
CHENNAI MATHEMATICAL INSTITUTE

MASTERS THESIS

A Survey on Graph Automata and
Tree-Width

Author:
Adwitee Roy

Supervisor:
Aiswarya Cyriac

A thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science

in the

Computer Science Department
Chennai Mathematical Institute

http://www.cmi.ac.in
http://www.johnsmith.com
http://www.jamessmith.com
http://researchgroup.university.com
http://department.university.com


ii

Abstract
This thesis is a survey on some results of Graph Automata and tree-width. We introduce
the concepts of graph automata and study the language emptiness and finiteness of it. We
see that the language emptiness and finiteness of graph automata is undecidable. Then we
move on to the class of nested words and we see that the language emptiness and finiteness
is decidable for this class. For multiply nested word automata, the language emptiness and
finiteness is undecidable in general but they become decidable for bounded split-width.
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Chapter 1

Introduction

Trees has some very distinctive and fundamental properties. It is therefore legitimate to ask
to what degree those properties can be transferred to more general graphs, graphs that are
themselves not trees but ’tree-like’ in some sense.

A tree-decomposition of a graphG is a way to find the ’tree-likeness’ of the graphG. This
helps in solving some problems in G. In chapter 2, we study the concept of tree decomposi-
tion and tree-width.

In the third chapter we study the model of Graph Automata, which generalizes the
known models of automata on words, trees, and directed acyclic graphs. For specifying
graph properties by finite acceptors we describe the idea of local tests by tiling. The language
emptiness and finiteness of graph automata is undecidable as we can encode the halting
problem of Turing machine to the emptiness and finiteness problem of graph automata.

In the next chapter we restrict the graph automata model on nested words. A nested
word consists of a sequence of linearly ordered positions, augmented with nesting edges
connecting calls to returns. Here we have a stack just like context free language but we can
push anything in the stack. We study nested word automata (NWA) as acceptors of nested
words for which we can easily give a graph automata. The resulting class of language for
NWAs has all the nice theoretical properties that the regular languages of words and trees
enjoy. We will see how similar the nested words are to the trees. We will also see that the
decision problems such as language emptiness and finiteness are decidable for this class of
language.

Then we move on to multiply nested words, where we can have finite number of stacks.
We will see the similarities between this class of language and grids. The language emptiness
and finiteness are undecidable here but they become decidable for bounded tree-width or
bounded split-width.





3

Chapter 2

Tree-width

2.1 Tree Decomposition and Treewidth

Trees are graphs with some very distinctive and fundamental properties. It is therefore le-
gitimate to ask to what degree those properties can be transferred to more general graphs,
graphs that are themselves not trees but ’tree-like’ in some sense. A tree-decomposition of a
graph G is a representation of G in a tree-like structure. From this structure it is possible to
deduce certain connectivity properties of G. Such information can be used to construct effi-
cient algorithms to solve problems on G. Sometimes problems which are NP-hard in general
are solvable in polynomial or even linear time when restricted to trees. Employing the tree-
like structure of tree-decompositions these algorithms for trees can be adapted to graphs of
bounded tree-width.

Definition 2.1.1 Let G be a graph, T a tree, and let V ′ = (Vt)t∈T be a family of vertex sets
Vt ⊆ V (G) indexed by the vertices t of T . The pair (T, V’) is called a tree-decomposition of G if
it satisfies the following conditions:

(TD1) V (G) = ⋃t∈V (T ) Vt

(TD2) for every edge e ∈ G there exists a t ∈ T such that both ends of e lie in Vt

(TD3) Vt1 ∩ Vt3 ⊆ Vt2 whenever t1, t2, t3 ∈ T satisfy t2 ∈ t1Tt3

We call the sets Vt, and sometimes also their induced subgraphs G[V t], the parts of the
tree-decomposition (T, V’). For the rest of this section, let (T, V’) be a tree-decomposition of
G = (V, E) as defined above. Note that tree-decompositions are passed on to subgraphs and
for contractions.

Lemma 2.1.2. Any complete subgraph of G is contained in some part of (T,V’).

Lemma 2.1.3. For every H ⊆ G, the pair (T, (Vt ∩ V (H))t∈T ) is a tree-decomposition of H .

Proof of the above two lemmas can be found in [4].

Definition 2.1.4. The width of a tree-decomposition (T, V’) is the number,

max∣Vt∣ − 1 ∶ t ∈ T

The tree-width of a graph G is the minimum width over all possible tree-decompositions of G.



4 Chapter 2. Tree-width

As one easily checks, trees themselves have tree-width 1. The following lemma shows
that, the tree-width of a graph will never be increased by deletion or contraction.

Lemma 2.1.5. If H is a minor of a graph G then H has tree-width at most tree-width of
G.

Proof. As can easily bee seen, deleting vertices or edges can not increase the tree-width of
a graph. Now we examine contraction of an edge. Let (T,V ′) be a tree-decomposition of
G = (V,E) of width w and e = uv ∈ E the edge to be contracted to a vertex ve. Set Wi to be
the part Vi, with the only difference that every occurrence of u or v is replaced by ve and set
T ′ = T . We now show that (T ′,W ′) is a tree decomposition of H with width at most w since
replacing u and v by ve can not increase the tree-width w.

Intuitively, it is clear that we have found a tree-decomposition ofH . Tu and Tv were subtrees
of T meeting in at least one vertex t. From this follows that T ′ve will be connected and since
T ′ contains no cycles T ′ve will also be a subtree of T .

We prove (TD1)-(TD3) for (T ′,W ). (TD1) is clear from (TD1) for (T,V ′) and the replace-
ment of u, v by ve. For every edge wu, w ∈ V , there exists t′ with w,u ∈ V ′

t by (TD2), so
W ′
t contains wve. The same follows for edges wv,w ∈ V , and this implies (TD2) for (T ′,W ′).

