite ideals). Let (X,≤) be a wqo and I ⊆ X one of its ideals.

(1) Show that if I is finite then I is a principal ideal.

(2) Is the reciprocal true?

(3) Show that if X is infinite some of its ideals are infinite too.

Exercise 4.2 (Ideals of ordinals). What are the ideals of α, an arbitrary ordinal?

Exercise 4.3 (Rado’s Structure). (1) What are the ideals of (R,≤R), Rado’s structure seen
in Exercise 1.11 ?
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(2) Is (Idl(R),⊆) a wqo?

Exercise 4.4 (Ideals of Disjoint Sums). We prove Proposition 4.17 in steps.

(1) Show that the ideals of A1 +A2 are all sets of the form {i} × I for i = 1, 2 and I an
ideal of Ai.

(2) Show that (A1 +A2,≤+) is effective when (A1,≤1) and (A2,≤2) are.

(3) Further show that (A1 + A2,≤+) is ideally effective when (A1,≤1) and (A2,≤2)
are. One may rely on Proposition 4.13.

Exercise 4.5 (Ideals of Cartesian Products). (1) Prove the first part of Proposition 4.18:
the ideals of (A1×A2,≤×) are exactly the sets of the form I1×I2 for I1 ∈ Idl(A1,≤1)
and I2 ∈ Idl(A2,≤2).

(2) Complete the proof of the second part of Proposition 4.18: assume that A1 and A2

are ideally effective and show that A1 × A2 has procedures witnessing (II), (PI), and
(XI).

Exercise 4.6 (Ideals of Lexicographic Sums). In this exercise we prove the first half of⋆
Proposition 4.19.

(1) Show that Idl(A1 +lex A2,⊆) is isomorphic to Idl(A1,⊆) +lex Idl(A2,⊆).

(2) Show that A1 +lex A2 is effective when A1 and A2 are.

(3) Show that A1 +lex A2 is ideally effective when A1 and A2 are.

Exercise 4.7 (Ideals of Lexicographic Products). In this exercise we prove the second half⋆
of Proposition 4.19.

(1) What are the ideals of A1 ×lex A2?

(2) Show that A1 ×lex A2 is effective when A1 and A2 are.

(3) Show that A1 ×lex A2 is ideally effective when A1 and A2 are.

Exercise 4.8 (More Ideally EffectiveWQOs). In the following, one can use Proposition 4.13
to shorten the proof.

(1) Show that if α is a recursive ordinal then it is fully effective (in the sense of Defini-
tion 4.12).

(2) Show that if (Q,≤) is any finite qo then it is fully effective. For this question you are
required to provide uniform algorithms, parameterized by a canonical representation
of (Q,≤), e.g., where one gives ≤ via a Boolean n× n matrix for n = |Q|.

(3) Show that Rado’s structure is ideally effective.

Exercise 4.9 (Ideals of (X∗,≤∗)). We complete the proof of Proposition 4.22.
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(1) Show that if I is an ideal of (X,≤), and D ⊆ X is a downward-closed subset of X ,
then I + ε and D∗ are ideals of (X∗,≤∗).

(2) Prove Eq. (4.7): for w ∈ X∗ of the form w = x1 · · ·xn, the complement ¬↑X∗ w
is the product D∗

x1
· · ·D∗

xn
where Dx denotes the downward-closed subset ↓< x, i.e.,

¬↑X x, of X .
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This chapter heavily borrows from (Goubault-Larrecq et al., 2016).
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e.g. (Fräıssé, 1986, chapter 10). Exercise 4.3 is from (Finkel and Goubault-Larrecq, 2012,
Sect. 4).
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Forward Coverability. Section 4.4.1 from Blondin et al. (2014) (Blondin et al., 2016)

Dual Backward Coverability. Section 4.4.2 from (Lazić and Schmitz, 2015a) (Lazić and
Schmitz, 2016)
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Although the interested reader can easily find comprehensive accounts on subre-
cursive hierarchies (Rose, 1984; Fairtlough andWainer, 1998; Odifreddi, 1999), we
found it convenient to gather in this self-contained appendix many simple proofs
and technical results, many too trivial to warrant being published in full, but still
useful in the day-to-day work with hierarchies. We also include some results of
Cichoń andWainer (1983) and Cichoń and Tahhan Bittar (1998), which are harder
to find in the literature, and the definition of lean ordinal terms.

Themain thrust behind subrecursive functions is to obtain hierarchies of com-
putable functions that lie strictly within the class of all recursive functions. An
instance is the extended Grzegorczyk hierarchy (Fα)α. Such hierarchies are typ-
ically defined by generator functions and closure operators (e.g. primitive recur-
sion, and more generally ordinal recursion), and used to draw connections with
proof theory, computability, speed of growth, etc.

Our interest however lies mostly in the properties of particular functions in
this theory, like the fast-growing functions (Fα)α or the Hardy functions (Hα)α,
which we use as tools for the study of the length of bad sequences.

A.1 Ordinal Terms

The reader is certainly familiar with the notion of Cantor normal form (CNF) for
ordinals below ε0, which allows towrite any ordinal as an ordinal termα following
the abstract syntax

α ::= 0 | ωα | α+ α .
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We take here a reversed viewpoint: our interest lies not in the “set-theoretic” or-
dinals, but in the set Ω of all ordinal terms. Each ordinal term α is a syntactic
object, and denotes a unique ordinal ord(α) by interpretation into ordinal arith-
metic, with + denoting direct sum. Using this interpretation, we can define a
well-founded ordering on terms by α′ ≤ α if ord(α′) ≤ ord(α). Note that the
mapping of terms to ordinals is not injective, so the ordering on terms is not an-
tisymmetric.

In this reversed viewpoint, ordinal terms might be in CNF, i.e. sums

α = ωβ1 + · · ·+ ωβm

with α > β1 ≥ · · · ≥ βm ≥ 0with each βi in CNF itself. We also use at times the
strict form

α = ωβ1 · c1 + · · ·+ ωβm · cm
where α > β1 > · · · > βm ≥ 0 and ω > c1, . . . , cm > 0 and each βi in strict
form—we call the ci’s coefficients. Terms α in CNF are in bijection with their
denoted ordinals ord(α). We write CNF(α) for the set of ordinal terms α′ < α
in CNF; thus CNF(ε0) is a subset of Ω in our view. Having a richer set Ω will be
useful later in Section A.8.1

We write 1 for ω0 and α · n for
n times︷ ︸︸ ︷

α+ · · ·+ α. We work modulo associativity
((α + β) + γ = α + (β + γ)) and idempotence (α + 0 = α = 0 + α) of +. An
ordinal term α of form γ + 1 is called a successor ordinal term. Otherwise, if not
0, it is a limit ordinal term, usually denoted λ. Note that a ord(0) = 0, ord(α+1)
is a successor ordinal, and ord(λ) is a limit ordinal if λ is a limit ordinal term.

A.2 Fundamental Seqences and Predecessors

Fundamental Seqences. Subrecursive functions are defined through assign-
ments of fundamental sequences (λx)x<ω for limit ordinal terms λ in Ω, verifying
λx < λ for all x in N and λ = sup

x
λx, i.e. we are interested in a particular

sequence of terms of which λ is a limit.
A standard way of obtaining fundamental sequences with good properties for

every limit ordinal term λ is to fix a particular sequence (ωx)x<ω for ω and to
define

(γ + ωβ+1)x
def
= γ + ωβ · ωx , (γ + ωλ)x

def
= γ + ωλx . (A.1)

We assume ωx to be the value in x of some monotone and expansive function s,
typically s(x) = x—which we will hold as the standard one—or s(x) = x + 1.

1Richer ordinal notations can be designed, notably the structured ordinals of Dennis-Jones and
Wainer (1984); Fairtlough and Wainer (1992) below ε0, and of course richer notations are required
in order to go beyond ε0.
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We will see in Section A.6 how different choices for ωx influence the hierarchies
of functions built from them, in a simple case. Observe that, if s(x) > 0, then
λx > 0.

