
Unbounded Distributed Graph Automata

Undergraduate Thesis

Submitted in partial fulfillment of the requirements of

BITS F421T Thesis

By

Kushal Prakash

ID No. 2014B4A70624G

Under the supervision of:

Dr. Aiswarya Cyriac
Assistant Professor

Chennai Mathematical Institute

&

Dr. Himadri Mukherjee
Assistant Professor

BITS-Pilani Goa Campus

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE PILANI, GOA CAMPUS

December 2018

http://www.bits-pilani.ac.in/

Declaration of Authorship

I, Kushal Prakash, declare that this Undergraduate Thesis titled, ‘Unbounded Distributed

Graph Automata’ and the work presented in it are my own. I confirm that:

⌅ This work was done wholly or mainly while in candidature for a research degree at this

University.

⌅ Where any part of this thesis has previously been submitted for a degree or any other

qualification at this University or any other institution, this has been clearly stated.

⌅ Where I have consulted the published work of others, this is always clearly attributed.

⌅ Where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work.

⌅ I have acknowledged all main sources of help.

⌅ Where the thesis is based on work done by myself jointly with others, I have made clear

exactly what was done by others and what I have contributed myself.

Signed:

Date:

i

kushal
Textbox
08-12-2018

Certificate

This is to certify that the thesis entitled, “Unbounded Distributed Graph Automata” and submit-

ted by Kushal Prakash ID No. 2014B4A70624G in partial fulfillment of the requirements of

BITS F421T Thesis embodies the work done by him under my supervision.

Supervisor

Dr. Aiswarya Cyriac

Assistant Professor,

Chennai Mathematical Institute

Date:

Co-Supervisor

Dr. Himadri Mukherjee

Assistant Professor,

BITS-Pilani Goa Campus

Date:

ii

Aiswarya Cyriac
7/12/2018

Abstract

The definition of Nondeterministic Distributed Graph automata as mentioned in [8] has been

extended to include loops and a new generalized definition for Alternating Distributed Graph

Automata has been provided. Any NDGA taking only word graphs as input is proved to be

equivalent to Linear Bounded Automata. The membership and emptiness properties have been

analyzed for each of the Distributed graph automata variants.

Contents

Declaration of Authorship i

Certificate ii

Abstract iii

Contents iv

1 Introduction 1

2 Nondeterministic Distributed Graph Automata 2

2.1 Introduction . 2

2.2 Preliminaries . 2

2.3 Nondeterministic Distributed Graph Automata 3

2.4 Membership Problem . 4

2.5 Algorithm for membership Problem . 5

2.5.1 Complexity . 5

2.6 Nonemptiness Problem . 5

2.6.1 Bounded NDGA . 6

2.7 Algorithm for Nonemptiness Problem for Bounded NDGA 7

2.7.1 Complexity . 7

2.8 Proof of correctness . 8

2.9 Alternating Distributed Graph Automata . 10

2.9.1 Run . 10

2.9.2 Algorithm for membership problem . 11

2.9.3 Complexity . 13

3 Nondeterministic Distributed Word Automata 14

3.1 Linear Bounded Automata . 14

3.2 Equivalence of LBA and NDGA on words . 14

3.2.1 LBA to NDGA . 15

3.2.1.1 Construction of NDGA . 15

3.2.2 Example . 16

3.2.3 proof of correctness . 17

iv

Contents v

3.2.4 NDGA to LBA . 18

3.3 Undecidability of Nonemptiness problem for NDGA 19

4 Closure properties 21

4.1 Closure Properties . 21

4.1.1 ADGA . 21

4.1.2 NDGA . 23

4.1.3 DDGA . 23

4.1.4 NDWA . 23

4.2 Summary . 24

A Monadic Second Order Logic for a graph language 25

A.1 Monadic Second Order Logic for a graph language 25

A.1.1 MSO Semantics . 25

B Alternating Distributed Graph Automata in [8] 27

B.1 Alternating Distributed Graph Automata in [8] 27

B.1.1 Mixed and Pure configuration . 27

B.1.2 Converting Mixed configuration to pure configuration 28

B.1.3 Algorithm for membership Problem . 29

Bibliography 31

Chapter 1

Introduction

Automata is an abstract machine which performs computation on an input by moving through a

series of states or configurations. The set of inputs accepted by the automata form the language

of the automata. Distributed Graph Automata(DGA) is an automata which takes a graph as its

input and evaluates it in a distributed manner. We study the variants of DGA during this thesis.

Them being

• Deterministic Distributed Graph Automata(DDGA).

• Nondeterministic Distributed Graph Automata(NDGA).

• Alternating Distributed Graph Automata(ADGA).

We use the definitions of NDGA and ADGA mentioned in [7],[6] as our inspiration for this

thesis. ADGA in [8](recalled in appendix B) is defined to be bounded and is proved to be

equivalent to MSO logic (semantics of MSO logic is provided in appendix A). We generalize

the definitions of ADGA and NDGA by including loops, thereby making them unbounded. We

have analyzed the membership and nonemptiness problems for each of the DGA variants. We

define Nondeterminstic Distributed Word Automata as a special case of NDGA and prove its

equivalence to Linear Bounded Automata.

As our results, we obtain that the membership problem is decidable for each of our DGA

variants and provide algorithm for membership checking. We also prove that the nonempti-

ness problem for NDGA if undecidable by providing a construction from Linear Bounded

Automata(LBA) to NDWA. We then analyzed the closure properties of the DGA variants on set

operations(union,intersection,complement).

1

Chapter 2

Nondeterministic Distributed Graph

Automata

2.1 Introduction

Nondeterministic distributed graph automata (NDGA) is an automata which takes a graph as its

input and evaluates the input graph in a distributed manner. Each node of the input graph is

assigned with a state. At each step, transition function determines the next state for each node

of the graph. The graph is either accepted or rejected depending on the accepting set defined for

the NDGA.

Figure 2.1 is an example of NDGA to accept any disconnected graph. Given an input graph, all the

nodes in the graph are initially assigned with state qin, the nodes then undergo transition as shown

using their current state and the incoming neighbor states. Acceptance set F = {{q
1
yes, q

2
yes}} for

the NDGA in 2.1. The input graph to the NDGA is accepted if the graph reaches a configuration

which contains the states exactly equal to any set in F.

Any input word for a finite state machine can be converted to a straight line graph by including

directed edges between the positions and its neighbors. We define any NDGA taking straight

line graph input as Nondeterministic Distributed Word Automata.

2.2 Preliminaries

An NDGA is defined on an input graph with each of the graph’s node and edge labelled with

the elements in set ⌃ and � respectively. ⌃ is a finite set of node labels and � is a finite set of

edge labels.