Now let t1, t2 ∈ E(T ′) with ve in Wt1 ∩Wt2 . That means that either u ∈ Vt1 ∩Vt2 or v ∈ Vt1 ∩Vt2
or (without loss of generality) u ∈ Vt1 ∖ Vt2 and v ∈ Vt2 ∖ Vt1 . The first two cases, together
with (TD3) for (T,V ′), imply ∀t ∈ t1Tt2 ∶ ve ∈Wt for (T ′,W ′). Concerning the third case, we
know that, by (TD2) and (TD3) for (T,V ′), there has to exist t ∈ t1Tt2 such that both u, v are
in Vt. (TD3) for (T,V ′) now tells us that u is a member of every set Vt′ between Vt1 and Vt,
and v is contained in the other parts of the path t1Tt2. Thus ve is included in every Wt′′ with
t′′ ∈ t1T ′t2, which completes the proof.

The above proof is from [4].

2.2 Other Representations of Tree Decomposition

2.2.1 Cops and Robbers

Here is a cops-and-robber game from [9], played on a finite, undirected graph G. The robber
stands on a vertex of the graph, and can at any time run at great speed to any other vertex
along a path of the graph. He is not permitted to run through a cop, however. There are k
cops, each of whom at any time either stands on a vertex or is in a helicopter (that is, is tem-
porarily removed from the game). The objective of the player controlling the movement of
the cops is to land a cop via helicopter on the vertex occupied by the robber, and the robber’s
objective is to elude capture. The robber can see the helicopter approaching its landing spot
and may run to a new vertex before the helicopter actually lands.

There are two forms of this game. In the first, the robber is invisible, and so to capture
him the cops must methodically search the whole graph. If k cops can guarantee to catch
the robber, then k cops can search the graph monotonely, that is, never returning to a ver-
tex which a cop has previously vacated. Here we are concerned about the second form of
the game, where the cops can see the robber at all times- the difficulty is just to corner him
somewhere. Two cops suffice to catch a visible robber ifG is a tree. Put cop 1 on some vertex
v, see which component of G/v contains the robber, and transport cop 2 to the neighbour
of v in that component. Now repeat with the cops exchanged. However, two cops may not
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be able to catch an invisible robber. If k cops can catch a visible robber then again there is a
monotone search strategy; and on the other hand, if a visible robber can guarantee to elude
k cops, then there is an escape strategy with a particularly simple form.

Definition 2.1.6. Let G/X be the graph obtained from G by deleting X , where X may be
a vertex or an edge, or a set of vertices or edges. The vertex set of a component of G/X is
called an X-flap.

We denote by [V ]<k the set of all subsets of V of cardinality < k. A position is a pair
(X,R), where X ∈ [V (G)]<k and R is an X-flap. Here, X is the set of vertices currently
occupied by cops. R tells us where the robber is- since he can run arbitrarily fast, all that
matters is which component of G/X contains him. We set (X0,R0) to an initial position. In
the normal game, X0 = φ and the robber player chooses R0 to be some component of G.

At the start of the ith step we have a position (Xi−1,Ri−1). The cop player chooses a new
set Xi ∈ [V (G)]<k such that either Xi−1 ⊆ Xi or Xi ⊆ Xi−1. Then the robber player chooses
(if possible) an Xi − flap Ri satisfying Ri ⊆ Ri−1 or Ri−1 ⊆ Ri respectively. If this choice is
impossible, that is, if V (Ri−1) ⊆Xi, the cop player has won, and otherwise the game contin-
ues with step i+ 1. The robber player thus cannot win; his objective is to stop the cop player
winning.

If there is a winning strategy for the cop player, we say that "< k cops can search the graph."
If in addition the cop player can always win in such a way that the sequence X0,X1, . . . sat-
isfies Xi ∩X

′′
i ⊆ Xi′ for i ≤ i′ ≤ i′′, we say that < k cops can monotonely search the graph." If

< k cops can search G then they can monotonely search it [9].

Two subsets X,Y ⊆ V (G) touch if either X ∩ Y ≠ φ or some vertex in X has a neighbor
in Y . Here is another, similar game, in which the cop player has slightly more power. We
set (X0,R0) as before. At the start of the ith step we have a position (Xi−1,Ri−1). The cop
player chooses a new set Xi ∈ [V (G)]<k with no restriction on Xi. Then the robber player
chooses (if possible) an Xi − flap Ri which touches Ri−1. (In all other respects the game is
unchanged.) We call this jump-searching; and define "< k cops can jump-search G" etc. as
before.

The following Theorem is due to Robertson and Seymour [9].
Theorem 2.1.7. Let G be a graph, and k − 1 an integer. Then the following are equivalent:

(i) < k cops cannot jump-search G,

(ii) < k cops cannot search G,

(iii) < k cops cannot monotonely search G,

(iv) G has tree-width k − 1.
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2.2.2 Bramble

Brambles are useful to deduce some information about a graph from the assumption that it
has large tree-width. There is a theorem due to Seymour and Thomas [[9]] which identifies
a canonical obstruction to small tree-width, a structural phenomenon that occurs in a graph
if and only if its tree-width is large. Before stating the theorem we need some definitions.

Definition 2.4.1. Two sets A,B ∈ V touch if they have a vertex in common or there exists
an edge in G with end vertices in A and B. A bramble B is a set of mutually touching con-
nected vertex sets. A cover of a bramble B is a set S ⊆ V such that every set in B contains at
least one vertex of S. The cardinality of a vertex-minimal cover of B is called the order of the
bramble B.

Lemma 2.4.2. Any set separating two covers of a bramble B is also a cover of B.

Proof. Every set B ∈ B is connected and contains a vertex of each cover, therefore also a path
between them. So every set separating the two covers contains at least one vertex of B.

A typical example of a bramble is the set of crosses in a grid. The k × k grid is the graph
on {1,2, . . . , k}2 with edge set

{(i, j)(i′, j′) ∶ ∣i − i′∣ + ∣j − j′∣ = 1}.

The crosses of this grid are the k2 sets

Cij ∶= {(i, `)∣` = 1,2, . . . , k} ∪ {(`, j)∣` = 1,2, . . . , k}.