Predecessors. Given an assignment of fundamental sequences and x in N, one
defines the (x-indexed) predecessor Px(α) < α of an ordinal α ̸= 0 in Ω as

Px(α+ 1)
def
= α , Px(λ)

def
= Px(λx) . (A.2)

Lemma A.1. Assume α > 0 in Ω. Then for all x in N s.t. ωx > 0,

Px(γ + α) = γ + Px(α) , (A.3)
Px(ω

α) = ωPx(α) · (ωx − 1) + Px(ω
Px(α)) . (A.4)

Proof of (A.3). By induction over α. For the successor case α = β + 1, this goes

Px(γ + β + 1)
(A.2)
= γ + β

(A.2)
= γ + Px(β + 1) .

For the limit case α = λ, this goes

Px(γ + λ)
(A.2)
= Px((γ + λ)x)

(A.1)
= Px(γ + λx)

ih
= γ + Px(λx)

(A.2)
= γ + Px(λ) .

Proof of (A.4). By induction over α. For the successor case α = β + 1, this goes

Px(ω
β+1)

(A.2)
= Px((ω

β+1)x)
(A.1)
= Px(ω

β · ωx)
(A.3)
= ωβ · (ωx − 1) + Px(ω

β)

(A.2)
= ωPx(β+1) · (ωx − 1) + Px(ω

Px(β+1)) .

For the limit case α = λ, this goes

Px(ω
λ)

(A.2)
= Px((ω

λ)x)
(A.1)
= Px(ω

λx)
ih
= ωPx(λx) · (ωx − 1) + Px(ω

Px(λx))

(A.2)
= ωPx(λ) · (ωx − 1) + Px(ω

Px(λ)) .

A.3 Pointwise Ordering and Lean Ordinals

Pointwise ordering. An issue with ordinal-indexed hierarchies is that they are
typically not monotonic in their ordinal index. A way to circumvent this problem
is to refine the ordinal ordering; an especially useful refinement is≺x defined for
x ∈ N as the smallest transitive relation satisfying (see Dennis-Jones and Wainer
(1984); Fairtlough and Wainer (1992); Cichoń and Tahhan Bittar (1998)):

α ≺x α+ 1 , λx ≺x λ . (A.5)

In particular, using induction on α, one immediately sees that

0 ≼x α , (A.6)
Px(α) ≺x α . (A.7)
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The inductive definition of ≺x implies

α′ ≺x α iff
{

α = β + 1 is a successor and α′ ≼x β, or
α = λ is a limit and α′ ≼x λx.

(A.8)

Obviously≺x is a restriction of<, the strict linear quasi-ordering over ordinal
terms. For example, ωx ≺x ω but ωx + 1 ̸≺x ω, although ord(ωx + 1) is by
definition a finite ordinal, smaller than ord(ω).

The ≺x relations are linearly ordered themselves

≺0 ⊆ · · · ⊆ ≺x ⊆ ≺x+1 ⊆ · · · (A.9)

and, over terms in CNF, < can be recovered by(∪
x∈N
≺x

)
= < . (A.10)

We will soon prove these results in Corollary A.4 and Lemma A.5, but we need
first some basic properties of ≺x.

Lemma A.2. For all α, α′, γ in Ω and all x in N

α′ ≺x α implies γ + α′ ≺x γ + α , (A.11)
ωx > 0 and α′ ≺x α imply ωα′ ≺x ωα . (A.12)

Proof. All proofs are by induction over α (NB: the case α = 0 is impossible).
(A.11): For the successor case α = β + 1, this goes through

α′ ≺x β + 1 implies α′ ≼x β (by (A.8))

implies γ + α′ ≼x γ + β
(A.5)
≺x γ + β + 1 . (by ind. hyp.)

For the limit case α = λ, this goes through
α′ ≺x λ implies α′ ≼x λx (by (A.8))

implies γ + α′ ≼x γ + λx
(A.1)
= (γ + λ)x

(A.5)
≺x γ + λ . (by ind. hyp.)

(A.12): For the successor case α = β + 1, we go through

α′ ≺x β + 1 implies α′ ≼x β (by (A.8))
implies ωα′ ≼x ωβ = ωβ + 0 (by ind. hyp.)
implies ωα′ ≼x ωβ + ωβ · (ωx − 1)

(by equations (A.6) and (A.11))

implies ωα′ ≼x ωβ · ωx = (ωβ+1)x
(A.5)
≺x ωβ+1 .
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For the limit case α = λ, this goes through
α′ ≺x λ implies α′ ≼x λx (by (A.8))

implies ωα′ ≼x ωλx
(A.1)
= (ωλ)x

(A.5)
≺x ωλ . (by ind. hyp.)

Lemma A.2 shows that ≺x is left congruent for + and congruent for ω-exponen-
tiation. One can observe that it is not right congruent for+; consider for instance
the terms ωx+1 and ω+1: one can see that ωx+1 ̸≺x ω+1. Indeed, from ω+1
the only way of descending through ≻x is ω + 1 ≻x ω ≻x ωx, but ωx ̸≻x ωx + 1
since ≺x ⊆ < for terms in CNF(ε0).

Lemma A.3. Let λ be a limit ordinal in Ω and x < y in N. Then λx ≼y λy , and if
furthermore ωx > 0, then λx ≼x λy .

Proof. By induction over λ. Write ωy = ωx + z for some z ≥ 0 by monotonicity
of s (recall that ωx and ωy are in N) and λ = γ + ωα with 0 < α.

If α = β + 1 is a successor, then λx = γ + ωβ · ωx ≼y γ + ωβ · ωx + ωβ · z
by (A.11) since 0 ≼y ωβ · z. We conclude by noting that λy = γ + ωβ · (ωx + z);
the same arguments also show λx ≼x λy .

If α is a limit ordinal, then αx ≼y αy by ind. hyp., hence λx = γ + ωαx ≼y

γ + ωαy = λy by (A.12) (applicable since ωy ≥ y > x ≥ 0) and (A.11). If ωx > 0,
then the same arguments show λx ≼x λy .

Now, using (A.8) together with Lemma A.3, we see

Corollary A.4. Let α, β in Ω and x, y in N. If x ≤ y then α ≺x β implies α ≺y β.

In other words, ≺x ⊆ ≺x+1 ⊆ ≺x+2 ⊆ · · · as claimed in (A.9).
If s is strictly increasing, i.e. if ωx < ωx+1 for all x, then the statement of

Lemma A.3 can be strengthened to λx ≺y λy and λy ≺x λy when ωx > 0,
and this hierarchy becomes strict at every level x: indeed, ωx+1 ≺x+1 ω but
ωx+1 ≺x ω would imply ωx+1 ≼x ωx, contradicting ≺x ⊆ <.

Lean Ordinals. Let k be in N. We say that an ordinal α in CNF(ε0) is k-lean if it
only uses coefficients ≤ k, or, more formally, when it is written under the strict
form α = ωβ1 · c1 + · · ·+ ωβm · cm with ci ≤ k and, inductively, with k-lean βi,
this for all i = 1, ...,m. Observe that only 0 is 0-lean, and that any term in CNF
is k-lean for some k.

A value k of particular importance for lean ordinal terms is k = ωx − 1: ob-
serve that this is the coefficient value introduced when we compute a predecessor
ordinal at x. Stated differently, (ωx − 1)-leanness is an invariant of predecessor
computations: if α is (ωx − 1)-lean, then Px(α) is also (ωx − 1)-lean.

Leanness also provides a very useful characterisation of the ≺x relation in
terms of the ordinal ordering over terms in CNF:
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Lemma A.5. Let x be in N, and α in CNF(ε0) be (ωx − 1)-lean. Then:

α < γ iff α ≺x γ iff α ≼x Px(γ) iff α ≤ Px(γ) . (A.13)

One sees
(∪

x∈N ≺x

)
= < over terms in CNF(ε0) as a result of Lemma A.5.

The proof relies on the syntactic characterisation of the ordinal ordering over
terms in CNF(ε0) by

α < α′ ⇔


α = 0 and α′ ̸= 0, or

α = ωβ + γ, α′ = ωβ′
+ γ′ and

{
β < β′, or
β = β′ and γ < γ′.

(A.14)

Since α ≼x Px(γ) directly entails all the other statements of Lemma A.5, it is
enough to prove:

Claim A.5.1. Let α, γ in CNF(ε0) and x in N. If α is (ωx − 1)-lean, then

α < γ implies α ≼x Px(γ) .