2

Chapter 2. 3

qinstart

q1

q2

qyes
1

qno

qyes
2

= q2

3 q2

= q1

3 q1

Figure 2.1: NDGA to accept all disconnected graphs.

Input graph for an NDGA The input graph for an NDGA is of the form G = (V, �, E) where
V is a nonempty set of nodes, � : V �! ⌃ maps each node to a node label and E ✓ V ⇥ V ⇥ �.

2.3 Nondeterministic Distributed Graph Automata

Nondeterminitic Distributed Graph Automata takes an input graph and evaluates it over a

sequence of steps. The NDGA accepts the input graph if the graph in the final step contains

only states in the accepting set F. Let A = (Q, �,�, F) be an NDGA where

• Q is a finite set of states.

• � is the initialization function defined as � : ⌃ �! Q.

• F ✓ 2Q, F is a finite set containing subsets of state set Q which describes accepting

configurations.

• � is the transition function defined as � : Q ⇥ 2�⇥Q �! 2Q.

Run A run of a graph G = (V, �, E) on A = (Q, �,�, F) is a sequence ⇢ = ⇢0⇢1⇢2.....⇢l where

⇢i : V �! Q for i 2 N, ⇢0 = � � �. We define the length of the run ⇢(denoted by length(⇢)) to be l.

⇢i+1(v) 2 �(⇢i(v), S) where S = {(�, q) | 9u 2 V, (u, v, �) 2 E, ⇢i(u) = q}

Accepting Run A run ⇢ of a graph G = (V, �, E) on A = (Q, �,�, F) is accepting if {⇢l(v) | v 2
V} 2 F where l is the length(⇢).

Chapter 2. 4

6 4 5

1 2 3

Figure 2.2: Input graph G

qin qin qin

qin qin qin

qin qin qin

qin qin qin

q1 q1 q1

q2 q2 q2

q1 q1 q2

q2 q2 q2

q1
yes q1

yes q1
yes

q2
yes q2

yes q2
yes

q1
yes qno qno

q2
yes q2

yes q2
yes

Figure 2.3: Accepting(left) and Rejecting(right) runs of the input graph G for the NDGA 2.1

Example Figure 2.3 shows accepting and rejecting runs for the input graph(figure 2.2) on the

NDGA in figure 2.1.

Language of NDGA An input graph G is accepted by the NDGA if there exists an accepting

run ⇢ of G on A. Language of an NDGA A = (Q, �,�, F) is the set of all graphs which are

accepted by A.

L(A) = {G | 9 an accepting run ⇢ of G on A}

2.4 Membership Problem

A Graph G = (V, �, E) is a member of an NDGA A = (Q, �,�, F) if G 2 L(A).
Input: A = (Q, �,�, F), ⌃, �,G where A is an NDGA over ⌃ and � G = (V, �, E)

Output:

8>><
>>:
Yes , if G 2 L(A).

No , if G < L(A).

Chapter 2. 5

2.5 Algorithm for membership Problem

The algorithm takes a graph G = (V, �, E) and NDGA A = (Q, �,�, F) as inputs. We construct a

pruned tree T with the root being � � �. For a node ⇢ in the tree, we look for all the incoming

edges to any node v 2 V , if u is an incoming edge, then we add ⇢(u) to the set S. We obtain a

sets S for each node v 2 V . A node ⇢0 is a child node of ⇢ if for every v 2 V , ⇢0(v) belongs to
�(⇢(v), S) where S is the set obtained for the node v. If any node ⇢0 is already present in the tree

T during construction, then we do not add ⇢0 to the tree.

The tree T constructed is accepted if any of the leaf node configuration in the tree is accepted.

The algorithm is represented in 1. The function Combination(M,V) returns all possible mappings

from V to Q in M.

2.5.1 Complexity

Membership algorithm involves constructing a pruned tree and then searching for an accepting

branch in the tree. Constructing the tree takes the same time as BFS as this involves adding all

vertices to the tree by checking the transitions from each node. The tree constructed will contain

maximum of |Q | |V | vertices and |Q |2 |V | edges as we do not add the repeat vertices. Searching for

an accepting branch in the tree again consumes the same time as BFS on the tree.

Time(Membership)= Time(construction of pruned tree) + Time(Searching for an accepting

branch)

= O(|V | + |E |) (V and E are the number of vertices and edges in the pruned

tree).

= O(|Q | |V | + |Q |2 |V |)
= O(Q2 |V |)

2.6 Nonemptiness Problem

Nonemptiness problem intends to check if the language of an NDGA is empty or not.

Input:A = (Q, �,�, F), ⌃, � where A is an NDGA over ⌃ and �.

Output:

8>><
>>:
Yes , if L(A) is non empty.

No , if L(A) is empty.

Theorem: Nonemptiness problem is undecidable for an NDGA. Undecidability of Nonemptiness

problem for NDGA is proved in 3.

Chapter 2. 6

Algorithm 1 Algorithm for Membership problem
Data: NDGA A = (Q, �,�, F), ⌃, � and Graph G = (V, �, E)
Initialize root of Tree T to � � � and set R to {� � �}
while R , ; do

Initialize ⇢ with any element in R

initialize map M to ;
foreach v 2 V do

Initialize set S to ;
foreach (u1, u2, �) 2 E do

if u2 == v then

Add ⇢(u1) to S

end

end

Assign �(⇢(v), S) to M(v)
end

Assign the result of Combination(M,V) to R

foreach ⇢0 2 R do

if (⇢0 not equal to any node in the tree T) then
Add child node ⇢0 to node ⇢ in the tree T

Add ⇢0 to the set R

end

end

Remove ⇢ from set R

end

foreach node t 2 T do

if t is a leaf node then

Initialize set E to ;
foreach v in V do

Add t(v) to E
end

if E 2 F then

return Y ES

end

end

end

return NO

2.6.1 Bounded NDGA

An NDGA A = (Q, �,�, F) is said to be bounded if there exists an n 2 N which is computable

from A such that for all graphs G and for all runs ⇢ of G on A, length(⇢)  n. The length of the

NDGA A is defined as the minimum value of n such that length(⇢)  n denoted by len(A)=n.

Claim: There exists an algorithm for nonemptiness problem on input A if the NDGA A is

bounded([1]).

Chapter 2. 7

2.7 Algorithm for Nonemptiness Problem for Bounded NDGA

The algorithm takes a bounded NDGA A = (Q, �,�, F), finite set containing node labels ⌃ and

finite set containing edge labels � as inputs. All possible ⌃ labelled � graphs with its number of

nodes less than or equal to |Q |len(A)+1 are checked for accepting run ⇢ in the NDGA A. If any

graph G has an accepting run, then Yes is returned denoting that the NDGA A is Nonempty. If

no such graph is found, then No is returned denoting that the NDGA A is empty.