Thus the cross Cij is the union of the grid’s ithcolumn and its jth row. Clearly, the crosses of
the k × k grid form a bramble of order K; they are covered by any row or column, while any
set of fewer than k vertices misses both a row and a column, and hence a cross.

Definition 2.4.3. G has bramble number β(G) = n if n is maximal such that G contains a
bramble of order n.

Like complete subgraphs, the brambles contained in a given graph affect its tree-width.
The following theorem is stated without a proof [9].

Theorem 2.4.4. Let G = (V,E) be a graph, Then we have tree-width of G is equal to β(G)−1.

The following theorem due to Seymour and Thomas [9] is sometimes called tree-width duality
theorem.

Theorem 2.4.5. Let k ≥ 0 be an integer. A graph has tree-width ≥ k iff it contains a bramble
of order > k.

2.3 Coloring

A legal k-coloring of a graph colors the vertices with k colors such that adjacent vertices
receive different colors. The chromatic number of a graph is the minimum k that allows a
legal k-coloring. Computing the chromatic number is NP-hard.
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Proposition 2.5.1 Every graph with tree-width p has chromatic number at most p + 1.

2.4 Graph Algebra

[2] has given algebraic characterization of tree-width. He we give the syntax from [3]. Let C
be a finite set of colors. Then C-tree-expressions are given by:

te ∶∶= x ∣ xEy ∣ te1∣∣te2 ∣ rnmx<−>y(te) ∣ fgx(te)

where x, y ∈ C and E is an edge relation. Each C-tree-expression defines an edge labeled
graph (up to isomorphism) as described below:

• The expression x denotes the graph with a single vertex colored x.

• The expression xEy (with x ≠ y, considering graphs without self-loops) denotes the
graph with two vertices colored x and y and these vertices are connected by an edge
E.

• The expression te1∣∣te2 (parallel composition) denotes the disjoint union of the graphs
defined by the expressions te1 and te2, where the nodes with the same label are fused.

• The expression rnmx<−>y(te) (renaming) denotes the graphs obtained by re-coloring
the vertices colored x and y in the graph denoted by te with y and x.

• The expression fgx(te) (forget color) denotes the graph obtained by removing the color
of the vertices colored x in the graph denoted by te.

There can be at most one vertex with color x for each color x, since the parallel composi-
tion fuses nodes with the same color. Also once the color of a vertex is forgotten, that vertex
cannot be colored later.
The tree-width of a graph is at most ∣C ∣ − 1 if there is a C-tree-expression denoting it [3].

2.5 Some Classes of Graph

A number of NP-complete graph problems become polynomial-time solvable if their inputs
are restricted to particular classes of graphs such as those of trees, of series-parallel graphs,
of planar graphs etc. For many of these classes, in particular for trees, almost trees (with
parameter k), partial k-trees, series-parallel graphs, outerplanar graphs and cographs, the
efficient algorithms take advantage of certain hierarchical structures of the input graphs.
Because of these structures,these graphs are somehow close to trees. We discuss tree-like
nature of Series Parallel graph in the following subsection.

2.5.1 Series Parallel Graph

Definition 2.7.1. A series-parallel graph is a graph obtained from an independent set using
the following operations:

1. Add a new node and connect it to an existing node by an edge.

2. Add a self loop.

3. Add an edge in parallel to an existing edge.
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4. Subdivide an edge by creating a node in the middle.

Proposition 2.7.2. G has tree-width at most 2 iff it is a series-parallel graph.

Proof. Let G be a series-parallel graph. We build a tree decomposition for it inductively,
without ever exceeding tree-width 2. We do this by following the inductive construction of
G.
For step 1, suppose v is added to an existing node u. Before adding v, the tree decomposition
included a vertex i such that u ∈ Bj . Create a new node labeled by {u, v} and connect it to i.
For step 2 and 3 the tree decomposition does not change. The most involved step is step 4 in
the construction of series parallel graphs. Suppose edge (u, v) was subdivided, introducing
a vertex w. Prior to the subdivision, the tree decomposition included a vertex j such that
u, v ∈ Bj . Create a new node labeled by {u, v,w} and connect it to j. Conversely, assume a
tree decomposition T with tree-width at most 2. We show that this corresponds to a series-
parallel graph. We do this by removing a node from the tree decomposition, show that this
corresponds to removing a vertex from the graph G, and then show that G can be obtained
by adding back the vertex using one of the rules of Definition 2.7.1. Again we illustrate only
one case as the other cases are easy to see.
Take a leaf l of T . Assume that it is labeled by three vertices u, v,w (it cannot be labeled
by more than three vertices). Then without loss of generality, the neighbor of l in T does
not contain w. Hence the only possible neighbors of w in G are u and v. If both are indeed
neighbors, then w could have been obtained by subdividing an edge (u, v), and the graph
prior to subdividing also had tree width at most 2 (by removing w from l).

2.5.2 Example of series-parallel graph and its tree decomposition

Below is an example of the construction and tree decomposition of a series parallel graph:

Series-Parallel graph Corresponding tree decomposition

a a

f

a

a

f

a,f

a

d

f

a,f

a

d
e

f

a,f

a,f,d
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Chapter 3

Graph Automata

3.1 Introduction

[10] has given the model of Graph Automata, which generalizes the known models of au-
tomata on words, trees, and directed acyclic graphs. The idea of “local tests” in graph au-
tomata are realised in the form of “tiling by transitions”.

3.2 Graph Recognizability by Tiling

We consider directed graphs whose vertices and edges are labelled with symbols of finite
alphabets A and B, respectively. Formally, these graphs are structures G = (V E,β,α) where
V is a nonempty and finite set, E ⊆ V × V , and β ∶ E → B and α ∶ V → A are the valuations.
We represent these graphs as relational structures, in the form (V, (Eb)b∈B , (Pa)a∈A) where
the Eb are pairwise disjoint binary relations over V and the Pa are unary predicates which
form a partition of V .

