
On the Satisfiability of Straight line fragments
over subword ordering

Soumodev Mal

Supervisors:

C. Aiswarya, CMI
Prakash Saivasan, IMSc

A thesis submitted in partial fulfilment

of the requirements for the degree

Master of Science

in

Computer Science

Chennai Mathematical Institute

June 2021

Abstract

We study the satisfiability of a subclass of string constraints. A string constraint impose

constraints over variables that takes string values. Given a string constraint the satisfiability

problem asks, if there is an assignment (for the variables over which it is defined) that satisfy

the constraints. The subclass that we are looking at has 1) regular membership constraints

(where the variable assignments must belong to specified regular languages) and 2) Subword

constraints that relate variables by a subword relation. In addition, the variables are ordered

and a variable can be related by a subword relation to a concatenation of variables having

higher order than it. We call this constraint straight line subword ordered string(SL-SOS)

constraints. We show that satisfiability problem for SL-SOS constraint is decidable and is

in NEXPTIME. We also show that it is NP-hard. We prove that SL-SOS constraints can

define non-regular tuples.

i

Acknowledgement

I am highly indebted to my supervisors Prakash Sir and Aiswarya mam for their constant

support and all the fruitful discussions we had throughout till the completion of this thesis.

All that I have learnt from them both academic and personal will help me immensely in my

future career. Their scrupulous reviews on the report not only helped refine and structure

it but also helped me learn how to write academic reports. I cannot thank them enough for

their invaluable guidance and the time they devoted even during this raging pandemic.

I would like to express my deepest gratitude to all the professors at CMI for their excellent

courses. They helped me to intensify my interests in Theoretical Computer Science. I

would like to specially thank our faculty advisors Prof. B. Srivathsan for helping me with

my presentation skills and for being there whenever I wanted some help and Prof. Prajakta

Nimbhorkar for all the conversations and advices.

I would like to thank all my friends for their love and support. I am grateful to CMI for

this opportunity to learn from the best and the invaluable friends I have made there.

Last but not the least, No words can express my gratitude towards my parents and my

brother. Their constant encouragement, love and unfailing support is what made everything

possible.

ii

Contents

1 Introduction 1

2 Preliminaries 6

3 Satisfiability of SL-SOS Constraints 9

3.1 Satisfiability of an SL-SOS constraint is NP-Hard 9

3.2 Satisfiability for SL-SOS constraints is decidable in NEXP-time 12

3.2.1 An improvement to the proof of Theorem 3.2: 15

4 SL-SOS Constraints need not be regular 17

4.1 The Intersection (non)emptiness problem for SL-SOS constraints 20

5 Conclusion and Discussion 21

Bibliography 22

6 Appendix 25

1 Introduction

Strings can be found everywhere throughout and beyond computer science [17, 25]. They

are a fundamental datatype in almost every modern scripting and programming languages.

String operations occur frequently in varying fields like model checking, database applica-

tions [18, 8, 7, 1] and so on.

String theories are extremely useful in the verification of string-manipulating programs [29]

and analysis of security vulnerabilities of scripting languages. Many well-known security

vulnerabilities like SQL injection occur due to mishandling of strings [27]. The detection of

such issues are reduced to solving satisfiability of a string constraint [20]. String contraints

impose constraints over variables that take strings as assignments. Some of the typical ex-

amples of string constraints are over string length, substring, string matching, (in)equality

etc [28]. String constraint solving is put into limelight in recent years and there are many

efficient string solvers that are currently available such as HAMPI [20], z3-str3 [5] and many

more. Inspite of such advances, most of these solvers don’t provide any completeness guar-

antees rather they work for specific instances. They are possibly non-terminating and may

suffer from the performance issues [16]. The study of string constraints has to balance be-

tween expressiveness and complexity.

A direction of research is to find meaningful and expressive subclasses of string constraints

for which satisfiability problem is decidable [1]. The satisfiability/decidability problem for

string constraints asks if there is an assignment to the string variables satisfying the given

constraints.

One of the major issues is that most of the expressive classes of string constraints are either

undecidable or their decidability is left as an open question [13, 14, 15]. In the past, people

have found logical extensions on string constraints such as over transducers [23] or word

equations (string logic with concatenation operation) [24] etc. for which the satisfiability is

decidable. Although, the satisfiability problem for a full class of string constraint combin-

ing transducer, concatenation, and length constraints is undecidable in general [26]. Even

without transducer constraints, the decidability of analyzing a combination of concatenation

and length constraints is still an open problem [6, 14]. Recent studies proposed that there

are some sub-classes of these string logics (that are undecidable in general) for which the

satisfiability problem is decidable [7].

When straightforward analysis is undecidable, an approach that has gained momentum in

the recent past is of (regular) separability. This has been quite well studied for many classes

of infinite state systems [21, 19, 11, 9]. It will be interesting to see if given two string con-

straints whether these can be regularly separable. Here, by regular we mean that, given

that there are k variables over which the string constraint is defined, an assignment for

1

each of the k variable comes from an automaton over an extended alphabet of k dimension,

i.e., a letter from the extended alphabet is a k-tuple of letters. An accepting word for the

automaton will be a k-tuple of words where the ith word in the tuple gives the assignment

for the ith variable for all i ∈ {1, . . . , k}. If the regular separator can be effectively computed

then many assertion checks can be automated, thanks to the decidability results on regular

languages in the related works.

Our work: In this thesis, we follow this line of research and attempt to look into these

two motivating questions for a particular class of string constraints. Our version of the string

constraint (defined over a set of variables and alphabets) contains membership constraints

(where the variable assignments must belong to specified regular languages) and subword

ordered constraints. In addition, the variables are ordered and a variable can be related by

a subword relation to a concatenation of variables having higher order than it. We call this

restricted fragment as Straight line subword ordered string (SL-SOS) constraints.

In our first result, we show that checking the satisfiability for this subclass of string constraint

is decidable. We get the upper bound for the satisfiability problem to be in NEXPTIME.

We also prove that it is NP-hard. The proof of the former follows by establishing a bound

on the length of the strings to be examined, based on the ordering of the variables. We

proved that a variable can be bounded by atmost an exponential size to the input. Hence

by guessing an assignment of appropriate size we obtain an NEXPTIME upper bound. We

refined the procedure further by getting the minimal length for each string variables by

looking at the depth1 of each variable with respect to the subword ordered constraints. The

proof of the latter (i.e.,NP-hardness for the defined class of string constraint) is a reduction

from 3-SAT to the subword ordered string constraint with straight line restriction as we

defined.

A collorary to the satisfiability problem for SL-SOS constraints is checking the intersection

(non)emptiness problem for SL-SOS constraints is easily decidable. Since we can effectively

get an SL-SOS constraint for the intersection of two given SL-SOS constraints. The in-

tersection is trivial to get for the membership constraints following that regular languages

are closed under intersection. So we just take the intersection of the automaton defined in

the two constraints for every variable. Now, for the straight line variant of the subword

ordered (SOSL) constraint we allow multiple constraints to have the same L.H.S. variable

in contrast to the straight line definition in [23] where they don’t allow multiple constraints.