LabelledGraph(A, ⌃, �, i) returns a set containing all possible ⌃ labelled � graphs with i number

of nodes, Membership(A,G) calls the membership algorithm defined earlier.

Algorithm 2 Algorithm for Nonemptiness problem
Data: ADGA A = (Q, �,�, F), ⌃, �
Result: Returns Y ES if L(A) is non empty, else returns NO

assign len(A) to n
assign 1 to i
while i  |Q |n+1 do

Assign the result of LabelledGraph(A, ⌃, �, i) to set variable R

foreach G in R do

if Membership(G, A) = Y ES then

Return Y ES

else

Return NO

end

end

Increment i by 1
end

2.7.1 Complexity

LabelledGraph(A, ⌃, �, i) takes O(|⌃ |i2i2�) as the number of possible node labels for a graph

with i nodes is |⌃ |i and for each edge label � in �, there exists an incidence matrix to indicate

the presence of the edge � between the nodes and there exists 2i
2
possible incidence matrices

for each �. For each graph with i nodes obtained from LabelledGraph(A, ⌃, �, i), we check the

membership whose complexity has been computed earlier.

Time(NonEmptiness) = Time(Nonemptiness check)

= O(Õi= |Q |n+1
i=1 |⌃ |i2i2 |� | |Q |2i)(|⌃ | |Q |n+12 |Q |2n+2 |� | |Q |2 |Q |n+1 is the upper bound

for each of the term).

= O(|Q |n+1 |⌃ | |Q |n+12 |Q |2n+2 |� | |Q |2 |Q |n+1)

Chapter 2. 8

StartInputs - A, ⌃, �
i=1,

n=len(A)

i 
|A.Q |n+1

⌃ labelled �

graph

G = (V, �, E)

with |V | = i

Member(A,G)

Non
Empty

Empty

Increment
i by 1

yes

yes

yes

no

no

no

2.8 Proof of correctness

Claim:The algorithm defined checks for all graphs with number of nodes less than or equal to

|Q |len(A)+1.

Claim: If an NDGA A of length l is nonempty then there exists a graph G with its number of

nodes less than or equal to |Q |l+1 which has an accepting run ⇢.

Proof: Consider a run ⇢ = ⇢0⇢1⇢2⇢3....⇢l of the NDGA on an input graph G = (V, �, E). We

define State sequence of a node v 2 V as SS = q0q1q2q3....ql where ⇢i(v) = qi. The total number

of distinct State sequences will be |Q |l+1 as each state in SS belongs to Q and the maximum

number of states in SS is bounded by l + 1.

Chapter 2. 9

Let the input graph G have more than |Q |len(A)+1 nodes, by pigeon hole principle there must be

two distinct nodes v, v0 that follow same state sequence. We can construct a smaller graph G
0 by

removing v0 from G and adding directed edges from v to the outgoing neighbors of v0. ⇢0 will be

the new run sequence which is same as ⇢ except that the domain of each ⇢0i in ⇢0 is V \ v0. All
the nodes in the new graph G

0 will still follow the same sequence of states in ⇢0.

If the new graph obtained still contains nodes following the same state sequence in ⇢0, then

those nodes can be removed by the method stated above. The final graph obtained will contain

only nodes with distinct state sequences and we know that the number of possible distinct state

sequences is bounded by |Q |len(A)+1.

Thus, If ⇢ is accepting for G, then there exists an accepting run ⇢0 for a graph G
0(where

G
0 has number of nodes less than or equal to |Q |len(A)+1) as all the nodes in G

0 follow same state

sequence in ⇢0 as G in ⇢.

Summarizing the proof, we can classify any input NDGA into one of the following cases:

Case 1: When the NDGA is nonempty and there exists a graph G(V, �, E) with |V |  |Q |len(A)+1

having an accepting run.

The algorithm defined checks for all graphs G(V, �, E) with |V |  |Q |len(A)+1. Hence the algorithm
will return Yes as G has an accepting run.

Case 2: When the NDGA is nonempty and there exists a graph G = (V, �, E) with |V | > |Q |len(A)+1

having an accepting run.

Using our claim, we know that if a graph G = (V, �, E) with |V | > |Q |len(A)+1 is accepted by the

NDGA, then a new graph G
0 = (V 0, �0, E) can be constructed(by removing nodes from G) with

|V 0 |  |Q |len(A)+1 which also has an accepting run. The algorithm defined will check for the

membership of G
0 = (V 0, �0, E) and ’Yes’ will be returned.

Case 3: When the NDGA is empty.

No graph G = (V, �, E) will be found to have an accepting run ⇢. Hence ’No’ will be returned by

the algorithm.

Chapter 2. 10

2.9 Alternating Distributed Graph Automata

An ADGA A takes an input graph G = (V, �, E), initializes each node of the graph with the result

of initialization function. One of the sets of the result of transition function is chosen for each

node. All the possible combinations of states from the sets chosen are evaluated and a tree is

constructed depicting a run. The leaf node in each of the branches should be accepting for the

ADGA to accept the input graph G.

Let A = (Q, �,�, F) be an ADGA on node labels ⌃ and edge labels � where

• Q is a finite set of states.

• � is the initialization function defined as � : ⌃ �! Q.

• F ✓ 2Q, F is a finite set containing subsets of state set Q which can be accepted by the

ADGA A.

• � is the transition function defined as � : Q ⇥ 2�⇥Q �! 22
Q
.

q0

q1

q2

q3

q4

q5

q

q

q

Figure 2.4: transition �(q0, {q}) = {{q4, q2, q1}, {q3, q1, q2, q5}, {q5}} of the ADGA

2.9.1 Run

To define a run of an ADGA A = (Q, �,�, F), we first define the terms configuration ⇢, successor

set function X and successor succ(⇢).

Configuration ⇢ is a mapping from V to Q. ⇢ : V �! Q

Successor set function X is a mapping from V to 2Q. X : V �! 2Q

Chapter 2. 11

X |= next(⇢) if for all v 2 V, X(v) 2 �(⇢(v), S) where S = {(�, q) | 9u 2 V, (u, v, �) 2 E, ⇢(u) = q}
Succ(⇢) = {⇢0 | 8v 2 V ⇢0(v) 2 X(v)}

Run of an ADGA A = (Q, �,�, F) is a tree with each node ⇢i having succ(⇢i) as its children. Root
of the tree is the composition of initialization function and � for an input graph G = (V, �, E),
� � �. For all i, there exists X : V �! 2Q such that X |= next(⇢i) and for all ⇢0 2 Succ(⇢i), there
exists j such that ⇢j = ⇢0 where ⇢j is the child node to ⇢i and if ⇢j is equal to any of its ancestor

nodes, then ⇢j is a leaf node.

A configuration ⇢ is accepting if it maps all the nodes of a graph to a set which is exactly equal

to one of the sets in F.