For specifying graph properties by finite acceptors we describe the idea of local tests by
transitions. A transition associates states with the vertices of a local neighbourhood in a graph,
given by at least one vertex together with its adjacent vertices. If the admitted graph ac-
ceptors are finite, they involve only finitely many transitions each of which is a finite object.
If there is no bound to the degree of the vertices, some vertices may have any number of
adjacent vertices. But we can check the local neighbourhoods only when the degree of the
vertices are upper bounded by the maximum degree in the set of transitions. So, we consider
only graphs whose degree is uniformly bounded by some constant k.

Let DGk(A,B) be the class of finite directed graphs (V, (Eb)b∈B , (Pa)a∈A) as described
above, where for each vertex x there are at most k vertices y with (x, y) ∈ Eb or (y, x) ∈ Eb
for some b ∈ B. We consider graphs of degree k.
Now we give some examples of graphs as relational structures.

1. Words over an alphabet A: A nonempty word w = a1, . . . , an can be represented by
the graph ({1, . . . , n}, S, (Pa)a∈A) where S is the successor relation on {1, . . . , n} and
Pa = {i∣ai = a}.

1 2 3 4

2. Grids: These are graphs of the form Gm,n = ({1, . . . ,m} × {1, . . . , n},El,E2) where the
edge sets E1 and E2 are given by ((x, y), (x + 1, y)) ∈ E1 for I ≤ x < m,1 ≤ y ≤ n,

((x, y), (x, y + 1)) ∈ E2 for 1 ≤ x ≤m,1 ≤ y < n and we assume a trivial vertex valuation.
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Now we describe Graph Acceptor [10].

Definition 3.1.1 A finite graph acceptor over DGk(A,B) is a triple A = (Q,∆,C) where,

• Q is a finite set of states,

• ∆ is a finite set of connected graphs inDGk((Q×A)∪Q,B), called the set of transitions
(or "tiles"),

• and C, called constraint, is a boolean combination of conditions of the form "there are
≥ n copies of transition τ " (where τ ∈ ∆).

The graph acceptor (Q,∆,C) accepts a graph G = (V,E,β,α) if G can be tiled coher-
ently by transitions from ∆ obeying the constraint C. Here coherence means that the A- and
B-values of the transitions agree with the valuation of the underlying graphG, and the tran-
sitions overlap such that only one state is associated with each vertex of G. We can also say
that the tiling define some run ρ ∶ V → Q.

Now we describe coherent tilings precisely. Fix G = (V,E,β,α) and let ρ ∶ V → Q. Define
the corresponding extended vertex valuation ρ × α ∶ V → Q ×A by ρ × α(x) = (ρ(x), α(x)).
We denote by Gρ the graph (V,E, b, ρ × α). A subgraph of Gρ = (V,E, ρ × α) is a graph
G′ = (V ′,E′, β′, (ρ×α)′) where V ′ ⊆ V , E′ = E ∩(V ′ ×V ′), and β′, (ρ×α)′ are the restrictions
of β, ρ × α to V ′. Vertex x ∈ V ′ is called a border vertex if there is an edge (x, y) or (y, x)

in E with y ∉ V ′. The core of G′ is the set of vertices of G′ which are not border vertices.
We write [G′] for the graph which results from G′ by erasing the A-values for the border
vertices. Thus [G′] has a vertex valuation in (Q × A) ∪ Q. Let us say that G′ matches the
transition τ if [G′] and τ are isomorphic (via a bijection preserving vertex and edge labels,
hence mapping core to core and border to border). We say that Gρ satisfies the condition
"there are ≥ n copies of τ " if there are ≥ n distinct occurrences of graphs [G′] isomorphic to τ
within G. Applied to boolean combinations of such conditions,this fixes the meaning of the
statement "Gρ satisfies the constraint C".

The run ρ ∶ V → Q of A = (Q,∆,C) on G is called successful if,

1. every local neighbourhood bounded by the maximum size of the transitions is in the
core of a subgraph of Gρ which matches some transition of ∆,

2. Gρ satisfies the constraint C.

Let us say that A accepts G if there is a successful run of A on G. Given a class G of graphs
in DGk(A,B) and a graph set L ⊆ G, A recognlizes L relative to G if for any graph G ∈ G, we
have G ∈ L iff A accepts G. Then L is called recognizable by tilings (or short t-recognialzable)
relative to G. We call a graph acceptor elementary if it contains only transitions with just
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one core vertex and only edges which start or end in this vertex, excepting the transition
with empty border. We call a set of graphs recognized by an elementary graph acceptor e-
recognizable.

Theorem 3.1.2. [10] Any t-recognizable set of graphs in DGk(A,B) is definable in monadic
second-order logic (using the signature with equality, the binary predicate symbols Eb for
b ∈ B, and the unary predicate symbols Pa for a ∈ A).

Proof. MSO formulas over DGk(A,B) graphs are given by the following syntax.

ϕ = Pa(x) ∣ x = y ∣ Eb(x, y) ∣ x ∈X ∣ ¬ϕ ∣ ϕ ∧ ϕ ∣ ϕ ∨ ϕ ∣ ∃xϕ ∣ ∀xϕ ∣ ∃Xϕ ∣ ∀Xϕ

where x, y, x1, x
′ etc are first order variables that vary over vertices of the graph, X,Y etc are

set variables that vary over subsets of vertices of the graph, a ∈ A and b ∈ B. The semantics
is as expected.

A formula without any free variables is a sentence. Each MSO sentence defines a lan-
guage of DGk(A,B) graphs. A formula is said to be in existential MSO if it is of the form
∃X1∃X2 . . .∃Xmϕ where ϕ does not contain subformulas of the form ∃Xϕ′ or ∀Xϕ′.

Let A = (Q,∆,C) be the the graph acceptor. We will in fact give an existential MSO
formula recognising the set of graphs accepted by A. Let Q = {q1, . . . , q`} be the set of states
of A. We will use ` set variables X1, . . . ,X` quantified existentially representing a run, that
is, labelling of the vertices by states. A vertex v belongs to the set Xi if and only if the run
assigns the states qi to v. Thus the set variables will form a partition of the set of vertices of
the graph. The required MSO formula will be of the form ∃X1 . . .∃X`ϕ. The formula ϕ will
be a conjunction of several formulas, which we describe below.