This allows us to simply take the union of the SOSL constraints. Hence, we can get the

1Depth of a variable with respect to the straight line variant of the subword ordering can be seen

inductively as follows:

• A variable has depth 0 if it doesn’t occur in the R.H.S. of any straight line constraint.

• A variable has depth i if it occurs in the R.H.S. of an straight line constraint whose L.H.S. variable

is of depth i− 1

2

intersection for two SL-SOS constraints. Hence, checking the intersection (non)emptiness

is just to checking the satisfiability of the intersection of the two SL-SOS constraints. This

result is in contrast with that of general SL constraints, for which decidability of intersection

non-emptiness is not trivial where they used alternating automata as a symbolic represen-

tation for SL fragments.

Our second result is a step towards checking regular separability for SL-SOS constraints. We

prove that the string constraint that we define may not regular and can define non-regular

tuples. We proved that it might not be regular by giving a proof by contradiction using

pumping lemma for the regular language over such extended alphabet. The fact that the

constraint may not be regular also means that the separability problem is not immediate.

Hence, it is still meaningful to look at the regular separability of SL-SOS constraints. The

regular separability problem is not trivial because if they were regular then we would have

directly concluded that the SL-SOS constraints are regularly separable since the regular

separability problem would have just reduced to only checking intersection non-emptiness.

Thus one of the future motive of our work is to answer the regular separability problem for

these constraints and is now left as an open problem.

Related work: The straight line constraint is one of the subclasses of string constraints

that have been studied quite extensively. The satisfiability of general string constraint is

shown to be undecidable. This is because checking satisfiability of a transducer that realizes

identity (i.e., a transducer T such that T (s) = s for any string s) is already undecidable

by a simple reduction from the Post Correspondence Problem (PCP) as proved in [26]. For

this reason, an acyclicity restriction [3, 4] like the Straight line variant (which is shown [23]

to be reasonable since it is typically satisfied by constraints that are generated by symbolic

execution.) is often imposed to obtain decidability. Under this straight line restriction, the

satisfiability was shown to be in EXPSPACE[23].

A Comparison of SL-SOS constraints with SL fragments: Our definition for straight

line is more general than the straight line restriction2 of the string constraints introduced by

Lin and Barcelo in [23]. They define the string constraint as the conjunction of membership

constraints and relational constraints where a relational constraint is a 2-tuple representing

the input and output of a transducer. They say that a string constraint is straight-line if

it is a conjunction of straight-line relational constraints (where the input is over a single

variable and there is an ordering on the variables such that the output variables are of higher

order than the input variable) along with membership constraints (membership constraint

associates each variable with a regular language from which they can be assigned values)

and there is atmost one constraint for each variable that occurs in the L.H.S. In our case,

we allow multiple constraints for same variable occuring in the L.H.S.

2Similar notions that appear in the literature of string constraints include acyclicity [1] and solved form

[14]

3

We see that the satisfiability problem is decidable for both the straight line string constraint

defined in [23] and SL-SOS constraints that we proposed. But the latter is in NEXPTIME

whereas the former has the complexity in EXPSPACE. This is overall a better result for

SL-SOS constraint compared to that of the classical straight line string constraint.

The regular separability has been studied quite extensively in the past. The idea of sepa-

rability is to decide whether two given languages are not only disjoint, but whether there

exists a finite, easily verifiable, certificate for disjointness (and thus for safety). It has long

been known that separability of context-free languages is undecidable [10] already for very

simple classes of regular languages. This stifled the hope that separability would be decid-

able for any interesting classes of infinite-state systems and classes of separators. However,

the Piecewise testable language turned out to have excellent decidability properties [12]. It

was shown recently that for a wide range of language classes, it is decidable whether two

given languages are separable by a piecewise testable language (PTL) [10, 2]. Even PTL

separability is decidable for classical straight line string constraint as defined by Lin and

Barcelo [2].

However, there hasn’t been much studies on separability of string constraints in particular.

The only paper that we know of to have studied the separability of straight line string

constraints is [2] where they show that regular separability is undecidable for string con-

straints as well as straight line string constraints. Hence, they took a weaker separator

that is Piece wise testable languages (PTL) and checked PTL separability. A PTL is a

finite Boolean combination of special regular languages called piece languages of the form

Σ∗a1Σ∗a2 . . .Σ
∗anΣ∗, where all aj ∈ Σ. For PTL separability of string constraint it was still

undecidable but they got decidability for PTL separability of SL string constraints. However

the complexity for the latter is still open. Then, they looked at Positive PTL separability

of SL string constraints. PosPTL is obtained as a negation-free Boolean combination of

piece languages. They proved the PSPACE completeness for the decidability of PosPTL

separability of SL string constraints.

One of the future motive of the work is to answer the regular separability problem for

SL-SOS constraints. The regular separability problem for two languages asks if there is a

regular language that separates the two languages, i.e., if one of the language is a subset

of the regular language and the other is disjoint from it. The fact that the constraint may

not be regular also means that the separability problem is not as trivial. Because if they

were regular then we would be able to directly conclude whether the SL-SOS constraint is

regularly separable or not since the regular separability problem would have just reduced

to only checking intersection non-emptiness. That is, if the intersection of the constraints

is empty then we can simply take one of the constraint as the regular separator while the

other will be clearly disjoint from the separator. If the intersection weren’t empty then there

won’t be a separator anyway by definition and thus the constraint would not be regularly

separable.

4

Thesis Outline: We have organized our work in three sections:

• In Section 2, we define the string constraint with subword ordering along with its

straight line variant. The proof is done using pumping lemma over an instance of

SL-SOS constraint that is not regular and this directly concludes that SOS constraint

is also not regular since the straight line version is essentially a restricted version of

the SOS constraint.

• In Section 4, We look at whether the straight line subword ordered string constraint

is regular or not. It turns out that even straight line subword ordered string(SL-SOS)

constraint may not be regular.

• Then in Section 3, we study the satisfiability of SL-SOS constraint and show that

it is indeed decidable and prove it to be NP-hard in Subsection 3.1. The proof is a

reduction from 3-SAT to the satisfiability of SL-SOS constraint.

Then, we get an upper bound of NEXPTIME for SL-SOS constraint described in

Subsection 3.2.

Then, we gave a slightly better version of the NEXPTIME proof (described in the

Subsection 3.2) in the although it doesn’t change the overall complexity. Here, we

checked the depth of each variable in terms of their occurrence in the R.H.S. of the

list of constraints. That is, the depth of a variable is 0 if there is a variable that is

not constrained (doesn’t occur in the R.H.S. of any constraint) and the depth is i if

there is a constraint where the L.H.S. variable is of depth i−1 and the former variable

occurs in its R.H.S.

5

Straight Line Subword Ordered String Constraints

2 Preliminaries

Definition 2.1. Subwords: We say that y is a subword of x, when y is a word that is

formed by dropping arbitrary many letters from the word x or in other words, the word y

is embedded in the word x.

Formally, Given two words u ∈ Σ∗ and v ∈ Σ∗, u is a subword of v (denoted by u � v) if ∃
a mapping h : [1, |u|] 7→ [1, |v|] 1 such that

1. u[i] = v[h(i)],∀ i ∈ [1, |u|]

2. h(i) < h(j),∀i < j

For example, ε � bab � abacb, cab 6� abacb.