Accepting Run:A run is said to be accepting if each of the leaf node configurations are

accepting.

2.9.2 Algorithm for membership problem

The algorithm takes as inputs graph G = (V, �, E) and ADGA A = (Q, �,�, F). A pruned tree T

is constructed by enumerating all possible mappings from V to 2Q and validating the function X

with the the transition function � over each node v 2 V and configuration ⇢. Node X is added

as a child node to ⇢ and all possible combinations of mappings v to Q from X are added as its

child nodes. Each of those mappings are also added to the set containing the configurations R.

Each node before addition are checked for their presence among its ancestors. If the same node

is already present, then the node is not added.

After constructing the pruned tree, all the leaf nodes of the tree are checked and if a leaf node

maps the nodes V to a set in F, then the node in the tree is replaced with 1, else it is replaced

with 0. Each node in the tree T at even height is replaced with _ and the nodes at odd height

with ^. If any node in the tree contains only one child node, then repeat the same child node

again so that the node now contains two children. The AND-OR tree constructed is evaluated

and and the Y ES is returned if the tree evaluated to 1, else NO is returned.

The algorithm is defined in Algorithm 3 and function enumerate(V,Q) defined in the algorithm

returns all possible mappings from V to 2Q and Combination(X,V) returns all possible mappings

from V to Q in X.

Combination({1 �! {q1, q2}, 2 �! {q0, q2}}, {1, 2}) returns {1 �! q1, 2 �! q0}, {1 �! q1, 2 �! q2}, {1 �!
q2, 2 �! q0} and {1 �! q2, 2 �! q2}.

Chapter 2. 12

Algorithm 3 Algorithm to check membership
Data: Graph G = (V, E, �), ADGA A = (Q, �,�, F)
Initialize root of Tree T to � and set R to {�}
while R , ; do

Initialize ⇢ to any element in R

Assign result of enumerate(V,Q) to set E

foreach X in E do

Initialize f lag to 1
foreach v 2 V do

Initialize set S to ;
foreach (u1, u2, �) 2 E do

if u2 == v then

Add ⇢(u1) to S

end

end

if X(v) < �(⇢(v), S) then
Initialize f lag to 0
break

end

end

if f lag , 0 then

initialize subtree ST root to X

Assign the result of Combination(X,V) to C

foreach c 2 C do

Add child node c to root of the Subtree ST

if ⇢ and its ancestor nodes are not equal to c then

Add c to the set R

end

end

Add root of the Subtree ST as a child node of node ⇢ in the tree T

end

end

Remove ⇢ from set R

end

foreach node t of T do

if t is the leaf node then

Initialize set E to ;
foreach v in V do

Add t(v) to E

end

if E 2 F then

Replace node t with 1
else

Replace node t with 0
end

else

if height of node t in the tree T is even then

Replace t with _
else

Replace t with ^
end

end

end

if AND-OR tree T evaluates to 1 then

return Y ES

else

return NO

end

Chapter 2. 13

2.9.3 Complexity

Constructing the pruned tree involves adding the X node and adding all possible combinations

of the mappings of X as its children. Therefore, the complexity of construction will be O(1 +
2 |Q | |V | + (2 |Q | |V |)2 + + (2 |Q | |V |)2Q |V |) as the maximum number of child nodes for a node is

2 |Q | |V | and the height of the tree is bounded by 2Q
|V |. Evaluating the tree involves reading

each node of the tree. Therefore it takes O(V + E) which here is O(1 + 2 |Q | |V | + (2 |Q | |V |)2 + +
(2 |Q | |V |)2Q |V |

+ 1 + 2 |Q | |V | + (2 |Q | |V |)2 + + (2 |Q | |V |)2Q |V |).

Time(Membership)=Time(Constructing Pruned tree) + Time(evaluating the tree)

= O(1 + 2 |Q | |V | + (2 |Q | |V |)2 + + (2 |Q | |V |)2Q |V |) + O(1 + 2 |Q | |V | + (2 |Q | |V |)2 +
.... + (2 |Q | |V |)2Q |V |)

= O(1+2 |Q | |V |+(2 |Q | |V |)2++(2 |Q | |V |)2Q |V |)(compute geometric progression

sum)

= O((2 |Q | |V |)2 |Q | |V |+1)
= O(22 |V | |Q | |V |+1+ |Q | |V |)

Chapter 3

Nondeterministic Distributed Word

Automata

3.1 Linear Bounded Automata

A linear bounded automaton(as defined in [9],[5]) is a turing machine in which the tape length is

a finite fixed number. The tape head is not allowed to move o↵ the portion of the tape containing

the input, thereby restricting the computation to a finite bounded area. If the machine transition

tries to move the tape head o↵ the input, then the tape head stays where it is. The input

alphabets contains two special characters which serve as the left end marker and right end

marker.

3.2 Equivalence of LBA and NDGA on words

Graph(w) is a graph constructed from the word w with each symbol in w represented as a node

in Graph(w) and receiving an edge labelled * from its left neighbor and edge labelled (from

its right neighbor. Figure 3.1 shows a construction of Graph(w) from a word w = aabbaa.

Word(G) represents each node of the graph G as a symbol and each symbol takes a position

relative to its neighboring node in G.

Any LBA B with an input word w can be converted to an NDGA A with the input graph

Graph(w). Similarly, any NDGA A with input graph G can be converted to an LBA B with

input word being Graph
�1(G) or Word(G). We call any NDGA on words as Nondeterministic

distributed word automata.

14

Chapter 3. 15

a a b b a a

*

(

*

(

*

(

*

(

*

(

Figure 3.1: Graph(w) when w = aabbaa

3.2.1 LBA to NDGA

Consider an LBA B = (Q, ⌃, �, �, s, t, r) where

• Q is the finite set of states

• ⌃ is the finite set of symbols which can be present in the input word

• � is a finite set of symbols which can appear on the tape

• � : Q ⇥ � �! Q ⇥ � ⇥ {L/R} is the transition function which takes the current state and tape

symbol as input and returns the next state, tape symbol to replace the current symbol

with and the direction in which the tape head should move.

• s is the initial state of the LBA B

• t is the accepting state

• r is the reject state

3.2.1.1 Construction of NDGA

Consider an LBA B = (QB, ⌃B, �B, �B, s, t, r). An NDGA A can be constructed such that L(A) =
graph(L(B)). The input to the NDGA will be a word graph with the nodes same as the input

tape to the LBA. Each node in the input word graph receives a directed edge labelled as * from

it’s left neighbor and directed edge labelled as (from it’s right neighbor.

NDGA A = (Q, �,�, F) is defined as the following

• Q = �B [(QB ⇥ �B)

• �(`) = (s, `), �(a) =a, �(x) = x 8 x 2 ⌃B

• F = 2�B\{r,t } [t

• �(x,* y) = q
0, x if y = q, z and �B(q, z) = q

0,w, R where x, z,w 2 �B and q, q0 2 Qb.