1. First of all, we need to state that X1, . . . ,X` forms a partition of the vertices.

ϕ1 ≡ ∀x ⋁
i∈{1,...,`}

x ∈Xi ∧ ⋀
i,j∈{1,...,`}∶i≠j

¬(x ∈Xi ∧ x ∈Xj)

Before giving the further formulas, we will use some macros for convenience. For each
tile τ = ({u1, . . . um},E, β,α) we define a macro subisoτ(x1, . . . , xm). The formula subisoτ(x1, . . . , xm)

will be true if an only if the induced subgraph on the interpretations of x1, . . . , xm, under the
state labelling as guessed by X1, . . . ,X`, is isomorphic to τ .

subisoτ(x1, . . . , xm) ≡ ⋀
i,j∈{1...m}∶(ui,uj)∈Eb

Eb(xi, xj) ∧

⋀
i,j∈{1...m}∶(ui,uj)∉Eb

¬Eb(xi, xj) ∧

⋀
i∈{1...m}∶ui∈Pa,qj

Pa(xi) ∧ xi ∈Xj ∧

⋀
i∈{1...m}∶ui∈Pqj

xi ∈Xj
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We also define a macro for a weaker version of the subisoτ where the state labels are dis-
carded.

wsubisoτ(x1, . . . , xm) ≡ ⋀
i,j∈{1...m}∶(ui,uj)∈Eb

Eb(xi, xj) ∧

⋀
i,j∈{1...m}∶(ui,uj)∉Eb

¬Eb(xi, xj) ∧

⋀
i∈{1...m}∶ui∈Pa,qj

Pa(xi)

2. Next we state that every vertex is indeed covered by a some tile.

ϕ2 ≡ ∀x ⋁
τ=({u1,...um},E,β,α)∈∆

∃x1, . . . , xm ⋁
i∈{1,...,m}

x = xi ∧ subisoτ(x1, . . . , xm)

3. Next we state that every induced subgraph that is isomorphic to a tile (discarding state
labels) must actually match a tile from ∆.

ϕ3 ≡ ⋀
τ=({u1,...um},E,β,α)∈∆

∀x1 . . .∀xm

⎛

⎝
wsubisoτ(x1, . . . , xm) Ô⇒ ⋁

τ ′=(u1,...um,E,β,α′)
subisoτ ′(x1, . . . , xm)

⎞

⎠

4. Next we need to state that the constraint C is satisfied. For each constraint of the form
there are ≥ n copies of the transition τ = ({u1, . . . um},E, β,α) ∈ ∆, we have a formula as
follows.

ϕ4 ≡ ∃x1
1 . . .∃x

1
m ∃x2

1 . . .∃x
2
m . . .∃x

n
1 . . .∃x

n
m ⋀
i∈{1...n}

subisoτ(xi1, . . . , x
i
m)

⋀
i,j∈{1...n}∶i≠j

⋁
k∈{1...m}

xik ≠ x
j
k

The formula essentially says that there are n induced subgraphs which are isomor-
phic to τ . Further, they are pairwise distinct: they must differ in at least one compo-
nent. The boolean combinations of the constraints is then expressed by performing the
corresponding boolean combinations on the respective formulas. Let ϕ5 describe the
boolean combinations required for the constraint C.

The required existential MSO formula describing the language of A is

∃X1 . . .∃X` ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ5

.

3.3 Example of a Graph Automata

Consider the finite state automatonA = (Q,Σ, δ, qin, F ) whereQ is the set of states, Σ = {0,1},
qin is the initial state and F ⊆ Q is the set of final states and δ is the transition function as
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given in the diagram below.

pstart q

1

0

1

0

We can give the a graph automata A = (Q′,∆,C) which recognizes the set of words
accepted by the above DFA, seen as a set of line graphs, where Q′ ⊆ (Q × Σ) ∪ Q, C is the
trivial constraint (i.e., true) and ∆ is the following set of transitions:

p,0 q p,1 p : Initial transitions

* p,0 q * q,0 p

* p,1 p * q,1 q : Intermediate transitions

* q,0 * p,1 : Final transitions

The word 001100 (seen as a line graph) can be tiled as,

p,0 q,0 p,1 p,1 p,0 q,0

3.3.1 Graph Automata for Grids

The set of Grids Gm,2 (Ladders) is not e-recognizable

Assume there is an elementary graph acceptor A = (Q,∆,C) which accepts exactly the set
of grids Gm,2 = ({1, . . . ,m} × {0,1},E1,E2), where the edge sets E1 and E2 are given by
((x, y), (x + 1, y)) ∈ E1 for 1 ≤ x < m, 0 ≤ y ≤ 1, ((x,0), (x,1)) ∈ E2 for 1 ≤ x < m. Degree of
all vertices in Gm,2 are 3 except of the corner vertices which has degree 2. So, the number
of possible tiles except the corner tiles in ∆ with single core are, ∣Q∣4. The number of pos-
sible pair of tiles are, (∣Q∣4)2. If we choose m > (∣Q∣4)2 + 2, a successful run of A on Gm,2
will have the same pair of tiles on a vertex pair ((i,0), (i,1)) and on ((j,0), (j,1)). Now we
change the considered grid by modification of two edges. We replace the edge ((i,0), (i,1))

by ((i,0), (j,1)), and replace ((j,0), (j,1)) by ((j,0), (i,1)). This new graph is not isomor-
phic to a grid Gm,2 but still accepted byA, which is a contradiction to the fact thatA accepts
exactly the set of grids Gm,2. [10]

For m > (∣Q∣
4
)
2
+ 2,

i,0 i,0

i,1 j,1

i,0 i,0

i,1 j,1
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The set of all grids are t-recognizable

We consider the grids Gm,n with m,n ≥ 2. We can give a graph automaton with 11 states, where 6

states to be used respectively for the corners, top vertices, right vertices, bottom vertices, left verices
and all remaining vertices inside and 5 more states to maintain the diagonal information [[10]]. The
required constraint is : "each corner tile should appear ≥ 1 time". Below the state assignments are
shown in a 4 × 4 grid (the diagonal informations are not shown here).