Proof. If α = 0, we are done so we assume α > 0 and hence ωx > 1, thus
α =

∑m
i=1 ω

βi · ci with m > 0. Working with terms in CNF allows us to employ
the syntactic characterisation of < given in (A.14).

We prove the claim by induction on γ, considering two cases:

1. if γ = γ′ + 1 is a successor then α < γ implies α ≤ γ′, hence α
ih
≼x γ′

(A.2)
=

Px(γ).

2. if γ is a limit, we claim thatα < γx, fromwhichwe deduceα
ih
≼x Px(γx)

(A.2)
=

Px(γ). We consider three subcases for the claim:

(a) if γ = ωλ with λ a limit, then α =
∑m

i=1 ω
βi · ci < γ implies β1 < λ,

hence β1
ih
≼x Px(λ) = Px(λx) < λx, since β1 is (ωx − 1)-lean. Thus

α < ωλx = (ωλ)x = γx.

(b) if γ = ωβ+1 then α < γ implies β1 < β + 1, hence β1 ≤ β. Now
c1 ≤ ωx − 1 since α is (ωx − 1)-lean, hence α < ωβ1 · (c1 + 1) ≤
ωβ1 · ωx ≤ ωβ · ωx = (ωβ+1)x = γx.

(c) if γ = γ′ + ωβ with 0 < γ′, β, then either α ≤ γ′, hence α < γ′ +
(ωβ)x = γx, or α > γ′, and then α can be written as α = γ′+α′ with

α′ < ωβ . In that case α′ ih
≼x Px(ω

β)
(A.2)
= Px((ω

β)x) < (ωβ)x, hence

α = γ′ + α′ (A.14)
< γ′ + (ωβ)x

(A.1)
= (γ′ + ωβ)x = γx.
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A.4 Ordinal Indexed Functions

Let us recall several classical hierarchies from (Cichoń and Wainer, 1983; Cichoń
and Tahhan Bittar, 1998). All the functions we define are over natural numbers.
We introduce “relativized” versions of the hierarchies, which employ a unary con-
trol function h : N→ N; the “standard” hierarchies then correspond to the special
case where the successor function h(x) = x + 1 is picked. We will see later in
Section A.7 how hierarchies with different control functions can be related.

Hardy Functions. We define the functions (hα)α∈Ω, each hα:N → N, by inner
iteration:

h0(x)
def
= x, hα+1(x)

def
= hα(h(x)), hλ(x)

def
= hλx(x). (A.15)

An example of inner iteration hierarchy is theHardy hierarchy (Hα)α∈Ω obtained
from (A.15) in the special case of h(x) = x+ 1:

H0(x)
def
= x, Hα+1(x)

def
= Hα(x+ 1), Hλ(x)

def
= Hλx(x). (A.16)

Cichoń Functions. Again for a unary h, we can define a variant (hα)α∈Ω of the
Hardy functions called the length hierarchy by Cichoń and Tahhan Bittar (1998)
and defined by inner and outer iteration:

h0(x)
def
= 0, hα+1(x)

def
= 1 + hα(h(x)), hλ(x)

def
= hλx(x). (A.17)

As before, in the case where h(x) = x+ 1 is the successor function, this yields

H0(x)
def
= 0, Hα+1(x)

def
= 1 +Hα(x+ 1), Hλ(x)

def
= Hλx(x). (A.18)

Those hierarchies are the most closely related to the hierarchies of functions we
define for the length of bad sequences.

Fast Growing Functions. Last of all, the fast growing functions (fα)α∈Ω are
defined through

f0(x)
def
= h(x), fα+1(x)

def
= fωx

α (x), fλ
def
= fλx(x), (A.19)

while its standard version (for h(x) = x+ 1) is defined by

F0(x)
def
= x+ 1, Fα+1(x)

def
= Fωx

α (x), Fλ(x)
def
= Fλx(x). (A.20)

Several properties of these functions can be proved by rather simple induction
arguments.

Lemma A.6. For all α > 0 in Ω and x in N with ωX > 0,

hα(x) = 1 + hPx(α)(h(x)) , (A.21)
hα(x) = hPx(α)(h(x)) = hPx(α)+1(x) , (A.22)
fα(x) = fωx

Px(α)
(x) = fPx(α)+1(x) . (A.23)
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Proof. We only prove (A.21); (A.22) and (A.23) can be proven similarly.
By transfinite induction over α. For a successor ordinal α + 1, hα+1(x) =

1 + hα(h(x)) = 1 + hPx(α+1)(h(x)). For a limit ordinal λ, hλ(x) = hλx(x)
ih
=

1 + hPx(λx)(h(x))
(A.2)
= 1 + hPx(λ)(h(x)), where the ind. hyp. can applied since

0 < λx < λ.

Lemma A.7. Let h(x) > x for all x. Then for all α in Ω and x in N with ωx > 0,

hα(x) ≤ hα(x)− x .

Proof. By induction over α. For α = 0, h0(x) = 0 = x − x = h0(x) − x. For
α > 0,

hα(x) = 1 + hPx(α)(h(x)) (by Lemma A.6)
≤ 1 + hPx(α)(h(x))− h(x) (by ind. hyp. since Px(α) < α)
≤ hPx(α)(h(x))− x (since h(x) > x)
= hα(x)− x . (by (A.22))

Using the same argument, one can check that in particular for h(x) = x+ 1,

Hα(x) = Hα(x)− x . (A.24)

Lemma A.8. For all α, γ in Ω, and x,

hγ+α(x) = hγ(hα(x)) .

Proof. By transfinite induction on α. For α = 0, hγ+0(x) = hγ(x) = hγ(h0(x)).
For a successor ordinal α + 1, hγ+α+1(x) = hγ+α(h(x))

ih
= hγ(hα(h(x))) =

hγ
(
hα+1(x)

)
. For a limit ordinal λ, hγ+λ(x) = h(γ+λ)x(x) = hγ+λx(x)

ih
=

hγ
(
hλx(x)

)
= hγ

(
hλ(x)

)
.

Remark A.9. Some care should be taken with Lemma A.8: γ+α is not necessarily
a term in CNF. See Remark A.15 on page 102 for a related discussion.
Lemma A.10. For all β in Ω, and r, x in N,

hω
β ·r(x) = f r

β(x) .

Proof. In view of Lemma A.8 and h0 = f0 = IdN, it is enough to prove hωβ
= fβ ,

i.e., the r = 1 case. We proceed by induction over β.

For the base case. hω
0
(x) = h1(x)

(A.19)
= f0(x).

For a successor β + 1. hω
β+1

(x)
(A.15)
= h(ω

β+1)x(x) = hω
β ·ωx(x)

ih
= fωx

β (x)
(A.19)
=

fβ+1(x).

For a limit λ. hω
λ
(x)

(A.15)
= hω

λx
(x)

ih
= fλx(x)

(A.19)
= fλ(x).
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A.5 Pointwise Ordering and Monotonicity

We set to prove in this section the main monotonicity and expansiveness proper-
ties of our various hierarchies.

Lemma A.11 (Cichoń and Tahhan Bittar, 1998). Let h be an expansive monotone
function. Then, for all α, α′ in Ω and x, y in N,

x < y implies hα(x) ≤ hα(y) , (A.25)
α′ ≺x α implies hα′(x) ≤ hα(x) . (A.26)

Proof. Let us first deal with α′ = 0 for (A.26). Then h0(x) = 0 ≤ hα(x) for all α
and x.

Assuming α′ > 0, the proof now proceeds by simultaneous transfinite induc-
tion over α.

For 0. Then h0(x) = 0 = h0(y) and (A.26) holds vacuously since α′ ≺x α is
impossible.

For a successor α+ 1. For (A.25), hα+1(x) = 1+hα(h(x))
ih(A.25)
≤ 1+hα(h(y)) =

hα+1(y) where the ind. hyp. on (A.25) can be applied since h is monotone.

For (A.26), we have α′ ≼x α ≺x α + 1, hence hα′(x)
ih(A.26)
≤ hα(x)

ih(A.25)
≤

hα(h(x))
(A.17)
= hα+1(x) where the ind. hyp. on (A.25) can be applied since

h(x) ≥ x.

For a limit λ. For (A.25), hλ(x) = hλx(x)
ih(A.25)
≤ hλx(y)

ih(A.26)
≤ hλy(y) = hλ(y)

where the ind. hyp. on (A.26) can be applied since λx ≺y λy by Lemma A.3.