�(x,(y) = q
0, x if y = q, z and �B(q, z) = q

0,w, L where x, z,w 2 �B and q, q0 2 QB.

�(x, {* y,(y0}) = x if x, y, y0 2 �B
�(x, {* y,(y0}) = z if x = (q,w), �B(q,w) = q

0, z, L and y, y0, z,w 2 �B

Chapter 3. 16

3.2.2 Example

Figure 3.3 is an NDGA equivalent for a turing machine accepting a
n
b
n.

q0start q1 q2

q3 t

a �! X, R

`�! ,̀ R

b �! Y, L

(a �! a, R), (Y �! Y, R)

X �! X, R

(a �! a, L), (Y �! Y, L)

Y �! Y, R

a�!a, L

Y �! Y, R

Figure 3.2: Turing machine to accept a
n
b
n

q0, `start

`

astart

bstart

astart

q2, a

q0, a X q2, X

q2, b Y q3,Y

q0,Y

q1, a

t

q2,Y

(
(q2

,Y
)

* (q0, a)
,* (q1, a)

* (q0, `),* (q2, X)

a

* (q1, a),* (q1, X),* (q1,Y)

b

* (q3,Y),* (q0,Y)

b

((q2, a),((q2,Y),((q1, b)
X

(
(q

2
, b

),(
(q

2
,Y

)

{* (q0,Y)

{*
(q
2 , X)

Y

Figure 3.3: NDGA to accept a
n
b
n

Chapter 3. 17

3.2.3 proof of correctness

The input tape of an LBA with directed labelled edges between the nodes is the input for the

NDGA constructed.

Claim:Computation tree of the LBA and the computation tree of the NDGA constructed are

isomorphic.

Consider an LBA B = (QB, ⌃B, �B, �B, s, t, r), NDGA A = (Q, �,�, F) and an input word X. LBA

B begins at (s, ` X a, 0) where s is the initial state of the LBA, 0 is the position of the state.

Let G be the graph constructed from the word ` X a in which each tape alphabet has incoming

directed edge labelled * from its left neighbor and incoming directed edge labelled (from its

right neighbor. ⇢0 maps ` of the input graph G to s, ` and every other node to itself.

The LBA then checks for �B(s, `) where ` is the left end marker and moves to the right and

replaces the alphabet ` with `.

In the NDGA, the second node receives state s, ` from the first node through an edge labelled *.

The node now goes to state named as the tuple obtained from �(x, (s, `)) that is if �B(s, `) = (q, ,̀ R)
then �(x, (s, `)) = (q, x) and the first node is replaced with `.

Assuming n transitions have taken place in the LBA and NDGA, we prove that both the DGA

and LBA undergo the same (n + 1)th transition. Let LBA be in (q0,Y, i) where q
0 2 Qb, Y is the

tape after n transitions and i 2 N is the position of the tape head. The LBA reads the current

alphabet of the tape, checks for �b(q0, y) where y 2 � is the alphabet in the i
th position of Y ,

replaces the alphabet y with w and tape head moves one step to the right if �B(q0, y) = (q”,w, R).
Consider run ⇢, on applying the function ⇢n on the input graph, each node of the input graph

will be in the same state as that of the tape alphabets after n transitions except the (i)th node

which will be in q
0, y where y is the (i)th alphabet in Y . ⇢n+1 maps the i

th node of the graph

to w, (i + 1)th node to q”, x 0 if �B(q0, y) = (q”,w, R) and x
0 if the (i + 1)th node of the graph G.

Therefore, LBA and NDGA both undergo the same (n + 1)th transition.

A tree can be constructed for the LBA’s computation with the nodes being the tape after each

transition for the LBA. Similarly, a tree can be constructed for the NDGA with i
th node being

⇢i for all i 2 N. Each node in both the trees will have exactly one child node except the leaf

node. The height of both the trees are the same as both the LBA on an input word and NDGA

on an input graph undergo equivalent transitions. The leaf node will either be an accepting

configuration or a rejecting configuration. Thus both the trees are isomorphic.

Claim: Language accepted by the NDGA is same as the language accepted by the LBA.

Proof:Using our previous claim, we know that the computation tree for the LBA and the NDGA

are isomorphic. Also, we know that for any input, if the leaf node of the tree constructed for

Chapter 3. 18

the LBA is accepted, then the leaf node of the tree constructed for the NDGA is also accepted.

Similarly, if the leaf node of the tree constructed for the LBA is rejected, then the leaf node of

the tree constructed for the NDGA is also rejected. Therefore, the language accepted by the

NDGA is same as the language accepted by the LBA.

3.2.4 NDGA to LBA

Consider an NDGA A = (QA, �A,�A, F) over node labels ⌃ and edge labels �. LBA B =

(QB, ⌃B, �B, �B, s, t, r) can be constructed from the NDGA A where

• ⌃B = ⌃A

• �B = ⌃A [QA

• QB = ({q0, q1, q3, q4, q5, t} ⇥ (�B [2�B)) [{q0, q1, q3, q4, q5, t}

• s = q0, s is the start state

• if x is the first node of the input graph

• – �B(q0, `) = (q0, ,̀ R) where ` is the left end marker

– �B(q0, x) = (q0,�(x), R) for all x 2 X

– �B(q0, a) = (q1, a, L) where a is the right end marker

– �B(q1, x) = (q1, x, L) for all x 2 �B

– �B(q1, `) = ((q2, ;), ,̀ R)

– �B((q2, S), x) = ((q2, S [{x}), x, R) if S [{x} is a subset of any set in F and and S ✓ 2�B

– �B((q2, S), x) = (q3, x, L) if S [{x} is a not a subset of any set in F

– �B((q2, S), a) = (t, a, L) if S 2 F,

– �B((q2, S), a) = (q3, a, L) if S < F

– �B(q3, x) = (q3, x, L) for all x 2 �B

– �B(q3, `) = ((q4, `), ,̀ R)

– �B((q4, y), x) = ((q5, y), x, R) for all x 2 �B

– �B((q5, y), z) = ((q5, y, z), y, L) for all y 2 �B

– �B((q5, y, z), x) = ((q4, x), �(x, {* y,(z}), R) for all x, y, z 2 �B

– �B((q5, y, z), x) = ((q4, x), �(x, {(z}), R) for all x, z 2 �B and y =`

– �B((q5, y, z), x) = ((q4, x), �(x, {* y}), R) for all x, y 2 �B and z =a

– �B((q4, x), a) = (q1, a, L) for all x 2 �B

Chapter 3. 19

ab. . . c . . .

(q5, b)

ab. . . c . . .

(q4, b)

ab. . . c . . .