4

1

1

1

1

2

6 35

The core of each transition is a square of four vertices. Formally, the graph automaton is given as,
A = (Q,∆,C), where Q = {1,2,3,4,5,6,2d,3d,4d,5d,6d}, C = φ and the transitions ∆ are given below
(We have not considered the diagonal conditions while showing the tiles, as there will be many; we
have shown them for some of the tiles only):

1

5

5

4 4

6d 6

6

1

5

1

4 1

6d

2

3

1

5

1

4 4

6d

2

6

1

5

5

4 1

6d

6

3

4 4 1

6 6d 3

6 3

1 4 1

5 6d 3

2 1

1 4 1

5 6d 3

6 3

4 4 1

6 6d 3

2 1

5 6

5 6d 6

1 2 2

1 4

5 6d 3

1 2 1

5 6

5 6d 3

1 2 1

1 4

5 6d 6

1 2 2
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6 3

6 6d 3

2 2 1

6 3

5 6d 3

1 2 1

4 1

6 6d 3

2 2 1

4 1

5 6d 3

1 2 1

4 4 4 4

6 6 6 6

6 6

4 4 4 1

6 6 6 3

6 6

1 4 4 4

5 6 6 6

6 6

4 4 4 4

6 6 6 6

2 2

1 4 4 1

5 6 6 3

6 6

1 4 4 4

5 6 6 6

2 2

4 4 4 1

6 6 6 3

2 2

1 4 4 1

5 6 6 3

2 2

4 4 4d 4

6 6d 6 6

6 6

4 4 4d 1

6 6d 6d 3

6d 6

1 4 4 4

5 6d 6d 6

6 6d

4 4 4d 4

6 6d 6 6

2 2

1 4 4d 1

5 6d 6d 3

6d 6d

1 4 4d 4

5 6d 6 6

2 2d

4 4 4d 1

6 6d 6d 3

2d 2

1 4 4d 1

5 6d 6d 3

2d 2d

4 4d 4 4

6 6 6d 6

6 6

4 4d 4 1

6 6 6d 3

6d 6

1 4d 4 4

5 6d 6d 6

6 6d

4 4d 4 4

6 6 6d 6

2 2

1 4d 4 1

5 6d 6d 3

6d 6d

1 4d 4 4

5 6d 6d 6

2 2d

4 4d 4 1

6 6 6d 3

2d 2

1 4d 4 1

5 6d 6d 3

2d 2d
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5 6

5 6 6

5 6 6

5 6

5 6

5 6 6

5 6 6

1 2

1 4

5 6 6

5 6 6

5 6

5 6

5 6 3

5 6 3

5 6

5 6

5 6 3

5 6 3

1 2

1 4

5 6 3

5 6 3

5 6

1 4

5 6 6

5 6 6

1 2

1 4

5 6 3

5 6 3

1 2

6 6

6 6 6 6

2 2 2 2

6 6

5 6 6 6

1 2 2 2

4 4

6 6 6 6

2 2 2 2

6 6

6 6 6 3

2 2 2 1

4 4

5 6 6 6

1 2 2 2

4 4

6 6 6 3

2 2 2 1

6 6

5 6 6 3

1 2 2 1

4 4

5 6 6 3

1 2 2 1

6 3

6 6 3

6 6 3

6 3

6 3

6 6 3

6 6 3

2 1

4 1

6 6 3

6 6 6

6 3

6 3

5 6 3

5 6 3

6 3

6 3

5 6 3

5 6 3

2 1

4 1

5 6 3

5 6 3

6 3

4 1

6 6 3

6 6 3

2 1

4 1

5 6 3

5 6 3

2 1
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6 6

6 6 6 6

6 6 6 6

6 6

4 4

6 6 6 6

6 6 6 6

6 6

6 6

6 6 6 3

6 6 6 3

6 6

6 6

6 6 6 6

6 6 6 6

2 2

6 6

5 6 6 6

5 6 6 6

6 6

4 4

6 6 6 3

6 6 6 3

6 6

4 4

6 6 6 6

6 6 6 6

2 2

4 4

5 6 6 6

6 5 6 6

6 6

6 6

6 6 6 3

6 6 6 3

2 2

6 6

5 6 6 3

5 6 6 3

6 6

6 6

5 6 6 6

5 6 6 6

2 2

4 4

6 6 6 3

6 6 6 3

2 2

4 4

5 6 6 3

5 6 6 3

6 6

4 4

5 6 6 6

5 6 6 6

2 2

6 6

5 6 6 3

5 6 6 3

2 2

4 4

5 6 6 3

5 6 6 3

2 2

4 4 1

2 2 1

1 4 1

1 2 1

5 3

5 3

1 1

1 1

5 3

1 1

1

5

5

1

3

3

1

5

1

1

3

1

1

1

4 4

2 2

1

1

4 1

2 1

1

1

1

1
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We show that A accepts exactly the set of grids by induction (Ref. [10]).

Proof hint: First we show that all grids Gm,n are accepted by A by induction on m and n.
Base case: G2,2 is accepted by A as one of the last tile from above matches it.
Inductive case: Suppose Gk,k′ is accepted by A, i.e., there is a valid tiling for Gk,k′ . We show that there
is a valid tiling for Gk+1,k′ and Gk,k′+1. From the tiling of Gk,k′ we replace the tiles with core (6,4,6,4)

by suitable tiles with core (6,6,6,6) which has 4 as non-core vertices. Similarly, we replace the tiles of
the top-right and bottom right with suitable tiles and match the previously removed tiles again. This
is a valid tiling for Gk,k′+1. In the same way we cane give a valid tiling for Gk+1,k′ . We do not consider
the diagonal informations here. Similar proof can be given by considering the diagonal information as
well.
The reverse direction can also be proved by induction on number of tiles. We omit the detailed proof
here as it will be very long and can be easily done by the reader..