Definition 2.2. A Subword Ordered String Constraint Ψ can be defined as a 4-tuple

(χ,Σ, (Ax)x∈χ, C) where

• χ is a finite non-empty set of variables

• Σ is a finite non-empty set, the input alphabet

• (Membership constraint) For each x ∈ χ, Ax is a DFA describing the set of words that

x can be mapped to

• C is a finite set of subword ordering of the form: t � t′ where t, t′ are string terms (i.e.

concatenation of variables over χ).

An assignment η assigns a word over Σ to each variable x ∈ χ. We say η satisfies Ψ, denoted

η � Ψ, if

1[i, j] denotes the set {i, ..., j} for i, j ∈ N

6

1. η(x) ∈ L(Ax) for all x ∈ χ

2. For each constraint t � t′ in C where t = x1x2 . . . xn and t′ = y1y2 . . . ym, we have,

η(x1)η(x2) . . . η(xn) � η(y1)η(y2) . . . η(ym).

We define Models(Ψ) to be the set of all assignments that satisfy the subword ordered

string constraint Ψ.

Definition 2.3. A Straight Line Subword Ordered String(SL-SOS) constraints

(Ψ, <) is a subword ordered string constraint Ψ = (χ,Σ, (Ax)x∈χ, C) together with an or-

dering < on the variables in χ such that, for each t � t′ ∈ C, t = x for some x ∈ χ and

t′ ∈ {y | x < y}∗. We call this finite set of subword ordering with straight line restriction C
as subword ordered straight line (SOSL) constraints.

Definition 2.4. We define Models(Ψ, <) to be the set of all satisfying assignments for an

SL-SOS constraint (Ψ, <) = (Σ, χ, (Ax)x∈χ, C).

Remark 1. Our definition of straight line constraint is more general than the one defined

in [2, 23]. The paper [23] defines the straight line constraints as follows: Given the set of

variables χ such that |χ| ≥ m and alphabet Σ, a relational constraint of the form ∧mi=1xi = Pi

is straight line such that: 1) x1, . . . , xm are different variables and is a subset of χ, 2) Each Pi

uses only source variables in Ψ or variables from {x1, . . . , xi−1}. In other words, a variables

must appear in the L.H.S. of atmost one constraints or there cannot be two constraints

that have the same variable in its left hand side. In our definition, we allow multiple

constraints with the same variable in their L.H.S. This relaxation will aid to a straight-

forward decidability of intersection (non)emptiness problem for SL-SOS constraints [See

Section 4.1].

Example 1. We take a look at an example for SL-SOS constraints and see some satisfiable

and unsatisfiable assignments.

Consider the SL-SOS constraint (Ψ, <) = (χ,Σ, (Ax)x∈χ, C) where

• χ = {x, y, z} with the ordering x < y < z

• Σ = {a, b}

• Ax, Ay and Az is defined in Figure 1

• C = {x � yz, y � z}

7

a b a,b

b a

b a,b

a a,b

a a,b

b a,b

1) The automaton where 2) The automaton where

3) The automaton where

Figure 1: The membership constraint for each variable in χ

Note: C cannot have constraints of the form xy � z or y � x due to the straight line

restriction on the subword ordering

Now, let us look at some satisfiable and unsatisfiable assignments.

• (x = ab, y = a, z = ab) � (Ψ, <) as it satisfies both the membership and SOSL

constraints

• (x = ba, y = a, z = ab) 6� (Ψ, <) since it violates the membership constraint Ax, i.e.,

ba 6∈ L(Ax)

• (x = abb, y = a, z = ab) 6� (Ψ, <) since it violates the SOSL constraint x � yz.

Definition 2.5. An SL-SOS constraint (Ψ, <) = (Σ, χ, (Ax)x∈χ, C) is said to be regular

if there is a finite state automaton A over an extended alphabet (Σ ∪ ε)n where n = |χ|
whose language L(A) exactly defines Models(Ψ, <). That is, the automaton A accepts

words2 of the form (w1, . . . , wn) iff there is a satisfying assignment η for (Ψ, <) such that

η(x1) = w1, η(x2) = w2 . . . η(xn) = wn.

2a word in A is over (Σ∗)n, i.e., we take the concatenation of letters coordinate-wise.

8

3 Satisfiability of SL-SOS Constraints

Definition 3.1. (Satisfiability of SL-SOSC (SL-SOSC-SAT)):The satisfiability of SL-SOS

Constraints asks if:

Input: An SL-SOS constraint (Ψ, <) over a set of variables χ

Question: Does there exist an η such that η � (Ψ, <) where η is an assignment for the set

of variables in χ?

3.1 Satisfiability of an SL-SOS constraint is NP-Hard

Theorem 3.1. Satisfiability of a given SL-SOS constraint (SL-SOSC-SAT) is NP-Hard.

Proof. To prove that Satisfiability of SL-SOS constraint is NP-hard, we give a reduction

from 3-SAT. For the reduction, take a 3-SAT instance ϕ = c1 ∧ c2 ∧ c3 ∧ ... ∧ ck over a set

of variables V = {x1, ..., xn}. We define the set of literals to be L = V ∪ {x | x ∈ V }. Each

clause ci is of the form `i1 ∨ `i2 ∨ `i3 where ∀j ∈ {1, 2, 3}, `ij ∈ L.

We define an SL-SOSC-SAT instance (Ψ, <) = (χ,Σ, (Ax)x∈χ, C) corresponding to the 3-

SAT instance ϕ as follows

• χ = {v1, v2, ..., vk, z}

• Σ = {0, 1}

• Membership Constraints:

– We let L(Az) = (0 + 1)n where Az is a DFA describing the assignments that z

can take.

– For each i ∈ {1, . . . , k}, Let L(Avi) = ei1 + ei2 + ei3 that will ensure that atleast

one of the three literals in clause ci evaluates to True where eij = (0+1)m−1x(0+

1)n−m such that

∗ x = 0 if `ij = xm in the clause ci in ϕ.

∗ x = 1 if `ij = xm in the clause ci in ϕ.

Note: A satisfying assignment for a variable in χ will be exactly of a bit vector of size

n where n is the number of variables in ϕ.

9

• Subword Ordered SL constraints C:

– For every variable vi that was introduced for each clause ci, we have the constraint

vi � z. This will ensure that for each vi ∈ χ, vi = z, as each variable in χ is

assigned a bit vector of length exactly n.

The reduction from 3-SAT to SL-SOS constraint takes polynomial time by Lemma 3.1.

The correctness of the construction follows from Lemma 3.2 and 3.3.

Lemma 3.1. The reduction in Theorem 3.1 can be computed in polynomial time.

Proof. Suppose that the original 3-CNF formula ϕ has k clauses, each of which has three

literals over n variables. Then we construct an SL-SOS constraint with k + 1 variables (k

clause variable and a variable z) over the alphabet {0, 1}. For each clause variable, we have

its membership constraint to be a conjunction of 3 expressions for each literal in the clause.