(q4, b, c)

�(a, {* b,(c})b. . . c . . .

(q4, a)

Figure 3.4

The LBA starts at state q0 and for each tape alphabet x 2 ⌃B scanned, tape head moves to the

right and stays in the state q0. As the tape head scans the right end marker a, the LBA goes to

state q1 and the tape head moves to the left. The tape head keeps moving left till it points to

the left end marker `. On reading the left end marker, LBA goes to state q2 and moves to the

right. The tape header then scans the first alphabet of the tape x, if {x} is a subset of any set

in F, then the LBA goes to state (q2, X) where X = {x} and the tape head moves to the right.

If {x} is not a subset of any set in F, then LBA goes to state q3 and tape head moves to the

left. The LBA when in state (q2, X) scans the tape alphabet y and goes to state (q2, X [y) if
X [y is a subset of any set in F and the tape head moves to the right, else it goes to q3 and

the tape head moves to the left. If tape head scans the right end marker when in state (q2, X)
and X ✓ F, then LBA goes to accepting state t and tape head moves to the left, else LBA goes

to state q3 and tape head goes to the left. When in state q3, the tape head keeps moving left

without making any changes to the tape until it reaches the left end marker. On reaching the

left end marker, LBA goes to state q4 and tape head moves to the right. For each tape alphabet,

the tape head scans both its neighbors and replaces the alphabet with the state as determined

by the transition function of the NDGA. When the right end marker is reached, the LBA goes

back to state q1 and the tape head moves to the left.

3.3 Undecidability of Nonemptiness problem for NDGA

Nonemptiness problem for an NDGA is undecidable. The proof is by reduction from nonemptiness

of an LBA. We show that if nonemptiness problem for an NDGA is decidable,then nonemptiness

Chapter 3. 20

problem of LBA will also be decidable. For this reduction, we use the construction of NDGA

from LBA as defined before.

Suppose a turing machine R decides Nonemptiness of an NDGA. We construct a turing machine

S to decide Nonemptiness of an LBA as follows.

S = ”On input hBi where B is an LBA:

1. Construct an equivalent NDGA A from B using the construction defined earlier.

2. Run R on input hAi.
3. If R accepts, accept; if R rejects, reject.”

If R accepts hAi, then L(A) = ;. Thus L(B) = ; as A is an equivalent conversion of B to NDGA.

Chapter 4

Closure properties

4.1 Closure Properties

4.1.1 ADGA

ADGA are closed under union,intersection and complement

Consider two ADGAs A1 and A2. We can construct an ADGA A[to recognize L(A1) [L(A2).
Initialize every node to a state named by the node name itself. Nondeterministically allocate

the nodes to the initialization function mappings of A1 or A2 in step 2 and evaluate the chosen

ADGA. Accepting set will be the union of the accepting sets of the two ADGAs F[= F1 [F2.

Suppose a node of the input graph chooses A1 and receives a state in A2 from its neighbor, then

it goes to state qno which is not contained in F[.

Suppose there exists an ADGA A = (Q, �,�, F). We construct its complement ADGA A =

Q, �,�, F) as follows:

• Q = Q [{(qS) | q 2 Q, S 2 2Q}

• � = �

• F = 2Q � F

• For all q 2 Q if �(q, S) = {S1, S2, S3,, Sn} where S is the set of input states and S1, S2, S3....Sn

are sets of states. �(q, S) = {{qS1, qS2, qS3,, qSn }} �(qSi, X) = {{qi
1}, {qi

2}, {qi
3},, {qi

m}}
where X denotes for any incoming set of states.

For example, consider an ADGA A with �(a) = q1,�(b) = q2, �(q1, {q2}) = {{q3, q4}, {q5, q3}},
�(q2, {q1}) = {{q6, q4}} and F = {{q3, q6}, {q5, q6}}. Its complement A will have �(a) = q1,�(b) =

21

Chapter 4. 22

a b

Figure 4.1: Input Graph

q1 q2

{q3, q4 } {q6, q4 }

q3 q6 q3 q4 q4 q6 q4 q4

{q5, q3 } {q6, q4 }

q5 q6 q5 q4 q3 q6 q3 q4

Figure 4.2: Pruned tree for ADGA with �(a) = q1,�(b) = q2, �(q1, {q2}) = {{q3, q4}, {q5, q3}},
�(q2, {q1}) = {{q6, q4}} , F = {{q3, q6}, {q5, q6}}

q1 q2

{q1{q3,q4}, q1{q5,q3} } {q2{q6,q4} }

q1{q3,q4} q2{q6,q4}

{q3 } {q6 }

q3 q6

{q3 } {q4 }

q3 q4

{q4 } {q6 }

q4 q6

{q4 } {q4 }

q4 q4

q1{q5,q3} q2{q6,q4}

{q5 } {q6 }

q5 q6

{q5 } {q4 }

q5 q4

{q3 } {q6 }

q3 q6

{q3 } {q4 }

q3 q4

Figure 4.3: Pruned tree for the complement of the ADGA in 4.2

q2, �(q1, {q2}) = {{q1{q3,q4 }, q1{q5,q3 }}}, �(q2, {q1}) = {q2{q6,q4 }}, �(q1{q3,q4 }, X) = {{q3}, {q4}},
�(q1{q5,q3 }, X) = {{q5}, {q3}}, �(q2{q6,q4 }, X) = {{q6}, {q4}} and F = 2{q1,q2,q3,q4,q5,q6 }�{{q3, q6}, {q5, q6}}.
The pruned tree constructed for A on the input graph 4.1 is shown in 4.2 and the pruned tree

for the complement ADGA A is shown in 4.3.

Proof :

If possible, let there exist input graph G which is accepted by both A and A
0. Suppose

G has k nodes and each node i is assigned with qi by initialization function and �(qi, S) =
{S1

i, S2
i, S3

i,, Sn
i}. If G is accepted, then we know there exists state sets Sj1

1, Sj2
2, Sj3

3, ..., Sjk
k

chosen by the nodes which will be accepted. Therefore, each branch of the set choice will be

accepted. In the automata A
0, all the branches for the choice of states qS j1

1, qS j2
2, qS j3

3, ..., qS jk
k

will be rejected as all the transitions in �(qS j i
i) will lead to rejecting states. Therefore, A

0 will

reject G and we obtain a contradiction.

Chapter 4. 23

If possible, let there exist input graph G which is rejected by both A and A
0. For A to

reject G, there must exist a rejecting branch in every choice of state sets where �(qi, S) =
{S1

i, S2
i, S3

i,, Sn
i} and each of Sj

i are state sets. Suppose there exists one rejecting branch in

each choice, then that branch is accepted in A
0 and since each choice will now contain atleast

one accepting branch, A
0 will accept G.