3.3.2 More Examples on Grids

1. Grids of even height :
Suppose the graph automatonA = (Q,∆,C) accepts grids and the following finite state automa-
tonA′ = (Σ,Q′, δ, qin,Qf) accepts words of even length, where Σ = {0},Q′

= {p, q}, qin ∈ Q′ and
Qf ⊆ Q′.

pstart q

0

0

We give a graph automata A′′ = (Q′′,∆′,C ′
) where Q′′

⊆ Q ×Q′ and ∆′ is same as ∆ except the
states are tuples where the first component is same as ∆ and the second component alternates
in each rows, i.e., if states of the ith row is (x, p) where x ∈ ∆, the states of the (i + 1)th row is
(y, q) where y ∈ ∆. The first row of of the grid should have states (x, p) where x ∈ {1,2} and the
last row should have states (y, q) where y ∈ {1,4}.

2. Grids where each row belong to some regular language on unary alphabet :
Suppose the graph automatonA = (Q,∆,C) accepts grids and the following finite state automa-
ton A′ = (Σ,Q′, δ, qin,Qf) accepts some regular language, where Σ = {0}, qin ∈ Q′ and Qf ⊆ Q′.
We give a graph automata A′′ = (Q′′,∆′,C ′

) where Q′′
⊆ Q ×Q′ and ∆′ is same as ∆ except the

states are tuples where the first component is same as ∆ and the second component follows the
transitions of A′, i.e., for all i, j, if states of the vertex (i, j) of the grid is (x, y) where x ∈ Q and
y ∈ Q′, the states of the vertex (i, j + 1) is (x′, y′) where x′ ∈ Q and y′ = δ(y,0). The first column
of of the grid should have states (x, y) where x ∈ {1,5} and y = qin and the last column should
have states (w, z) such that w ∈ {1,3} and z ∈ Qf .

3.4 Emptiness and Finiteness of Graph Automata is undecid-
able

The halting problem for Turing machines can be coded in the emptiness problem for grids. An m × n

grid Gm,n can encode the run of a Turing machine, where m is the space required by the Turing
machine and n represents the runtime of the Turing machine. Suppose we have a graph automata
A = (Q,∆,C) that accepts grids and a Turing machine M = (Q′,Σ,T , δ, qin, qacc, qrej). We can give
a graph automata A′ = (Q′′,∆′′,C ′′

) that encode the run of the Turing machine M in a grid Gm,n.
Q′′

⊆ (Q × Q′
× (Σ ∪ T )) ∪ (Q × (Σ ∪ T )). Each row of the grid represents one configuration of the

Turing machine. Exactly one node in a row will have state x = (a, b, c) such that x ∈ Q ×Q′
× (Σ ∪ T ).

This node represents the head position of the Turing machine. All other nodes in that row will be
labelled by states y = (p, q) such that, {y ∈ Q × (Σ ∪ T )}. If x = (a, b, c) is the (i, j)th node of the grid
then the node y = (a′, b′, c′) at (i + 1, j − 1) belongs to Q ×Q′

× (Σ ∪ T ) if the tape head of M goes to
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left after reading c at state b where b′ = δ(b, c), a and a′ are the states according to the transitions of
the grid. The node z = (p, q) at (i + 1, j) belongs to Q × (Σ ∪ T ) where q is the alphabet written by M
after reading c at b and p is according to the transitions of the grid. Similarly, the node y = (a′′, b′′, c′′)

at (i+ 1, j + 1) should belong to Q×Q′
× (Σ∪ T ) if the tape head goes to right after reading c at state b

where b′′ = δ(b, c), a and a′′ are the states according to the transitions of the grid. The node w = (r, s)

at (i + 1, j) belongs to Q × (Σ ∪ T ) where s is the alphabet written by M after reading c at b and r is
according to the transitions of the grid. All other nodes of the row (i + 1) is same as that of the row i.
Below is an example to illustrate this.

(5, x′1) (6, (q5, x
′

2)) (6, x′3) (6, x4)

(5, x′1) (6, x′2) (6, (q3, x3)) (6, x4)

(5, x′1) (6, (q1, x2)) (6, x3) (6, x4)

(1, (q0, x1)) (2, x2) (2, x3) (2, x4)

(6,◻)

6,◻)

(6,◻)

(2,◻)

So, halting problem can be reduced to the emptiness problem of the graph automata that accepts
grids. Hence, emptiness problem for graph automata is undecidable. Similarly, finiteness problem for
Turing machines can be reduced to the finiteness problem of the graph automata that accepts grids.
Hence, finiteness problem for graph automata is undecidable.
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Chapter 4

Nested Words

4.1 Introduction

In this chapter we restrict the graph automata model on nested words and multiply nested words.
A nested word consists of a sequence of linearly ordered positions, augmented with nesting edges
connecting calls to returns. The edges do not cross creating a properly nested hierarchical structure.
We study finite-state automata as acceptors of nested words. A nested word automaton (NWA) is
similar to a classical finite state word automaton, and reads the input from left to right according to the
linear sequence. At a call, it can propagate states along both linear and nesting outgoing edges, and
at a return, the new state is determined based on states labeling both the linear and nesting incoming
edges. [1] has shown that the resulting class of regular languages of nested words has all the appealing
theoretical properties that the regular languages of words and trees enjoy. The deterministic nested
word automata are as expressive as their nondeterministic counterparts. The class is closed under
union, intersection, complement, concatenation, Kleene-∗, and prefix-closure [1]. The class is also
closed under nesting-respecting language homomorphisms, which can model tree operations. We
will see that the decision problems such as emptiness and finiteness are decidable. In [1] they have
considered nesting words with pending edges as well but here we consider only complete nested
words.

4.2 Nested Word

Given a linear sequence, we add hierarchical structure using edges that are well nested (that is, they
do not cross).