Each such expression is of length n. For each clause variable v, we have k SOSL constraints

of the form v � z. Each constraint can be constructed in polynomial time, so overall this

reduction can be computed in polynomial time, as required.

Lemma 3.2. If there is a satisfiable 3-SAT formula ϕ over n variables and k clauses then

there is an SL-SOS constraint (Ψ, <) with k variables that can be assigned words of length

exactly n that is satisfiable .

Proof. If the 3-SAT instance ϕ is satisfiable then there is a satisfying assignment σ for the

variables xi in V , i.e., σ : xi → {True,False}. For the formula ϕ to be satisfiable, there

must be atleast one literal in each clause that complies with σ. By our construction of

(Ψ, <) defined over variables {v1, v2, ..., vk, z} and alphabet {0, 1}, we claim that there is a

satisfying assignment η for (Ψ, <) such that η(z) = σ, i.e.,

∀i ∈ {1, . . . , n}, η(z[i]) = 1 if σ(xi) = True and η(z[i]) = 0 if σ(xi) = False 3

The SOSL constraints are of the form vi � z for each clause variable vi. This ensures that

|vi| ≥ |z|. Now, by the membership constraints, we have each η(vi) either of the form ei1 , ei2
or ei3 . Each eij = (0 + 1)m−1x(0 + 1)n−m where x = 1 if there is a literal `ij = xm and

x = 0 if `ij = xm in the clause ci. This implies that the clause variables can be assigned

words of length exactly n. Thus |vi| = |z| and vi � z tells that η(vi) = η(z) for all clause

variable vi. Since, we know that σ is a satisfying assignment, we take η(vi) for one of the

literals that complies with σ and match the other bits with z such that vi = z. Thus, η is

a satisfying assignment for (Ψ, <). Hence, (Ψ, <) is satisfiable.

3η(z[i]) is the ith bit of the word assigned to z w.r.t. assignment η

10

Lemma 3.3. If an SL-SOS constraint (Ψ, <) is satisfiable with k variables that can be

assigned words of length exactly n then there is a 3-SAT formula ϕ over n variables and k

clauses.

Proof. If the SL-SOS constraint (Ψ, <) is satisfiable then there is a satisfying evaluation

η that gives an assignment to each variable v1, v2, . . . , vk, z. Now, by our construction, a

satisfying assignment for (Ψ, <) is possible if all the variables have been assigned the same

n length word, i.e., η(v1) = η(v2) = · · · = η(vk) = η(z) = u (say). We claim that σ = η(z)
4 is a satisfying assignment for the 3-SAT formula ϕ which has k clauses over n variables.

To see this, we know that each variable vi can be assigned bit vectors of the form ei1 , ei2 or

ei3 where eij has it’s mth bit to be 0 if `ij = xm in clause ci of ϕ and 1 if `ij = xm. In other

words, ei1 , ei2 and ei3 corresponds to the three literals in clause ci in ϕ. Hence, each η(vi)

has a fixed bit in its bit vector that corresponds to one of the literals in the clause ci of ϕ.

Thus, contributing to one bit of the bit vector u. Hence, we get a satisfying assignment for

ϕ. Therefore, ϕ is satisfiable.

4σ = η(z)⇔ ∀vi ∈ V, σ(vi) = True if η(z[i]) = 1 and σ(vi) = False if η(z[i]) = 0

11

3.2 Satisfiability for SL-SOS constraints is decidable in NEXP-time

Assume that the number of states for each finite state automata (Ax)x∈χ is M for the

SL-SOS constraint (Ψ, <).

Lemma 3.4. If there is a satisfying assignment η for an SL-SOS constraint (Ψ, <) where
χ = {x1, . . . , xk}, then for every ` ∈ {1, . . . , k}, there is another satisfying assignment η`

such that

η`(xi) =

η(xi) if i 6= `

w` otherwise

with |w`| ≤ M ×
(

1 +
`−1∑
i=1

ni.ci

)
− 1 where ni = |η(xi)| and ci is the number of SOSL

constraints in (Ψ, <) with xi as the L.H.S.

Proof. Assuming that there is a satisfying assignment η for the SL-SOS constraint (Ψ, <)

over χ = {x1, x2, . . . , xk}.
When ` = 1, we will show that there exists a word w1 such that η1(x1) = w1 and |w1| ≤
M × (0 + 1) − 1 = M − 1. Since x1 doesn’t occur in the R.H.S. of any SLSO constraint,

it doesn’t depend on any other variable for its assignment. To get a minimal word we see

that if there is a word of size greater than M − 1 then there will be atleast one state that is

repeated, by pigeonhole principle. Now, we can shrink the subsequence starting and ending

with the same state to get a smaller accepting run in the automaton Ax1 . We can repeatedly

shrink such portion of the run until there are no repeating state in the run for η1(x1). If

there are no repeating state then the length of w1 can be atmost M − 1. Hence, for ` = 1,

the lemma holds.

Now, for ` = i, such that i > 1, let for all j ∈ {1, . . . , i} there be cj many SOSL constraints

in (Ψ, <) with xj as the L.H.S. and nj = |η(xj)|. In the worst case, xi may occur in all

the cj constraints with xj as the L.H.S. for all j < i and η(xi) contains each η(xj) entirely

with no overlapping of letters over the words that are embedded into η`(xi). For e.g.,

L(Ax) ∈ {baab},L(Ax′) ∈ a∗ba∗,L(Axb
) ∈ {b}, and C = {x � x′xb, x � xbx

′} here, in the

first constraint the a’s in L(Ax) are embedded in the right hand side of b in the valuation

of x′ whereas in the second constraint it is embedded in the right hand side of b. From the

above argument, w` will be of the form

u1b1u2b2 . . . uzbzuz+1

where we have up ∈ Σ∗ for all p ∈ {1, . . . , (z + 1)} and for all variables xj ≤ xi, η(xj) �
b1b2b3 . . . bz which implies that z ≤ ci.n1 + c2.n2 + · · · + ci−1.ni−1. Now by the similar

argument used for ` = 1, for all p ∈ {1, . . . , (z + 1)}, we can shrink the word wp in order to

12

get the length for wp to be less than or equals M − 1. Thus, by the form of w`, it’s minimal

length will be bounded by (M−1)×(1+
`−1∑
i=1

ni.ci)+(
`−1∑
i=1

ni.ci) = M×
(

1 +
`−1∑
i=1

ni.ci

)
−1.

Theorem 3.2. Satisfiability of a given SL-SOS constraint is decidable and has NEXP-TIME

upper bound.

Proof. Given an SL-SOS constraint (Ψ, <) over χ = {x1, . . . , xk} ordered as x1 < x2 <

· · · < xk and alphabet Σ, deciding the satisfiability of an SL-SOS constraint (Ψ, <) can be

done in NEXP time by non-deterministically guessing the valuation of the variables where

the maximum bound on their length is exponential i.e., Mk.

We claim that if (Ψ, <) has a satisfying assignment η then there exists a set of satisfying

assignments {η̂1, η̂2, . . . , η̂k} such that for each ` ∈ {1, . . . , k} and j ≤ `, η̂`(xj) is upper

bounded by M ×
(

1 +
j−1∑
i=1

ni.ci

)
− 1 where ni = |η(xi)| and ci is the number of SOSL

constraints in (Ψ, <) with xi as the L.H.S.