4.1.2 NDGA

NDGA are closed under union and intersection. The construction of the NDGA for union is

same as that for ADGA.

For intersection, we construct an automata in which each state is the Cartesian product of

a state in A1 and a state in A2. Transition function �((q1, q2), (S1 ⇥ S2)) = (�A1(q1, S), �A2(q2, S)
where S1 is the incoming set of states in A1 and S2 is the incoming set of states in A2. The input

graph is accepted if the projection of the first symbols(first symbol in the Cartesian product) of

each node in a configuration is exactly equal to any set in F1 and the projection of the second

symbols of each node are exactly equal to any set in F2.

BNDGA are proved to be not closed under complement in [8]. However, checking closure of

NDGA under complement requires further research.

4.1.3 DDGA

DDGA are closed under union, intersection and complement. The construction for intersection is

same as that of NDGA. The construction for union is same as that of construction for intersection

except the accepting set. The input graph is accepted if the projection of the first symbols(first

symbol in the Cartesian product) of each node in a configuration is exactly equal to any set in F1

or the projection of the second symbols of each node are exactly equal to any set in F2(F1 and

F2 are the accepting sets of the two automata). For complementing, the accepting set becomes

2Q \ F.

DDWA:Deterministic Distributed Word Automata is a DDGA whose input Graph(w) where w

is a word. DDWA is closed under union, intersection and complement and the constructions are

same as that for DDGA.

4.1.4 NDWA

Nondeterministic Distributed Word Automata are NDGA whose input is Graph(w) where w is

a word. NDWA are closed under union, intersection and complement. We know that NDWA

Chapter 4. 24

ADGA NDGA ADWA NDWA DDWA BADGA BNDGA BDDGA

Nonemptiness undecidable undecidable undecidable undecidable undecidable undecidable decidable decidable

Membership decidable decidable decidable decidable decidable decidable decidable decidable

Table 4.1: Decidability of Nonemptiness and Membership problems

are equivalent to LBA. A language recognized by an LBA is always context sensitive and

context sensitive language is closed under set operations. Therefore, NDWA is closed under set

operations.

The same construction as that of ADGA can be provided for union and intersection. The

construction of complement is believed to follow Immerman and Szelepcsényi theorem(from

[4],[10]).

ADGA NDGA ADWA NDWA DDWA BADGA BNDGA BDDGA

Union 3 3 3 3 3 3 3 3

Intersection 3 3 3 3 3 3 3 3

Complement 3 ? 3 3 3 3 7 3

Table 4.2: closure properties

4.2 Summary

The definition of NDGA as mentioned in [8] as been extended to include loops and also generalized

the definition of ADGA. We provided membership algorithm for the new definition of NDGA

and ADGA. We then proved the equivalence of NDGA on words(termed as NDWA) and LBA

by providing constructions from LBA to NDWA and vice versa. Therefore, proving that NDWA

can recognize only context sensitive language.

We analyzed the closure properties over set operations and the results are shown in table 4.2.

The decidability of nonemptiness problem and membership problem are summarized in table 4.1.

There exists further scope of research in various directions. Some of them being:

• What is the Expressive power of ADGA?

• What is the Expressive power of NDGA?

• Can a construction of complement for NDGA be provided?

• Study the similarities between ADGA and cellular automata(defined in [2]).

• Can NDWA be converted to DDWA? (long standing open problem for LBA)

Appendix A

Monadic Second Order Logic for a

graph language

A.1 Monadic Second Order Logic for a graph language

Let G� 2 ⌃� and � : VG ! ⌃ where ⌃ is the set of node labels and � is the set of edge labels. ⌃�

is the set of all ⌃ labelled � graphs and VG is a finite nonempty set of nodes.

The set MSOh⌃, �i on any G� is built with the following atomic formulas.

• ⇧ax (x has label a).

• x
�
* y (x has a � edge to y where � 2 �).

• x = y (x is equal to y).

• x 2 X (x is an element of X).

where x, y 2 Vnode , X 2 Vset , a 2 ⌃ , � 2 �. Vnode is the set of node variables and Vset is the set

of set variables. If � and are MSO(⌃, �) formulas then so are ¬� ,� ^ ,� _ ,9x(�) ,8x(�)
,9X(�) and 8X(�).

A.1.1 MSO Semantics

Formulas(�) are interpreted on pairs (G�, ↵), where G� 2 ⌃� and
↵ : f ree(�) ! VG [2VG . The truth conditions of the atomic formulas are

• (G�, ↵) ✏ ⇧ax i↵ �(↵(x)) = a

25

Appendix A. Monadic Second Order Logic for a graph language 26

• (G�, ↵) ✏ x
�
* y i↵ ↵(x)

�
* ↵(y) and � 2 �

• (G�, ↵) ✏ x = y i↵ ↵(x) = ↵(y)

• (G�, ↵) ✏ x 2 X i↵ ↵(x) 2 ↵(X)

where x,y2 Vnode and X2 Vset . If � and are MSO(⌃, �) formulas, then

• (G�, ↵) ✏ ¬� i↵ (G�, ↵) 2 �

• (G�, ↵) ✏ (� _) i↵ (G�, ↵) ✏ � or (G�, ↵) ✏

• (G�, ↵) ✏ (� ^) i↵ (G�, ↵) ✏ � and (G�, ↵) ✏

• (G�, ↵) ✏ 8x(�) i↵ for all k 2 VG, (G�, ↵0) ✏ � where ↵0 : f ree(�) ! VG [2VG , ↵0(y) = ↵(y)
for all y , x and ↵0(y) = k when y = x.

• (G�, ↵) ✏ 9x(�) i↵ for some k 2 VG, (G�, ↵0) ✏ � where ↵0 : f ree(�) ! VG [2VG , ↵0(y) = ↵(y)
for all y , x and ↵0(y) = k when y = x.

• (G�, ↵) ✏ 8X(�) i↵ for all K 2 2VG , (G�, ↵0) ✏ � where ↵0 : f ree(�) ! VG [2VG , ↵0(Y) = ↵(Y)
for all Y , X and ↵0(Y) = k when Y = X.

• (G�, ↵) ✏ 9X(�) for some K 2 2VG , (G�, ↵0) ✏ � where ↵0 : f ree(�) ! VG [2VG , ↵0(Y) = ↵(Y)
for all Y , X and ↵0(Y) = k when Y = X.

Appendix B

Alternating Distributed Graph

Automata in [8]

B.1 Alternating Distributed Graph Automata in [8]

Here, we discuss the definition of ADGA in [8]. In an NDGA, when a node in a state has more

than one options for the same incoming states, the node nondeterministically chooses to go to

one of the states. An ADGA contains universal states represented as rectangle as shown in fig

B.1, any node of an input graph when in universal state and has more than one options, checks

for an accepting run in each of the branches([3]).