For (A.26), we have α′ ≼x λx ≺x λ with hα′(x)
ih(A.26)
≤ hλx(x) = hλ(x).

Essentially the same proof can be carried out to prove the same monotonicity
properties for hα and fα. As the monotonicity properties of fα will be handy in
the remainder of the section, we prove them now:

Lemma A.12 (Löb and Wainer, 1970). Let h be a function with h(x) ≥ x. Then,
for all α, α′ in Ω, x, y in N with ωx > 0,

fα(x) ≥ h(x) ≥ x . (A.27)
α′ ≺x α implies fα′(x) ≤ fα(x) , (A.28)

x < y and h monotone imply fα(x) ≤ fα(y) . (A.29)
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Proof of (A.27). By transfinite induction on α. For the base case, f0(x) = h(x) ≥
x by hypothesis. For the successor case, assuming fα(x) ≥ h(x), then by induc-
tion on n > 0, fn

α (x) ≥ h(x): for n = 1 it holds since fα(x) ≥ h(x), and for n+1
since fn+1

α (x) = fα(f
n
α (x)) ≥ fα(x) by ind. hyp. on n. Therefore fα+1(x) =

fωx
α (x) ≥ x since ωx > 0. Finally, for the limit case, fλ(x) = fλx(x) ≥ x by ind.

hyp.

Proof of (A.28). Let us first deal with α′ = 0. Then f0(x) = h(x) ≤ fα(x) for all
x > 0 and all α by (A.27).

Assuming α′ > 0, the proof proceeds by transfinite induction over α. The
case α = 0 is impossible. For the successor case, α′ ≼x α ≺x α + 1 with

fα+1(x) = fωx−1
α (fα(x))

(A.27)
≥ fα(x)

ih
≥ fα′(x). For the limit case, we have

α′ ≼x λx ≺x λ with fα′(x)
ih
≤ fλx(x) = fλ(x).

Proof of (A.29). By transfinite induction overα. For the base case, f0(x) = h(x) ≤

h(y) = f0(y) sinceh ismonotone. For the successor case, fα+1(x) = fωx
α (x)

(A.27)
≤

f
ωy
α (x)

ih
≤ f

ωy
α (y) = fα+1(y) using ωx ≤ ωy . For the limit case, fλ(x) =

fλx(x)
ih
≤ fλx(y)

(A.28)
≤ fλy(y) = fλ(y), where (A.28) can be applied thanks to

Lemma A.3.

A.6 Different Fundamental Seqences

Theway we employ ordinal-indexed hierarchies is as standard ways of classifying
the growth of functions, allowing to derive meaningful complexity bounds for
algorithms relying on wqos for termination. It is therefore quite important to use
a standard assignment of fundamental sequences in order to be able to compare
results from different sources. The definition provided in (A.1) is standard, and
the two choices ωx = x and ωx = x + 1 can be deemed as “equally standard” in
the literature. We employed ωx = x + 1 in the rest of the notes, but the reader
might desire to compare this to bounds using e.g. ωx = x—as seen in LemmaA.13,
this is possible for strictly increasing h.

A bit of extra notation is needed: we want to compare the Cichoń hierarchies
(hs,α)α∈Ω for different choices of s. Recall that s is assumed to be monotone and
expansive, which is true of the identity function id.

LemmaA.13. Letα inΩ. If s(h(x)) ≤ h(s(x)) for allx, thenhs,α(x) ≤ hid,α(s(x))
for all x.

Proof. By induction on α. For 0, hs,0(x) = 0 = hid,0(s(x)). For a successor

ordinal α + 1, hs,α+1(x) = 1 + hs,α(h(x))
ih
≤ 1 + hid,α(s(h(x)))

(A.25)
≤ 1 +

hid,α(h(s(x))) = hid,α+1(s(x)) since s(h(x)) ≤ h(s(x)). For a limit ordinal
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λ, hs,λ(x) = hs,λx(x)
ih
≤ hid,λx(s(x))

(A.26)
≤ hid,λs(x)

(s(x)) = hid,λ(s(x)) where
s(x) ≥ x implies λx ≺s(x) λs(x) by Lemma A.3 and allows to apply (A.26).

A simple corollary of Lemma A.13 for s(x) = x + 1 is that, if h is strictly
monotone, then h(x + 1) ≥ 1 + h(x), and thus hs,α(x) ≤ hid,α(x + 1), i.e. the
Cichoń functions for the two classical assignments of fundamental sequences are
tightly related and will always fall in the same classes of subrecursive functions.
This also justifies not giving too much importance to the choice of s—within rea-
sonable limits.

A.7 Different Control Functions

As in Section A.6, if we are to obtain bounds in terms of a standard hierarchy of
functions, we ought to provide bounds for h(x) = x+ 1 as control. We are now
in position to prove a statement of Cichoń and Wainer (1983):

Lemma A.14. For all γ and α in Ω, if h is monotone eventually dominated by Fγ ,
then fα is eventually dominated by Fγ+α.

Proof. By hypothesis, there exists x0 (which we can assume wlog. verifies x0 >
0) s.t. for all x ≥ x0, h(x) ≤ Fγ(x). We keep this x0 constant and show by
transfinite induction on α that for all x ≥ x0, fα(x) ≤ Fγ+α(x), which proves
the lemma. Note that ωx ≥ x ≥ x0 > 0 and thus that we can apply Lemma A.12.

For the base case 0: for all x ≥ x0, f0(x) = h(x) ≤ Fγ(x) by hypothesis.

For a successor ordinal α+ 1: we first prove that for all n and all x ≥ x0,

fn
α (x) ≤ Fn

γ+α(x) . (A.30)
Indeed, by induction on n, for all x ≥ x0,

f0
α(x) = x = F 0

γ+α(x)

fn+1
α (x) = fα(f

n
α (x))

≤ fα
(
Fn
γ+α(x)

)
(by (A.29) on fα and the ind. hyp. on n)

≤ Fγ+α

(
Fn
γ+α(x)

)
(since by (A.27) Fγ+α(x) ≥ x ≥ x0 and by ind. hyp. on α)

= Fn+1
γ+α(x) .

Therefore
fα+1(x) = fx

α(x)

≤ F x
γ+α(x) (by (A.30) for n = x)

= Fγ+α+1(x) .
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For a limit ordinal λ: for allx ≥ x0, fλ(x) = fλx(x)
ih
≤ Fγ+λx(x) = F(γ+λ)x(x) =

Fγ+λ(x).

Remark A.15. Observe that the statement of Lemma A.14 is one of the few in-
stances in this appendix where ordinal term notations matter. Indeed, nothing
forces γ + α to be an ordinal term in CNF. Note that, with the exception of
Lemma A.5, all the definitions and proofs given in this appendix are compati-
ble with arbitrary ordinal terms in Ω, and not just terms in CNF, so this is not a
formal issue.

The issue lies in the intuitive understanding the reader might have of a term
“γ + α”, by interpreting + as the direct sum in ordinal arithmetic. This would
be a mistake: in a situation where two different terms α and α′ denote the same
ordinal ord(α) = ord(α′), we do not necessarily have Fα(x) = Fα′(x): for
instance, α = ωω0 and α′ = ω0 + ωω0 denote the same ordinal ω, but Fα(2) =
F2(2) = 22 · 2 = 23 and Fα′(2) = F3(2) = 22

2·2 · 22 · 2 = 211. Therefore,
the results on ordinal-indexed hierarchies in this appendix should be understood
syntactically on ordinal terms, and not semantically on their ordinal denotations.

The natural question at this point is: how do these new fast growing functions
compare to the functions indexed by terms in CNF? Indeed, we should check that
e.g. Fγ+ωp with γ < ωω is multiply-recursive if our results are to be of any use.
The most interesting case is the one where γ is finite but α infinite (which will be
used in the proof of Lemma A.17):

Lemma A.16. Let α ≥ ω and 0 < γ < ω be in CNF(ε0), and ωx
def
= x. Then, for

all x, Fγ+α(x) ≤ Fα(x+ γ).