We prove the above claim by induction on the existence of a satisfying assignment η̂`.

Base case: When ` = 1, we show that η̂1 is a satisfying assignment for (Ψ, <).

This directly follows from Lemma 3.4, that is, if there is an assignment η for (Ψ, <), then

there is another satisfying assignment η1 where η1(xi) =

η(xi) if i 6= 1

w1 otherwise

with w1 ≤ M × (1 + 0) − 1 = M − 1. Hence, from the definition of η̂1 we can put the

assignment η̂1 = η1.

Induction hypothesis: Let us assume the claim is true for η̂m, i.e., there is a satisfying

assignment η̂m for (Ψ, <) where for all j ≤ m, η̂m(xj) is bounded by M×
(

1 +
j−1∑
i=1

ni.ci

)
−1.

Inductive step: Now, we show that there is a satisfying assignment η̂m+1. From the

hypothesis, we know that η̂m is a satisfying assignment for (Ψ, <). From Lemma 3.4, we

take the satisfying assignment η = η̂m and thus, there is another assignment η̂m+1 such that

η̂m+1(xj) =

η̂(xj) if j 6= m+ 1

wm+1 otherwise

with wm+1 ≤M ×
(

1 +
m∑
i=1

ni.ci

)
− 1.

Hence, the assignment η̂m+1 satisfies (Ψ, <) and for each j ≤ m + 1, η̂m+1(xj) is bounded

by M ×
(

1 +
j−1∑
i=1

ni.ci

)
− 1.

From the above induction, we have an assignment η̂k where for each variable x` ∈ χ, η̂k(x`)

13

is bounded by M ×
(

1 +
`−1∑
i=1

ni.ci

)
. Now we can non-deterministically choose assignments

for each variable from this bounded space if there is a satisfying assignment. Otherwise we

have (Ψ, <) unsatisfiable.

Now, we claim that for the assignment ηk, the length of the string assigned to the variable

xi, |ηk(xi)| is O(M i). We show that by an induction on the bounds of the variables in order.

Base case: When i = 1,

From Lemma 3.4, it follows that |η1(x1)| ≤ M − 1. Now, η2(x1) = η1(x1), η3(x1) =

η2(x1), . . . , ηk(x1) = ηk−1(x1) implies that |ηk(x1)| ≤ M − 1 i.e., the assignment ηk for x1

is bounded by O(M).

Inductive step: When i = j + 1,

From Lemma 3.4, we see that the maximum length of |ηj+1(xj+1)| is M×(1+|ηj+1(x1)|.c1+

· · ·+ |ηj+1(xj)|.cj)− 1. Thus, the maximum length of |ηj+1(xj+1)| is M × (1 +O(M j))−
1 = O(M j+1). Now, ηj+2(xj+1) = ηj+1(xj+1), ηj+3(xj+1) = ηj+2(xj+1), . . . , ηk(xj+1) =

ηk−1(xj+1) implies that |ηk(xj+1)| ≤ M × (1 + |ηj+1(x1)|.c1 + · · · + |ηj+1(xj)|.cj) − 1,

i.e., the assignment ηk for xj+1 is bounded by O(M j+1).Now, from hypothesis, we have

|ηk(xp)| = O(Mp) for all p ∈ {1, . . . , j}. Hence, for all i ≤ j + 1, |ηk(xi)| is bounded by

O(M i)

Hence, we have proved that the assignment ηk is such that |ηk(xi)| is bounded by O(M i)

for all variables xi ∈ χ. We can conclude that we have to non-deterministically guess a

satisfying assignment for variables that are bounded exponentially w.r.t. the given SL-SOS

constraint. Thus, it takes NEXP time to decide the satisfiability of SL-SOS constraints.

14

3.2.1 An improvement to the proof of Theorem 3.2:

The bound that we calculated above for SL-SOS constraint (Ψ, <) is assuming the worst

case, where each xi ∈ χ may occur in all the constraints with xj as the L.H.S. for all j < i

and η(xi) covers each η(xj) entirely with no overlapping of letters that are embedded into

η`(xi). But the actual bound might be much less for a given SL-SOS constraint (Ψ, <). In

order to get a tighter bound we can do the following:

1. For each variable xi in χ, we maintain a depth function d(xi) that will map the

variables to the maximum depth in which the variable xi occurs w.r.t. the SOSL

constraints. Also, define depend(x) to be a multiset 5 of variables x′ occurring in the

L.H.S. of SOSL constraints of the form x′ � t where x ∈ t. Initially take d(x) to be 0

and depend(x) to be empty for all x ∈ χ.

Note: x1 doesn’t occur in the R.H.S. of any SOSL constraint, hence, it’s depth number

d(x1) is always 0.

2. For all x ∈ χ in order,

Initialize max to −1. where max stores the maximum depth for x

For all the SOSL constraints Ci ∈ C that have x′ as the L.H.S. where x′ < x,

If x occurs in the R.H.S. of Ci,
Update depend(x) = depend(x) ∪ {x′}
If d(x′) ≥ max, then Update max with d(x′)

Update d(x) = max+ 1

It is easy to see that the algorithm terminates as it iterates over all the variables and stops

when all the variables are processed accordingly. Now, we claim that for a variable x in χ

with depth d(x), there is an assignment η such that the η(x) is bounded by O(Md(x)−1).

We prove the claim by induction on the depth of the variable.

Base case: For all d(x) = 0, since these variables do not occur in the R.H.S. of any SOSL

constraint and it doesn’t depend on any other variable for its assignment. So there are no

letters that have to be embedded in the assignment for the variables of depth 0. Hence,

we can just take their assignment to be from the set of minimal words of their respective

membership constraints as defined in 6.3 where we repeatedly shrink the loops in the run

till there are no repeating state in the run for η(x). This implies that η(x) is bounded by

M − 1 since the longest run will visit all the M states in the automata atmost once.

5The function depend maps a variable to a multiset because there might be constraints of the form x � t
and x � t′ where there is a variable x′ in both t and t′ such that the same word x is embedded in different

position in x′ for t and t′.

For e.g., L(Ax) ∈ {baab},L(Ax′) ∈ a∗ba∗,L(Axb) ∈ {b}, and C = {x � x′xb, x � xbx
′} here, in the first

constraint the a’s in L(Ax) are embedded in the right hand side of b in the valuation of x′ whereas in the

second constraint it is embedded in the right hand side of b.

15

Induction hypothesis: Assume that for all variables x of depth d(x) less than or equals

n, η(x) is bounded by O(Md(x)−1).

Inductive step: For variables x′ with depth d(x′) = n+ 1, we can calculate the bound for

η(x′) to be less than (M − 1)×

(
1 +

∑
x′′∈ depend(x)

|η(x′′)|

)
+

(∑
x′′∈ depend(x)

|η(x′′)|

)

= ×

(
1 +

∑
x′′∈ depend(x)

|η(x′′)|

)
− 1 which follows a similar argument of Lemma 3.4 where

we explicitly added the maximal bounds of the variables (of lower order than x′) occurring

in the L.H.S.of a constraint but here, we consider only the variables in depend(x′).