Bounded ADGA: An ADGA A = (Q, �,�, F) is said to be bounded if there exists an n 2 N
which is computable from A such that for all graphs G and for all runs ⇢ of G on A, length(⇢)  n.

The length of the ADGA A is defined as the minimum value of n such that length(⇢)  n denoted

by len(A)=n.

Nonemptiness problem: Bounded ADGA is proved to be equivalent to MSO logic in [8].

Since nonemptiness problem is undecidable for MSO, it is also undecidable for bounded ADGA.

B.1.1 Mixed and Pure configuration

If ⇢i maps the nodes to states containing both universal and nonuniversal states, then the

configuration obtained is called mixed configuration. On the other hand, if ⇢i maps the nodes

q

Figure B.1: Representation of universal state in an ADGA

27

Appendix B. ADGA 28

to states containing only nonuniversal states, then the configuration obtained is called as pure

configuration.

Claim: Any ADGA whose computation tree contains mixed configuration can be converted to

an ADGA whose computation tree contains only pure configurations.

q q

q q
0 q q

0

OR OR

q q
0 q q

0

Figure B.2: Conversions used to construct DGA which generates only pure configuration

q1

q2

q3

q4

q5

q6

q2

q2

q1

q1

q1

q2

q
0
1

q”1

q3

q4

q
0
2 q5

q6

q2

q2

q
0
1

q
0
1

Figure B.3: ADGA which generates mixed configuration in the first step and it’s equivalent
ADGA which generates pure configuration for the first and second step

B.1.2 Converting Mixed configuration to pure configuration

Any ADGA whose computation tree contains mixed configurations can be converted to an ADGA

whose computation tree contains only pure configuration using the conversion mentioned in B.3

We construct our new automata such that it contains alternate existential and universal states.

Claim: The language accepted by the original ADGA and the ADGA after conversion is the

same.

An existential state, is chaged to existential state with the same state name and

Appendix B. ADGA 29

q1

q2

q3

q4

q5

q6

q7

q8

q2

q2

Figure B.4

q1

q2 q
0
2

q1 � q3

q1 � q4

q3

q4

q
0
3

q
0
4

q5

q6

q7

q8

q
0
1

q2

q2

Figure B.5

B.1.3 Algorithm for membership Problem

For an input graph G = (V, �, E), the total number of distinct mappings ⇢i in a run ⇢ on an

ADGA A = (Q, �,�, F) is |Q | |V |. A tree can be constructed depicting all possible runs of a Graph

on an ADGA A with ⇢0 being the root. The height of this tree is bounded by |Q | |V |.

Step 1: Start with input Graph G and ADGA A.

step 2: Construct a pruned tree depicting all possible runs as follows:

step 2 a: ⇢0 is the root of the graph

step 2 b: each nondeterministic branch ⇢j of ⇢i is the child node of ⇢i where i, j 2 N [{0}
step 2 c: if for any ⇢j of the tree, ⇢i is the ancestor of ⇢j and ⇢i = ⇢j and there exists no

Appendix B. ADGA 30

⇢k, ⇢l which are ancestors of ⇢j for which ⇢k = ⇢l, then ⇢j is the leaf node of that branch in the

tree

Step 3: perform inorder traversal on the pruned tree and replace every universal state with ^
and every nonuniversal state with _ except the leaf nodes. For the leaf node ⇢j , check if ⇢ maps

the input grpah to a set in F, if true then replace the node in the traversal result with 1, else

replace with 0.

step 4: evaluate the traversal result as a boolean expression and result the Yes if the expression

evaluates to 1, else return 0.

Bibliography

[1] Fabian Reiter Antti Kuusisto. “Emptiness Problems for Distributed Automata”. In: Gan-

dALF 2017: Rome (2017).

[2] Howard Gutowitz. Cellular Automata: Theory and Experiment. MIT Press, 1991. isbn:

9780262570862.

[3] Remi Gilleron Florent Jacquemard Denis Lugiez Christof Loding Sophie Tison Marc

Tommasi Hubert Comon Max Dauchet. Tree Automata Techniques and Applications. 2008.

url: http://tata.gforge.inria.fr/.

[4] N. Immerman. “Nondeterministic space is closed under complementation”. In: SIAM

Journal on Computing 17. 1988.

[5] Dexter C. Kozen. Automata and Computability. Springer Science+Business Media,New

York, 1999. isbn: 9783642857089.

[6] Fabian Reiter. “Distributed Automata and Logic.” In: Computer Research Repository

(2018).

[7] Fabian Reiter. “Distributed Graph Automata.” In: LICS 2015:Kyoto,Japan (2015).

[8] Fabian Reiter. “Distributed Graph Automata and Verification of Distributed Algorithms”.

In: Computer Research Repository (2014).

[9] Michael Sipser. Introduction to the theory of computation. third edition. Cengage Learning,

2012. isbn: 9781133187790.

[10] R. Szelepcsényi. “The method of forcing for nondeterministic automata”. In: Bulletin of

the EATCS 33. 1987.

31

http://tata.gforge.inria.fr/

	Declaration of Authorship
	Certificate
	Abstract
	Contents
	1 Introduction
	2 Nondeterministic Distributed Graph Automata
	2.1 Introduction
	2.2 Preliminaries
	2.3 Nondeterministic Distributed Graph Automata
	2.4 Membership Problem
	2.5 Algorithm for membership Problem
	2.5.1 Complexity

	2.6 Nonemptiness Problem
	2.6.1 Bounded NDGA

	2.7 Algorithm for Nonemptiness Problem for Bounded NDGA
	2.7.1 Complexity

	2.8 Proof of correctness
	2.9 Alternating Distributed Graph Automata
	2.9.1 Run
	2.9.2 Algorithm for membership problem
	2.9.3 Complexity

	3 Nondeterministic Distributed Word Automata
	3.1 Linear Bounded Automata
	3.2 Equivalence of LBA and NDGA on words
	3.2.1 LBA to NDGA
	3.2.1.1 Construction of NDGA

	3.2.2 Example
	3.2.3 proof of correctness
	3.2.4 NDGA to LBA

	3.3 Undecidability of Nonemptiness problem for NDGA

	4 Closure properties
	4.1 Closure Properties
	4.1.1 ADGA
	4.1.2 NDGA
	4.1.3 DDGA
	4.1.4 NDWA

	4.2 Summary

	A Monadic Second Order Logic for a graph language
	A.1 Monadic Second Order Logic for a graph language
	A.1.1 MSO Semantics

	B Alternating Distributed Graph Automata in DGA
	B.1 Alternating Distributed Graph Automata in DGA
	B.1.1 Mixed and Pure configuration
	B.1.2 Converting Mixed configuration to pure configuration
	B.1.3 Algorithm for membership Problem

	Bibliography