Proof. We first show by induction on α ≥ ω that

Claim A.16.1. Let s(x) def
= x+ γ. Then for all x, Fid,γ+α(x) ≤ Fs,α(x).

base case for ω: Fid,γ+ω(x) = Fid,γ+x(x) = Fs,ω(x),

successor case α+ 1: with α ≥ ω, an induction on n shows that Fn
id,γ+α(x) ≤

Fn
s,α(x) for all n and x using the ind. hyp. on α, thus Fid,γ+α+1(x) =

F x
id,γ+α(x)

(A.27)
≤ F x+γ

id,γ+α(x) ≤ F x+γ
s,α (x) = Fs,α+1(x),

limit case λ > ω: Fid,γ+λ(x) = Fid,γ+λx(x)
ih
≤ Fs,λx(x)

(A.28)
≤ Fs,λx+γ(x) =

Fs,λ(x) where (A.28) can be applied since λx ≼x λx+γ by Lemma A.3 (ap-
plicable since s(x) = x+ γ > 0).

Returning to the main proof, note that s(x + 1) = x + 1 + γ = s(x) + 1,
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allowing to apply Lemma A.13, thus for all x,

Fid,γ+α(x) ≤ Fs,α(x) (by the previous claim)
= Hωα

s (x) (by Lemma A.10)
≤ Hωα

id (s(x)) (by Lemma A.13 and (A.24))
= Fid,α(s(x)) . (by Lemma A.10)

A.8 Classes of Subrecursive Functions

We finally consider how some natural classes of recursive functions can be char-
acterised by closure operations on subrecursive hierarchies. The best-known of
these classes is the extended Grzegorczyk hierarchy (Fα)α∈CNF(ε0) defined by Löb
andWainer (1970) on top of the fast-growing hierarchy (Fα)α∈CNF(ε0) for ωx

def
= x.

Let us first provide some background on the definition and properties of Fα.
The class of functions Fα is the closure of the constant, addition, projection (in-
cluding identity), and Fα functions, under the operations of

substitution: if h0, h1, . . . , hn belong to the class, then so does the function f de-
fined by

f(x1, . . . , xn) = h0(h1(x1, . . . , xn), . . . , hn(x1, . . . , xn)) ,

limited primitive recursion: if h1, h2, and h3 belong to the class, then so does the
function f defined by

f(0, x1, . . . , xn) = h1(x1, . . . , xn) ,

f(y + 1, x1, . . . , xn) = h2(y, x1, . . . , xn, f(y, x1, . . . , xn)) ,

f(y, x1, . . . , xn) ≤ h3(y, x1, . . . , xn) .

Thehierarchy is strict forα > 0, i.e.Fα′ ⊊ Fα ifα′ < α, because in particular
Fα′ /∈ Fα. For small finite values of α, the hierarchy characterises some well-
known classes of functions:

• F0 = F1 contains all the linear functions, like λx.x + 3 or λx.2x, along
withmany simple ones like cut-off subtraction: λxy.x .−y, which yields x−y
if x ≥ y and 0 otherwise,2 or simple predicates like odd: λx.x mod 2,3

• F2 is exactly the set of elementary functions, like λx.22x ,
2By limited primitive recursion; first define λx.x .− 1 by 0 .− 1 = 0 and (y + 1) .− 1 = y; then

x .− 0 = x and x .− (y + 1) = (x .− y) .− 1.
3By limited primitive recursion: 0 mod 2 = 0 and (y + 1) mod 2 = 1 .− (y mod 2).
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• F3 contains all the tetration functions, like λx. 22
. .

.2︸︷︷︸
x times

, etc.

The union
∪

α<ω Fα is the set of primitive-recursive functions, while Fω is an
Ackermann-like non primitive-recursive function. Similarly,

∪
α<ωω Fα is the

set of multiply-recursive functions with Fωω a non multiply-recursive function.
The following properties (resp. Theorem 2.10 and Theorem 2.11 in (Löb and

Wainer, 1970)) are useful: for all α, unary f in Fα, and x,

α > 0 implies ∃p, f(x) ≤ F p
α(x+ 1) , (A.31)

∃p, ∀x ≥ p, f(x) ≤ Fα+1(x) . (A.32)

Also note that by (A.31), if a unary function g is dominated by some function g′

in Fα with α > 0, then there exists p s.t. for all x, g(x) ≤ g′(x) ≤ F p
α(x + 1).

Similarly, (A.32) shows that for all x ≥ p, g(x) ≤ g′(x) ≤ Fα+1(x).
Let us conclude this appendix with the following lemma, which shows that

the difficulties raised by non-CNF ordinal terms (recall RemarkA.15) are alleviated
when working with the (Fα)α:

Lemma A.17. For all γ > 0 and α, if h is monotone and eventually dominated by
a function in Fγ , then

1. if α < ω, fα is dominated by a function in Fγ+α, and

2. if γ < ω and α ≥ ω, fα is dominated by a function in Fα.

Proof of 1. We proceed by induction on α < ω.

For the base case α = 0: we have f0 = h dominated by a function in Fγ by hy-
pothesis.

For the successor case α = k + 1: by ind. hyp. fk is dominated by a function in
Fγ+k, thus by (A.31) there exists p s.t. fk(x) ≤ F p

γ+k(x+1) = F p
γ+k◦F0(x).

By induction on n, we deduce

fn
k (x) ≤ (F p

γ+k ◦ F0)
n(x) ; (A.33)

Therefore,
fk+1(x) = fx

k (x) (A.34)
(A.33)
≤ (F p

γ+k ◦ F0)
x(x) (A.35)

(A.29)
≤ F

(p+1)x+1
γ+k ((p+ 1)x+ 1) (A.36)

= Fγ+k+1((p+ 1)x+ 1) ,

where the latter function x 7→ Fγ+k+1((p + 1)x + 1) is defined by sub-
stitution from Fγ+k+1, successor, and (p + 1)-fold addition, and therefore
belongs to Fγ+k+1.
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Proof of 2. By (A.32), there exists x0 s.t. for all x ≥ x0, h(x) ≤ Fγ+1(x). By

lemmas A.14 and A.16, fα(x)
(A.29)
≤ fα(x + x0) ≤ Fα(x + x0 + γ + 1) for all x,

where the latter function x 7→ Fα(x+ x0 + γ + 1) is in Fα.
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Bestiary
PROBLEMS OF ENORMOUS COMPLEXITY

B.1 Fast-Growing Complexities 107
B.2 Ackermann-Complete Problems 112

Because their main interest lies in characterising which problems are efficiently
solvable, most textbooks in complexity theory concentrate on the frontiers be-
tween tractability and intractability, with less interest for the “truly intractable”
problems found in ExpTime and beyond. Unfortunately, many natural decision
problems are not that tame and require to explore the uncharted classes outside
the exponential hierarchy.

This appendix is based on (Schmitz, 2016b) and borrows its title from a sur-
vey by Friedman (1999), where the reader will find many problems living outside
Elementary. We are however not interested in “creating” new problems of enor-
mous complexity, but rather in classifying already known problems in some im-
portant stops related to the extended Grzegorczyk hierarchy. Because we wanted
this appendix to be reasonably self-contained, we will recall several definitions
found elsewhere in these notes.

B.1 Fast-Growing Complexities

Exponential Hierarchy. Let us start where most accounts on complexity stop:
define the class of exponential-time problems as

ExpTime def
=
∪
c

DTime
(
2n

c)
and the corresponding nondeterministic and space-bounded classes as

NExpTime def
=
∪
c

NTime
(
2n

c)
ExpSpace def

=
∪
c

Space
(
2n

c)
.

Problems complete for ExpTime, like corridor tiling games (Chlebus, 1986) or
equivalence of regular tree languages (Seidl, 1990), are known not to be in PTime,



108 Appendix B. Problems of Enormous Complexity

hence the denomination “truly intractable” or “provably intractable” in the liter-
ature.

We can generalise these classes of problems to the exponential hierarchy

k-ExpTime def
=
∪
c

DTime

 2.
. .2︸︷︷︸

k times

nc
 ,

with the nondeterministic and space-bounded variants defined accordingly. The
union of the classes in this hierarchy is the class of elementary problems:

Elementary def
=
∪
k

k-ExpTime =
∪
c

DTime
(
2.

. .2︸︷︷︸
c times

n
)
.

Note that we could as easily define Elementary in terms of nondeterministic time
bounds, space bounds, alternation classes, etc. Our interest in this appendix lies
in the problems found outside this class, for which suitable hierarchies need to be
used.