Now, all the variables of depend(x′) will be of lower depth ,i.e., strictly less than n+1, if there

were a variable ≥ n+1 then the depth of x′ would be greater than n+1(contradiction).There

will be atleast one variables of depth 0 to n. Now, from our hypothesis, we substitute the

bounds for these variables to get M × (1 +O(Mn))− 1 = O(Mn+1).

Note: Instead of guessing the variables of depth 0 we can evaluate their Minimal words

as defined in Definition 6.3 and iterate through all the words in the set of minimal words

Min(Ax) for all x that has depth 0. Even though the complexity will still be NEXPTIME

since we have to anyways guess all the other variables that have depth greater than 0 but

this will be useful for cases where the minimal words are very less and the variables with

depth greater than 0 is also less.

16

4 SL-SOS Constraints need not be regular

In this section, we prove that the SL-SOS constraint need not be regular. This is an

important result with respect to the regular separability of the SL-SOS constraint. If SL-

SOS constraints were regular then trivially they are also regularly separable. Since we can

just take the regular separator to be either of the language that we are required to separate

which implies that we just need to check if they are disjoint. By proving that SL-SOS

constraints may not be regular, it will be interesting to see if they are regular separability

problem.

Theorem 4.1. Straight Line Subword Ordered String Constraints may not be regular.

Proof. Consider an SL-SOS Constraints (Ψ, <) = (Σ, χ, (Ax)x∈χ, C) where

• Σ = {a, b}

• χ = {x, y, z}

• L(Ax) = a∗b∗, L(Ay) = a∗, L(Az) = (ba)∗

• C = {x � yz, y � z}

A satisfying assignment η for Ψ will be of the form:

x ∈ aibj , y ∈ ak, z ∈ (ba)l

where the following conditions must hold

1. i+ j ≤ k + l

2. k ≤ l

3. j ≤ l

We prove that Models(Ψ, <) is not regular by contradiction. Suppose Models(Ψ, <) is

regular. Then from definition 2.5, there is an automaton A (say with n states) that accepts

Models(Ψ, <) where the alphabet is a triple (ax, ay, az) over (Σ ∪ ε)3.

Now, We assign the pumping length to be n (the number of states in A) given by the

pumping lemma.

Take the string w = (anbn, an, (ba)n) ∈ Models(Ψ, <). Because w is a member of A and

w has length more than n, the pumping lemma guarantees that w can be split into three

pieces, w = pqr such that |y| ≥ n and y can be split further into three pieces tuv so that

17

u 6= ε and for all i ≥ 0, the string ptuivq ∈ A. Now, we look at the following cases to show

that the above claim is impossible:

Consider p = q = ε. [Note:We ignore t and v for convenience.]

case 1. When u is of the form (af , ag, (ba)h) where f, g, h > 0

Pumping down u, we get, ptvr of the form (an−fbn, an−g, (ba)n−h). This violates condition

3 since n 6≤ n− h. Hence, ptvr 6∈ Models(Ψ)

case 2. When u is of the form (bf , ag, (ba)h) where f, g, h > 0 and n ≥ f .

case 2.1. When f < h.

Pumping down u, we get, ptvr of the form (anbn−f , an−g, (ba)n−h) This clearly violates

condition 3, i.e., n− f 6≤ n− h, hence, ptvr 6∈ Models(Ψ)

case 2.2. When f > h.

Pumping u twice, we get, ptu2vr of the form (anbn+f , an+g, (ba)n+h). This will clearly

violate condition 3 since n+ f 6≤ n+ h. Hence, ptu2vr 6∈ Models(Ψ)

case 2.3. When f = h.

Pumping down u, we get, ptvr of the form (anbn−f , an−g, (ba)n−h). This will violate the

condition 1 because (n) + (n − f) 6≤ (n − g) + (n − h) =⇒ 2n − f 6≤ 2n − f − g. Thus,

ptvr 6∈ Models(Ψ)

Let us take x′, y′, z′ 6= ε to be valid substrings of wx, wy, wz respectively.

case 3. When u is of the form (afbg, y′, z′)

Pumping u twice, we get, ptu2vr of the form (an−fafbgafbgbn−g, y′′, z′′). Since wx is not of

the form a∗b∗, ptu2vr 6∈ Models(Ψ)

case 4. When u is of the form (x′, y′, a) or (x′, y′, b)

Pumping u twice, we get, ptu2vr of the form (x′′, y′′, (ba)z1b2a(ba)z2) or

(x′′, y′′, (ba)z1ba2(ba)z2) where z1 + z2 + 1 = n. Since wz is not of the form (ba)∗,hence,

ptu2vr 6∈ Models(Ψ)

case 5. When u is of the form (ε, y′, z′) where y′ = ag, z′ = (ba)h

Pumping down u, we get, ptvr of the form (anbn, an−g, (ba)n−h) Now, this violates condition

3 because n 6≤ n− h . Hence, ptvr 6∈ Models(Ψ).

Note: z′ ∈ {a, b} was covered in case 4

case 6. When u is of the form (x′, ε, z′) or (ε, ε, z′) where x is not of the form afbg.

Pumping down u, we get, ptvr of the form (af1bf2 , an, (ba)n−h) where f1, f2 ≤ n. This

violates condition 2 since n 6≤ n− h. Hence, ptvr 6∈ Models(Ψ)

Note: x′ = afbg was covered in case 3

18

case 7. When u is of the form (x′, y′, ε) or (ε, y′, ε)

Pumping u twice, we get, ptu2vr of the form (x′′, an+g, (ba)n . Since n + g 6≤ n, hence it

violates condition 2. So ptu2vr 6∈ Models(Ψ)

case 8. When u is of the form (x′, ε, ε).

Pumping u twice, we get, ptu2vr of the form (x′′, an, (ba)n) where

• If x′ = af then x′′ = af+nbn

• If x′ = bf then x′′ = anbf+n

In any of the above cases, condition 1 is violated as 2n+ f 6≤ 2n. Hence, ptu2vr 6∈ L(Ψ).

Note: x′ = afbg is covered in case 3.

Since a contradiction is unavoidable if we make the assumption that A is regular, hence

A is infact not regular. Thus, by the above result, we see that a language in SL-SOS

constraint may not be regular.

19

4.1 The Intersection (non)emptiness problem for SL-SOS constraints

Although we saw that SL-SOS constraints may not be regular, it is still interesting to note

that the intersection emptiness problem for this constraints is easily decidable.

Definition 4.1. The intersection (non)emptiness problem for SL-SOS constraints asks

if:

Input: Two SL-SOS constraints (Ψ1, <), (Ψ2, <) over the same set of variables χ, same

alphabet Σ and with the same ordering <

Question: Is the intersection between the two SL-SOS constraints (non)empty, i.e., if

Models(Ψ1, <) ∩Models(Ψ1, <) = ∅?

Theorem 4.2. The intersection (non)emptiness problem for SL-SOS constraints is decid-

able.