The Extended Grzegorczyk Hierarchy (Fα)α<ε0 is an infinite hierarchy of
classes of functions f with argument(s) and images in N (Löb and Wainer, 1970).
At the heart of each Fα lies the αth fast-growing function Fα:N→ N, which is
defined by

F0(x)
def
= x+ 1 , Fα+1(x)

def
= F x+1

α (x) =

x+1 times︷ ︸︸ ︷
Fα(Fα(· · ·Fα(x))) ,

Fλ(x)
def
= Fλx(x) ,

where λx < λ is the xth element of the fundamental sequence for the limit ordinal
λ, defined by

(γ + ωβ+1)x
def
= γ + ωβ · x , (γ + ωλ)x

def
= γ + ωλx .

For instance,

F1(x) = 2x+ 1 , F2(x) = 2x+1(x+ 1)− 1 ,

F3(x) > 2.
. .2}

x times ,

Fω is an Ackermannian function,
Fωω is a hyper-Ackermannian function, etc.

For α ≥ 2, each level of the extended Grzegorczyk hierarchy can be charac-
terised as a class of functions computable with bounded resources

Fα =
∪
c

FDTime (F c
α(n)) , (B.1)
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the choice between deterministic and nondeterministic or between time-bounded
and space-bounded computations being once more irrelevant because F2 is al-
ready a function of exponential growth. In particular, F c

α belongs to Fα for every
α and fixed c.

Every function f in Fα is honest, i.e. can be computed in time elementary in
itself (Wainer, 1970)—this is a variant of the time constructible or proper complexity
functions found in the literature, but better suited for the high complexities we are
considering. Every f is also eventually bounded by Fα′ if α < α′, i.e. there ex-
ists a rank xf,α s.t. for all x1, . . . , xn, if maxi xi ≥ xf,α, then f(x1, . . . , xn) ≤
Fα′(maxi xi). However, for all α′ > α > 0, Fα′ ̸∈ Fα, and the hierarchy
(Fα)α<ε0 is strict for α > 0.

Important Stops. Although some deep results have been obtained on the lower
classes,1 we focus here on the non-elementary classes, i.e. on α ≥ 2, where we
find for instance

F2 = FElementary ,∪
k

Fk = FPrimitive-Recursive ,∪
k

Fωk = FMultiply-Recursive ,∪
α<ε0

Fα = FOrdinal-Recursive .

We are dealing here with classes of functions, but writing F ∗
α for the restriction

ofFα to {0, 1}-valued functions, we obtain the classification of decision problems
displayed in Figure B.1.

Unfortunately, these classes are not quite satisfying for some interesting prob-
lems, which are non elementary (resp. non primitive-recursive, or non multiply-
recursive, . . . ), but only barely so. The issue is that complexity classes like e.g. F ∗

3 ,
which is the first class that contains non-elementary problems, are very large: F ∗

3

contains for instance problems that require space F 100
3 , more than a hundred-fold

compositions of towers of exponentials. As a result, hardness for F3 cannot be
obtained for the classical examples of non-elementary problems.

We therefore introduce smaller classes:

Fα
def
=

∪
p∈∪β<αFβ

DTime (Fα(p(n))) . (B.2)

1See Ritchie (1963) for a characterisation of FLinSpace, and for variants see e.g. Cobham (1965);
Bellantoni and Cook (1992) for FPTime, or the chapter by Clote (1999) for a survey of these tech-
niques.
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PTimeco-NP NP

PSpace

ExpTime NExpco-NExp

ExpSpace

2-ExpTime

F ∗
2 =

Elementary

∪
k F ∗

k =
Primitive-Recursive

∪
k F ∗

ωk =
Multiply-Recursive

F3

Fω

Fωω

Fωωω

Figure B.1: Some complexity classes.
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As previously, the choice of DTime rather than NTime or Space or ATime is ir-
relevant for α ≥ 3. This yields for instance a class F3 of non-elementary de-
cision problems closed under elementary reductions, a class Fω of Ackerman-
nian problems closed under primitive-recursive reductions, a class Fωω of hyper-
Ackermannian problems closed under multiply-recursive reductions, etc.2 We
can name a few of these complexity classes:

Fω = Ackermann ,

Fωω = Hyper-Ackermann .

Of course, we could replace in (B.2) the class of reductions ∪β<αFβ by a more
traditional one, like FLogSpace or FPTime, or for α ≥ ω by primitive-recursive
reductions in

∪
k Fk as done by Chambart (2011). However this definition better

captures the intuition one can have of a problem being “complete for Fα.”
A point worth making is that the extended Grzegorczyk hierarchy has multi-

ple natural characterisations: as loop programs for α < ω (Meyer and Ritchie,
1967), as ordinal-recursive functions with bounded growth (Wainer, 1970), as
functions computable with restricted resources as in (B.1), as functions provably
total in fragments of Peano arithmetic (Fairtlough and Wainer, 1998), etc.—which
make the complexity classes we introduced here meaningful.

An F3-Complete Example can be found in the seminal paper of Stockmeyer and
Meyer (1973), and is quite likely already known by many readers. Define a star-
free expression over some alphabet Σ as a term e with abstract syntax star-free expression

e ::= a | ε | ∅ | e+ e | ee | ¬e

where a ranges over Σ and ε denotes the empty string. Such expressions are
inductively interpreted as languages included in Σ∗ by:

JaK def
= {a} JεK def

= {ε} J∅K def
= ∅Je1 + e2K def

= Je1K ∪ Je2K Je1e2K def
= Je1K · Je2K J¬eK def

= Σ∗ ∖ JeK .
The decision problem we are interested in is whether two such expressions

e1, e2 are equivalent, i.e. whether Je1K = Je2K. Stockmeyer and Meyer (1973)
2An alternative class for α ≥ 3 is

F′
α

def
=

∪
c

DTime (Fα(n+ c)) ,

which is often sufficient and already robust under changes in the model of computation, but not
robust under reductions.

Yet another alternative would be to consider the Wainer hierarchy (Hβ)β<ε0 of functions
(Wainer, 1972), which provides an infinite refinement of each Fα as

∪
β<ωα+1 Hβ , but its classes

lack both forms of robustness: any f in Hβ is bounded by Hβ the βth function of the Hardy
hierarchy. What we define here as Fα seems closer to

∪
β<ωα·2 H ∗

β .
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show that this problem is hard for 2. .
.2}

logn times space under FLogSpace reduc-
tions. Then, F3-hardness follows by an FElementary reduction from any Turing

machine working in spaceF3(p(n)) into a machine working in space 2. .
.2}

logn times.
That the problem is in F3 can be checked using an automaton-based algorithm:
construct automata recognising Je1K and Je2K respectively, using determinization
to handle each complement operator at the expense of an exponential blowup, and
check equivalence of the obtained automata in PSpace—the overall procedure is

in space polynomial in 2.
. .2}

n times, thus in F3.

B.2 Ackermann-Complete Problems

We gather here some decision problems that can be proven decidable in Fω . The
common trait of all these problems is their reliance on Dickson’s Lemma over
Nd for some d for decidability, and on the associated length function theorems
(McAloon, 1984; Clote, 1986; Figueira et al., 2011; Abriola et al., 2015) for Acker-
mann upper bounds. The reader will find examples of Fα-complete problems for
higher α in (Schmitz, 2016b).

B.2.1 Vector Addition Systems
Vector Addition Systems (VAS, and equivalently Petri nets), provided the first
known Ackermannian decision problem: FCP.