Proof. Given two SL-SOS constraints defined over the same vocabulary6 say, (Ψ1, <) =

(χ,Σ, (Ax)x∈χ, C1) and (Ψ2, <) = (χ,Σ, (Bx)x∈χ, C2), the intersection of these two con-

straints is an SL-SOS constraint given as follows: (Ψ12, <) = (χ,Σ, (Cx)x∈χ, C12) where

(Cx)x∈χ = (Ax ∩Bx)x∈χ and C12 = (C)1 ∪ (C)2. Since, regular languages are closed under

intersection, we get a single automata for each variable in Ψ12. Since we are using a relaxed

version of straight line restriction (as defined by [23]) where we can have multiple constraints

for the same L.H.S. variable, we just take the union of all the SOSL constraint. Thus, Ψ12

is indeed an SL-SOS constraint and it defines the intersection of Ψ1 and Ψ2 since any as-

signment for Ψ12 must satisfy both the membership constraint and the SOSL constraints

for Ψ1 and Ψ2 by the construction. Now, checking the intersection emptiness is reduced

to checking the satisfiability of the SL-SOS constraint Ψ12 which we know is decidable in

NEXPTIME.

6By same vocabulary we mean that the constraints are defined over the same alphabet and set of variables

along with the same ordering on the variables

20

5 Conclusion and Discussion

In this thesis, we introduced a new modified version of the straight line string constraint

introduced first in [23] with subword ordering. We first looked at the satisfiability problem

of the SL-SOS constraints. We showed that it is decidable in NEXPTIME. We also proved

that the satisfiability problem of SL-SOS constraints is NP-hard. This result is is better than

the satisfiability of SL string constraints in [23] that is in EXPSPACE. Then we studied that

the SL-SOS constraints need not be regular. This also implies that SOS constraints may not

be regular as well. The result influenced our future aim of checking the regular separability

of the constraint since if it were regular then solving regular separability would be trivial.

Lastly, we saw that the decidability of intersection (non)emptiness problem is quite straight-

forward for SL-SOS constraint. In contrast, getting a constraint for the intersection of for

the general Straight line fragment defined by [23] is not immediate where there cannot be

multiple constraints for the same variable. This implies that we can’t just take directly the

union of the straight line constraints.

Future Work:

• To reduce the gap between the complexity result in deciding the satisfiability

of the SL-SOS constraints - Since the upper bound and lower bound that we got for

the satisfiability of SL-SOS constraint is quite wide, a future work would be to get

better bounds that would shrink the gap between the upper and the lower bound.

• To check if we can decide the satisfiability problem for Subword ordered string

constraints - Since, the satisfiability of string constraints over concatenation and

length constraints is a long standing open problem and subword ordered string con-

straints are closely related to those constraints, it will be interesting to come up with

the satisfiability result for the latter since the result could help in solving the former.

• To look if the SL-SOS constraint is regularly separable - Since from section 4 we

got that SL-SOS constraints may not be regular, one can try to check if it is decidable

whether an SL-SOS constraint is regularly separable or not.

• To have tool implementation for the satisfiability problem for the SL-SOS

constraints - Even for some undecidable constraints in general there are tools that

work for specific instances for those constraints [20, 5]. Our result that the satisfiability

of SL-SOS constraints is decidable and has NEXPTIME upper bound, motivates the

need for a tool implementation for the same.

• There are possibilities to work on theories related to presburger arithmetic

and our SL-SOS constraint. One can think of an algorithm to translate satisfiability

of SL-SOS constraint to satisfiability of a presburger formula or other expressible logic

for SL-SOS constraints.

21

Bibliography

[1] P. A. Abdulla, M. F. Atig, Y.-F. Chen, L. Hoĺık, A. Rezine, P. Rümmer, and J. Stenman.

String constraints for verification. In A. Biere and R. Bloem, editors, Computer Aided

Verification, pages 150–166, Cham, 2014. Springer International Publishing.

[2] P. A. Abdulla, M. F. Atig, V. Dave, and S. N. Krishna. On the Separability Problem of

String Constraints. In I. Konnov and L. Kovács, editors, 31st International Conference

on Concurrency Theory (CONCUR 2020), volume 171 of Leibniz International Pro-

ceedings in Informatics (LIPIcs), pages 16:1–16:19, Dagstuhl, Germany, 2020. Schloss

Dagstuhl–Leibniz-Zentrum für Informatik.

[3] P. Barceló, D. Figueira, and L. Libkin. Graph Logics with Rational Relations. Logical

Methods in Computer Science, 9(3), 2013.

[4] W. Bekker and V. Goranko. Symbolic model checking of tense logics on rational kripke

models. In M. Archibald, V. Brattka, V. Goranko, and B. Löwe, editors, Infinity in

Logic and Computation, pages 2–20, Berlin, Heidelberg, 2009. Springer Berlin Heidel-

berg.

[5] M. Berzish, V. Ganesh, and Y. Zheng. Z3str3: A string solver with theory-aware

heuristics. In 2017 Formal Methods in Computer Aided Design (FMCAD), pages 55–

59, Oct 2017.

[6] J. R. Büchi and S. Senger. Definability in the Existential Theory of Concatenation and

Undecidable Extensions of this Theory, pages 671–683. Springer New York, New York,

NY, 1990.

[7] T. Chen, Y. Chen, M. Hague, A. W. Lin, and Z. Wu. What is decidable about string

constraints with the replaceall function. Proc. ACM Program. Lang., 2(POPL), Dec.

2017.

[8] T. Chen, M. Hague, A. W. Lin, P. Rümmer, and Z. Wu. Decision procedures for

path feasibility of string-manipulating programs with complex operations. Proc. ACM

Program. Lang., 3(POPL), Jan. 2019.

[9] L. Clemente, W. Czerwiński, S. Lasota, and C. Paperman. Regular Separability of

Parikh Automata. In The 44th International Colloquium on Automata, Languages,

and Programming (ICALP 2017)), Varsovie, Poland, 2017.

[10] W. Czerwiński, W. Martens, L. van Rooijen, and M. Zeitoun. A note on decidable sep-

arability by piecewise testable languages. In A. Kosowski and I. Walukiewicz, editors,

Fundamentals of Computation Theory, pages 173–185, Cham, 2015. Springer Interna-

tional Publishing.

22

[11] W. Czerwiński and S. Lasota. Regular separability of one counter automata. In 2017

32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages

1–12, 2017.

[12] W. Czerwiński, W. Martens, L. van Rooijen, M. Zeitoun, and G. Zetzsche. A Charac-

terization for Decidable Separability by Piecewise Testable Languages. Discrete Math-

ematics & Theoretical Computer Science, Vol. 19 no. 4, FCT ’15, Dec. 2017.

[13] V. Ganesh and M. Berzish. Undecidability of a theory of strings, linear arithmetic over

length, and string-number conversion. CoRR, abs/1605.09442, 2016.

[14] V. Ganesh, M. Minnes, A. Solar-Lezama, and M. Rinard. Word equations with length

constraints: What’s decidable? In A. Biere, A. Nahir, and T. Vos, editors, Hard-

ware and Software: Verification and Testing, pages 209–226, Berlin, Heidelberg, 2013.

Springer Berlin Heidelberg.

[15] V. Ganesh, M. Minnes, A. Solar-Lezama, and M. C. Rinard. (un)decidability results for

word equations with length and regular expression constraints. CoRR, abs/1306.6054,

2013.