A d-dimensional VAS is a pair ⟨v0,A⟩ where v0 is an initial configuration in
Nd and A is a finite set of transitions in Zd. A transition u in A can be applied
to a configuration v in Nd if v′ = v + u is in Nd; the resulting configuration is
then v′. The complexity of decision problems for VAS usually varies from Ex-
pSpace-complete (Lipton, 1976; Rackoff, 1978; Blockelet and Schmitz, 2011) to Fω-
complete (Mayr andMeyer, 1981; Jančar, 2001) to undecidable (Hack, 1976; Jančar,
1995), via a key problem, whose exact complexity is unknown: VAS Reachability
(Mayr, 1981; Kosaraju, 1982; Lambert, 1992; Leroux, 2011; Leroux and Schmitz,
2015).
[FCP] Finite Containment Problem
instance: Two VAS V1 and V2 known to have finite sets Reach(V1) and Reach(V2)

of reachable configurations.
question: Is Reach(V1) included in Reach(V2)?
lower bound: Mayr and Meyer (1981), from an Fω-bounded version of Hilbert’s

Tenth Problem. A simpler reduction is given by Jančar (2001) from Fω-MM
the halting problem of Fω-bounded Minsky machines.

upper bound: Originally McAloon (1984) and Clote (1986), or more generally us-
ing length function theorems for Dickson’s Lemma (Figueira et al., 2011;
Abriola et al., 2015).
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comment: Testing whether the set of reachable configurations of a VAS is finite is
ExpSpace-complete (Lipton, 1976; Rackoff, 1978). FCP has been generalised
by Jančar (2001) to a large range of behavioural relations between twoVASs.
Without the finiteness condition, these questions are undecidable (Hack,
1976; Jančar, 1995, 2001).

An arguably simpler problem on vector addition systems has recently been
shown to be Ackermann-complete by Hofman and Totzke (2014). A labelled
vector addition system with states (VASS) V = ⟨Q,Σ, d, T, q0, v0⟩ is a VAS ex-
tended with a finite set Q of control states that includes a distinguished initial
state q0. The transitions in T of such systems are furthermore labelled with
symbols from a finite alphabet Σ: transitions are then defined as quadruples
q

a,u−−→ q′ for a in Σ and u in Zd. Such a system defines an infinite labelled
transition system ⟨Q× Nd,→, (q0, v0)⟩ where (q, v) a−→ (q′, v + u) if q a,u−−→ q′

is in T and v + u ≥ 0. The set of traces of V is the set of finite sequences
L(V) def

= {a1 · · · an ∈ Σ∗ | ∃(q, v) ∈ Q× Nd.(q0, v0)
a1···an−−−−→ (q, v)}.

[1VASSU] One-Dimensional VASS Universality
instance: A one-dimensional labelled VASS V = ⟨Q,Σ, 1, T, q0,x0⟩.
question: Does L(V) = Σ∗, i.e. is every finite sequence over Σ a trace of V?
lower bound: Hofman and Totzke (2014) by reduction from reachability in gainy

counter machines, see LCM.
upper bound: Hofman and Totzke (2014) using length function theorems for Dick-

son’s Lemma.
comment: One-dimensional VASS are also called “one counter nets” in the liter-

ature. More generally, the inclusion problem L ⊆ L(V) for some rational
language L is still Ackermann-complete.

B.2.2 Energy Games
A problem with a similar flavour to 1VASSU considers instead games played on
(multi-)weighted graphs. Given a finite directed graph G = (V,E), whose ver-
tices V = V1 ⊎V2 are partitioned into Player 1 vertices and Player 2 vertices, and
whose edges E are labelled by vectors in Zd for some dimension d—representing
discrete energy consumption and replenishment from d sources—, an initial ver-
tex v of G, and an initial credit u in Nd, we may consider an energy objective for
Player 1: does she have a strategy ensuring an infinite play starting from v such
that, at all times, u plus the vector labels of all the edges used so far is compo-
nentwise non-negative? (Note that the input to this problem could equivalently
be seen as a labelled VASS with a partition of its control states into Player 1 and
Player 2 states.) This problem is known to be 2ExpTime-complete (Jurdziński
et al., 2015).

We are interested here in a variant where additionally Player 1 has only partial
observation, meaning that she does not know the exact current vertex, but is only
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given an equivalence class of vertices that contains it. This variant of the game is
still decidable (Degorre et al., 2010), and was shown Fω-complete by Pérez (2016):
[POE] Energy Games with Partial Observation
instance: A multi-weighted finite game graph G = (V,E) with labelling λ:E →

Zd, v ∈ V , u ∈ Nd, and ≡ ⊆ V × V an equivalence relation on vertices.
question: Does Player 1 have a winning strategy for the energy objective and

compatible with ≡, when starting from v with initial credit u?
lower bound: Pérez (2016) by reduction from reachability in gainy counter ma-

chines, see LCM.
upper bound: Pérez (2016) by applying length function theorems for Dickson’s

Lemma to the decision algorithm of Degorre et al. (2010).
comment: Hardness already holds in dimension d = 1 and in the case of a blind

game, i.e. where v ≡ v′ for all v, v′ ∈ V .

B.2.3 Unreliable Counter Machines
A lossy counter machine (LCM) is syntactically a Minsky machine, but its oper-
ational semantics are different: its counter values can decrease nondeterministi-
cally at any moment during execution. See chapters 2 and 3 for details.
[LCM] Lossy Counter Machines Reachability
instance: A lossy counter machine M and a configuration σ.
question: Is σ reachable in M with lossy semantics?
lower bound: Schnoebelen (2010a), by a direct reduction from Fω-bounded Min-

skymachines. Thefirst proofswere given independently byUrquhart in 1999
and Schnoebelen in 2002.

upper bound: Length function theorems for Dickson’s Lemma.
comment: Completeness also holds for terminating LCMs (meaning that every

computation starting from the initial configuration terminates), coverabil-
ity in Reset or Transfer Petri nets, and for reachability in gainy counter
machines, where counter values can increase nondeterministically.

B.2.4 Relevance Logics
Relevance Logics provide different semantics of implication, where a factB is said
to follow from A, written “A → B”, only if A is actually relevant in the deduc-
tion of B. This excludes for instance A → (B → A), (A ∧ ¬A) → B, etc.—see
Dunn and Restall (2002) for more details. Although the full logic R is undecid-
able (Urquhart, 1984), its conjunctive-implicative fragmentR→,∧ is decidable, and
Ackermann-complete:
[CRI] Conjunctive Relevant Implication
instance: A formula A of R→,∧.
question: Is A a theorem of R→,∧?
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lower bound: Urquhart (1999), from a variant of LCM: the emptiness problem of
alternating expansive counter machines, for which he proved Fω-hardness
directly fromFω-MM the halting problem inFω-boundedMinskymachines.

upper bound: Urquhart (1999) using length function theorem forDickson’s Lemma.
comment: Hardness also holds for any intermediate logic betweenR→,∧ andT→,∧,

which might include some undecidable fragments. The related contrac-
tive propositional linear logic LLC and its additive-multiplicative fragment
MALLC are also Ackermann-complete (Lazić and Schmitz, 2015b).

B.2.5 Data Logics & Register Automata

Data Logics and Register Automata are concerned with structures like words or
trees with an additional equivalence relation over the positions. The motivation
for this stems in particular from XML processing, where the equivalence stands
for elements sharing the same datum from some infinite data domain D. Enor-
mous complexities often arise in this context, both for automata models (register
automata and their variants, when extended with alternation or histories) and for
logics (which include logics with freeze operators and XPath fragments)—the two
views being tightly interconnected.

[A1RA] Emptiness of Alternating 1-Register Automata
instance: An A1RA A.
question: Is the data language L(A) empty?
lower bound: Demri and Lazić (2009), from reachability in gainy countermachines

LCM.
upper bound: Demri and Lazić (2009), by reducing to reachability in gainy counter

machines LCM.
comment: There exist many variants of the A1RA model, and hardness also holds

for the corresponding data logics (e.g. Jurdziński and Lazić, 2007; Demri and
Lazić, 2009; Figueira and Segoufin, 2009; Tan, 2010; Figueira, 2012; Tzevelekos
and Grigore, 2013). The complexity rises to Fωω in the case of linearly or-
dered data (Ouaknine andWorrell, 2007), and even to Fε0 for data logics us-
ing multiple attributes with a hierarchical policy (Decker andThoma, 2016).

B.2.6 Metric Temporal Logic

Metric Temporal Logic (MTL) allows to reason on timed words over Σ×R, where timed words

Σ is a finite alphabet and the real values are non decreasing timestamps on events
(Koymans, 1990). When considering infinite timed words, one usually focuses on
non-Zeno words, where the timestamps are increasing and unbounded. MTL is an
extension of linear temporal logic where temporal modalities are decorated with
real intervals constraining satisfaction; for instance, a timed word w satisfies the
formula F[3,∞)φ at position i, written w, i |= F[3,∞)φ, only if φ holds at some
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position j > i of w with timestamp τj − τi ≥ 3. The safety fragment of MTL
restricts the intervals decorating “until” modalities to be right-bounded.