[16] H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Dpll(t): Fast

decision procedures. In R. Alur and D. A. Peled, editors, Computer Aided Verification,

pages 175–188, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

[17] G. H. Gonnet. Some string matching problems from bioinformatics which still need

better solutions. Journal of Discrete Algorithms, 2(1):3–15, 2004. The 9th International

Symposium on String Processing and Information Retrieval.

[18] H. Hojjat, P. Rümmer, and A. Shamakhi. On strings in software model checking. In

A. W. Lin, editor, Programming Languages and Systems, pages 19–30, Cham, 2019.

Springer International Publishing.

[19] H. B. Hunt. On the decidability of grammar problems. J. ACM, 29(2):429–447, Apr.

1982.

[20] A. Kiezun, V. Ganesh, P. J. Guo, P. Hooimeijer, and M. D. Ernst. Hampi: A solver

for string constraints. In Proceedings of the Eighteenth International Symposium on

Software Testing and Analysis, ISSTA ’09, page 105–116, New York, NY, USA, 2009.

Association for Computing Machinery.

[21] E. Kopczyński. Invisible pushdown languages. In Proceedings of the 31st Annual

ACM/IEEE Symposium on Logic in Computer Science, LICS ’16, page 867–872, New

York, NY, USA, 2016. Association for Computing Machinery.

[22] D. Kozen. Lower bounds for natural proof systems. In 18th Annual Symposium on

Foundations of Computer Science (sfcs 1977), pages 254–266, 1977.

23

[23] A. W. Lin and P. Barceló. String solving with word equations and transducers: To-

wards a logic for analysing mutation xss. In Proceedings of the 43rd Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’16,

page 123–136, New York, NY, USA, 2016. Association for Computing Machinery.

[24] G. S. Makanin. The Problem of Solvability of Equations in a Free Semigroup. Mathe-

matics of the USSR-Sbornik, 32(2):129–198, feb 1977.

[25] F. Min and X. Wu. A comparative study of pattern matching algorithms on sequences.

In H. Sakai, M. K. Chakraborty, A. E. Hassanien, D. Slkezak, and W. Zhu, editors,

Rough Sets, Fuzzy Sets, Data Mining and Granular Computing, pages 510–517, Berlin,

Heidelberg, 2009. Springer Berlin Heidelberg.

[26] C. Morvan. On rational graphs. In J. Tiuryn, editor, Foundations of Software Science

and Computation Structures, pages 252–266, Berlin, Heidelberg, 2000. Springer Berlin

Heidelberg.

[27] X. Ping-Chen. Sql injection attack and guard technical research. Procedia Engineering,

15:4131–4135, 2011. CEIS 2011.

[28] J. D. Scott, P. Flener, and J. Pearson. Constraint solving on bounded string variables.

In L. Michel, editor, Integration of AI and OR Techniques in Constraint Programming,

pages 375–392, Cham, 2015. Springer International Publishing.

[29] F. Yu, T. Bultan, and B. Hardekopf. String abstractions for string verification. In

A. Groce and M. Musuvathi, editors, Model Checking Software, pages 20–37, Berlin,

Heidelberg, 2011. Springer Berlin Heidelberg.

24

6 Appendix

Definition 6.1. (Finite Automata intersection problem): Let A1, A2, ..., Ak be k DFAs with

a common alphabet Σ and let L(Ai) be the language accepted by the automaton Ai. The

problem INT is to determine if all the Ai’s accept a common element of Σ∗.

INT = {< A1, ..., Ak > |
k⋂
i=1

L(Ai) is nonempty}

Lemma 6.1. INT is ≤log - complete for PSPACE.[22]

Lemma 6.2. Concatenation of k DFA’s takes linear time.

Proof. Let there be k DFA namely A1, . . . , Ak and we want the concatenation to be like

A1.A2.Ak.We want to get an automaton that accepts a word w such that w =

w1w2 . . . wk where w1 ∈ L(A1), . . . , wk ∈ L(Ak) we define the automaton A = (Q,Σ, δ, s, F)

such that Q is the union over all the states in k DFAs A1, . . . , Ak, the alphabet Σ is union

over all the alphabets defined for A1, . . . , Ak, s is the start state for A1, F is the final

states of Ak. Now for the transition function, we keep all the transitions defined in every

DFA and add the edges from each final state of Ai to the start state of Ai+1 on an ε for

i ∈ {1, . . . , k − 1}. This will clearly take linear time w.r.t. the input.

Definition 6.2. (Minimal automaton): Given a DFA A, MinFA(A) can be constructed

by taking the union over all the minimal accepting runs in A, where a minimal accepting

run is a run from start state to an accepting state in which no state is repeated.

Definition 6.3. (Minimal words): Given a DFA A, Min(A) is a finite set of all the minimal

accepting runs in A, where a minimal accepting run is a run from start state to an accepting

state in which no state is repeated. Min(A) is finite since A is a finite state automata and

the length of any minimal word is bounded by one less than the number of states in A.

Lemma 6.3. Computing Min(A) takes polynomial time and polynomial space

Proof. We show a procedure to compute Min(A) in Algorithm 1.

Given a DFA A = (Q,Σ, δ, s, F), it takes

≈ O((|δ| ∗ |Q| ∗ |Σ|) + (|Q| ∗ |Σ|)) = O(|δ| ∗ |Q| ∗ |Σ|)

to compute its Min which is polynomial to the description of the input automaton.

Note:The length of a word of a minimal automaton Min(A) is strictly less than the number

of states in A since no state can repeat. Since from each state there can be atmost |Σ| many

transitions, the total number of transitions is bounded by |Σ| ∗ |Q|.

25

Algorithm 1 To compute Min(A)

1: procedure Compute-Min(A = (Q,Σ, δ, s, F)) . A is a DFA

2: Initialize Queue Q, Linked List Path, A rooted Tree T where each node has three

data fields < state, path, word >, a pointer curr=Null, Min = ∅
3: Create-Node(node)

4: Path.head = s

5: node.state = s, node.path = Path

6: if s ∈ F then

7: node.word = ε

8: else

9: node.word = ∅
10: T.root = node

11: ENQUEUE(Q,curr)

12: while Q is not empty do

13: curr = DEQUEUE(Q)

14: Path = curr.path

15: Word = curr.word

16: for each q such that curr.state
a−→ q, ∀a ∈ Σ do

17: if q is not an element of Path then

18: Create-Node(new-node)

19: new-node.state = q

20: new-node.path = Path

21: new-node.path.add-at-end(q)

22: new-node.word = curr.word

23: new-node.word.append(a)

24: curr.child = node’

25: ENQUEUE(Q,q)

26: Initialize visited[node]=0 for each node in T, a stack s to empty, Min = ∅
27: s.push(T.root)

28: while s is not empty do . to get the minimal accepting words

29: curr-node = s.pop()

30: if curr-node.child is empty then

31: continue

32: if curr-node.state ∈ F then

33: Min = Min ∪ curr-node.word

34: while ∃ node n ∈ T s.t. visited[n]=0 do

35: if curr-node.child = n then

36: s.push(n)

37: return Min

26