[SMTL] Satisfiability of Safety Metric Temporal Logic
instance: A safety MTL formula φ.
question: Does there exist an infinite non-Zeno timed word w s.t. w, 0 |= φ?
lower bound: Lazić et al. (2016), by a direct reduction from Fω-bounded Turing

machines.
upper bound: Lazić et al. (2016) by resorting to length function theorems for Dick-

son’s Lemma.
comment: The complexity bounds are established through reductions to and from

the fair termination problem for insertion channel systems, which Lazić
et al. (2016) show to be Ackermann-complete.

B.2.7 Ground Term Rewriting

A ground term rewrite systemwith state (sGTRS)maintains a finite ordered labelled
tree along with a control state from some finite set. While most questions about
ground term rewrite systems are decidable (Dauchet and Tison, 1990), the addition
of a finite set of control states yields a Turing-powerful formalism. Formally, a
sGTRS ⟨Q,Σ, R⟩ over a ranked alphabet Σ and a finite set of states Q is defined
by a finite set of rules R ⊆ (Q× T (Σ))2 of the form (q, t)→ (q′, t′) acting over
pairs of states and trees, which rewrite a configuration (q, C[t]) into (q′, C[t′]) in
any context C .

Hague (2014) adds age labels inN to every node of the current tree. In the ini-
tial configuration, every tree node has age zero, and at each rewrite step (q, C[t])→
(q′, C[t′]), in the resulting configuration the nodes in t′ have age zero, and the
nodes in C see their age increment by one if q ̸= q′ or remain with the same age
as in (q, C[t]) if q = q′. A senescent sGTRS with lifespan k in N restricts rewrites
to only occur in subtrees of age at most k, i.e. when matching C[t] the age of the
root of t is ≤ k.

[SGTRS] State Reachability in Senescent Ground Term Rewrite Systems
instance: A senescent sGTRS ⟨Q,Σ, R⟩ with lifespan k, two states q0 and qf in

Q, and an initial tree t0 in T (Σ).
question: Does there exist a tree t in T (Σ) such that (qf , t) is reachable from

(q0, t0)?
lower bound: Hague (2014), from coverability in reset Petri nets, see LCM.
upper bound: Hague (2014), by reducing to coverability in reset Petri nets, see LCM.

B.2.8 Interval Temporal Logics

Interval Temporal Logics provide a formal framework for reasoning about tempo-
ral intervals. Halpern and Shoham (1991) define a logicwithmodalities expressing
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the basic relationships that can hold between two temporal intervals, ⟨B⟩ for “be-
gun by”, ⟨E⟩ for “ended by”, and their inverses ⟨B̄⟩ and ⟨Ē⟩. This logic, and even
small fragments of it, has an undecidable satisfiability problem, thus prompting
the search for decidable restrictions and variants. Montanari et al. (2010) show
that the logic with relations AĀBB̄—where ⟨A⟩ expresses that the two intervals
“meet”, i.e. share an endpoint—, has an Fω-complete satisfiability problem over
finite linear orders:
[ITL] Finite Linear Satisfiability of AĀBB̄
instance: An AĀBB̄ formula φ.
question: Does there exist an interval structure S over some finite linear order

and an interval I of S s.t. S, I |= φ?
lower bound: Montanari et al. (2010), from reachability in lossy countermachines (LCM).
upper bound: Montanari et al. (2010), by reducing to reachability in lossy counter

machines (LCM).
comment: Hardness already holds for the fragments ĀB and ĀB̄ (Bresolin et al.,

2012).
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Abdulla, P.A., Čerāns, K., Jonsson, B., and Tsay, Y.K., 1996. General decidability theorems for
infinite-state systems. In LICS’96, pages 313–321. IEEE. doi:10.1109/LICS.1996.561359. Cited on
page 23.
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backward coverability, 32
basis, of an upward-closed set, 15
better quasi orders, 23
bounding function, 40

canonical decomposition, 71
Cantor Normal Form, 41, 89
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with lexicographic ordering, 15, 79
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downward, 20
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strict, 20
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ordering, 11
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control
control function, 27
controlled sequence, 28, 85

control-state reachability, 6
counter machine, 54

expansive alternating, 110
extended, 54
incrementing, 67, 110
lossy, 55, 110
Minsky, 54
reset, 63, 110
transfer, 67, 110

coverability, 5, 11, 32, 56, 62
backward, 6

dual, 83

forward, 82
covering, 12
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data logic, 110
Descent Equation, 35
Dickson’s Lemma, 3, 14
directed, 71
disjoint sum, 29, 37

ideals, 78
with lexicographic ordering, 15, 79

disjunctive termination argument, 8
downward

closed, 2
closure, 2
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effective pred-basis, 6, 82, 84
effective presentation of a wqo

ideal presentation, 75
effective wqo, 73
Egli-Milner ordering, 18
energy game, 109
exchange rule, 10
excluded minor, 69
excluded minors, 3

fast-growing hierarchy, 30, 50, 95, 104
filter, 71

principal, 69
finite antichain condition, 2
finite basis property, 15
fundamental sequence, 42, 90

Graph Minor Theorem, 4
ground term rewrite system, 111
Grzegorczyk hierarchy, 26, 30, 48, 51, 100

Hardness Theorem, 53, 62, 64, 67
Hardy
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Higman’s Lemma, 3, 17
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Hoare ordering, 18
honest function, 31

ideal, 71
of Σ∗, 79
principal, 69
proper, 84

ideally effective wqo, 74
image-finite, 5
increasing pair, 1, 7, 25
incrementing counter machine, 67, 110
infinite words, ordering, 17
interval temporal logic, 112

Karp & Miller
graph, 22
tree, 13

Kruskal’s Tree Theorem, 4, 19

length function, 28
Theorem, 31, 47

lexicographic ordering, 14, 15, 50, 51, 79
lexicographic product, 15, 78
lexicographic sum, 15, 78
linear ordering, 1
linearisation, 16, 40
lossy counter machine, 55, 110

metric temporal logic, 111
Minsky machine, 54
multiset support, 11

natural
product, 41
sum, 41

Noetherian relation, 8
norm

infinity norm, 27
wqo, see nwqo

nwqo, 27
derivation, 38
empty, 29
isomorphism, 28
naturals, 29
polynomial, 29
polynomial normal form, 30, 38
reflection, 36
residual, 34
singleton, 29

ω-monotone, 85

ω-node, 22
ω-set, 85
order type, 40

maximal, 40, 41, 51
order-extension principle, 16
ordinal

ideally effective, 88
ideals, 87
lean, 93
limit, 41, 90
ordering, 49
pointwise ordering, 91, 96
predecessor, 43, 90
structural ordering, 44
successor, 41, 90
term, 89

partial information, 109
partial ordering, 1
pigeonhole principle, 34
Post-effective, 5

ideally, 82
powerset, 14, 18
predecessor set, 6
prefix ordering, 14
prime, 69
prime decomposition, 70

canonical, 71
primitive recursion, 48

limited, 48, 101
projection function, 48

quasi ordering, 1

Rado’s structure, 16, 18, 19
ideally effective, 88
ideals, 87

Ramsey Theorem, 2, 21
ranking function, 8
reachability tree, 5
reflection, see nwqo reflection
reflexive transitive compatibility, 19
register automaton, 110
relevance logic, 9, 110
reset machine, 63, 110

sequence
bad, 7, 25
controlled, see control
extension, 3
fundamental, see fundamental sequence
good, 7, 25
r-bad, 49
r-good, 49
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sparser-than ordering, 16
star-free expression, 107
strict compatibility, 20
strict ordering, 1
subformula property, 10
subsets, see powerset
substitution, 48, 101
subword embedding, 3
successor set, 5
sum function, 48
super-homogeneous function, 46

termination, 5, 32, 56, 67
threshold, 22
timed words, 111
total ordering, 1
transfer machine, 67, 110

transition system, 4
transitive compatibility, 19

upward
closed, 2
closure, 2

vector addition system, 12, 83, 84, 108
with states, 4, 108

weakening, 10
well founded

ordering, 1
relation, 8

well partial ordering, 1
well quasi ordering, 1
well-structured transition system, 4

zero function, 48
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