Definition 4.2.1 A matching relation ↷ of length `, for ` ≥ 0, is a subset of {1,2, . . . `} × {1,2, . . . , `}

such that

1. Nesting edges go only forward: if i↷ j then i < j ;

2. No two nesting edges share a position: for 1 ≤ i ≤ `, ∣{j ∣ i↷ j}∣ ≤ 1 and ∣{j ∣ j ↷ i}∣ ≤ 1;

3. Nesting edges do not cross: if i↷ j and i′ ↷ j′ then it is not the case that i < i′ ≤ j < j′.

When i ↷ j holds, for 1 ≤ i ≤ `, the position i is called a call position, and the unique position j
such that i ↷ j is called its return-successor. Similarly, when i ↷ j holds, for i ≤ j ≤ `, the position j
is called a return position, and the unique position i such that i ↷ j is called its call-predecessor. Our
definition requires that a position cannot be both a call and a return. A position 1 ≤ i ≤ ` that is neither
a call nor a return is called internal. For 1 ≤ i < `, there is a linear edge from i to i + 1. Note that a call
has indegree 1 and outdegree 2, a return has indegree 2 and outdegree 1, and an internal has indegree
1 and outdegree 1. For matched call positions i, there is a nesting edge from i to its return-successor.
We call such graphs corresponding to matching relations as nested sequences. A nested word n over an
alphabet Σ is a pair (a1 . . . a`,↷), for ` ≥ 0, such that ai, for each 1 ≤ i ≤ `, is a symbol in Σ, and ↷
is a matching relation of length `. In other words, a nested word is a nested sequence whose positions
are labelled with symbols in alphabet Σ. Let us denote the set of all nested words over as NW (Σ). A
language of nested words over Σ is a subset of NW (Σ).
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4.3 Nondeterministic Nested Word Automata (NWA)

Now we define finite-state acceptors over nested words as given by [1].

Definition 4.3.1 A nondeterministic nested word automaton (NWA) A over an alphabet Σ is a
structure (Q,Q0,Qf , δ

`
c, δi, δr) consisting of

• a finite set of (linear) states Q,

• a set of linear initial states Q0 ⊆ Q,

• a set of linear final states Qf ⊆ Q,

• a call-transition function δ`c ⊆ Q ×Σ ×Q ×Q,

• an internal-transition function δi ⊆ Q ×Σ ×Q, and

• a return-transition function δr ⊆ Q ×Q ×Σ ×Q.

The automaton A starts in some initial state, and reads the nested word from left to right accord-
ing to the linear order. The state is propagated along the linear edges as in case of a standard word
automaton. However, at a call, the nested word automaton can propagate a state along the outgoing
nesting edge also. At a return, the new state is determined based on the states propagated along the
linear edge as well as along the incoming nesting edge. The run is accepting if the final linear state is
accepting.

The language L(A) of an NWA A is the set of nested words it accepts. The notion of regularity is
defined using acceptance by finite-state automata: A language L of nested words over Σ is regular if
there exists a NWA A over Σ such that L = L(A).

A run r of A over a nested word n = (a1 . . . a`,↷) is a sequence qi ∈ Q, for 0 ≤ i ≤ `, of states
corresponding to linear edges, and a sequence pi ∈ P , for calls i, of hierarchical states corresponding to
nesting edges, such that q0 ∈ Q0, and for each position 1 ≥ i ≥ `,

• if i is a call matched with return at j, then (qi−1, ai, qi, qj) ∈ δc;

• if i is an internal, then (qi−1, ai, qi) ∈ δi;

• if i is a matched return with call-predecessor j then (qi−1, qj , ai, qi) ∈ δr .

The run is accepting if q` ∈ Qf . The automatonA accepts the nested word n ifA has some accepting
run over n. The language L(A) is the set of nested words it accepts. [1] has shown that given a nonde-
terministic linearly-accepting NWA A, one can effectively construct a deterministic linearly-accepting
NWA B such that L(B) = L(A).

4.4 There Exists no GA that Accepts Exactly the Set of Nested
Words

Suppose we can give a graph automaton A = (Q,∆,C) which accepts the set of nested words. Let
the maximum number of nodes in any transitions of A be p. So, number of possible transitions are
∣Q∣

p. If we choose n > 2∣Q∣
p, a successful run of A on a nested word w will have the same pair of tran-

sitions on the vertices xi1 , . . . , xik , xi(k+1) , . . . , xik′ and xj1 , . . . , xjk , xj(k+1) . . . , yjk′ , where k ≤ p and
ik < j1 < jk′ < i(k+1). Suppose there is an edge incident on xi(k+1) , so there is another edge incident
on yi(k+1) . Now we change the considered nested word by replacing the edge incident on xi(k+1) by
the edges incident on yi(k+1) and by replacing the edges incident on yi(k+1) by the edges incident on
xi(k+1) . This new graph is not isomorphic to a nested word as it has crossings but still accepted by A,
which is a contradiction to the fact that A accepts L. This is elaborated in the following diagram.
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xi1 xi2 xik yi1 yi2 yik yik+1 yik+2 yik′ xik+1 xik+2 xik′

xi1 xi2 xik yi1 yi2 yik yik+1 yik+2 yik′ xik+1 xik+2 xik′

4.5 How NWL is Different from CFL

Given a context free languae L, it can be expressed as nested word language by homomorphism.
But nested word languages are closed under intersection ([]) but the context free languages are not.
Consider the two context free languages L1 = {anbncm ∣ n,m ≥ 0} and L2 = {ambncn ∣ n,m ≥ 0}. It is
clear that L = L1 ∩L2 is not context free. Here L is non-empty. If we see them as nested words we get
some extra information about the structure. The family of nested words L′1 corresponding to L1 is the
following :

a a a a b b b c c c

Which means, we push a symbol on a and pop a symbol on b and on c there are internal transitions.
Similarly, the family of nested words L′2 corresponding to L2 is the following :

a a a b b b c c c c

Which means, there are internal transitions on a and we push a symbol on b and pop a symbol on
c. The intersection of L′1 and L′2 is φ, which is again a nested word.
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OBSERVATIONS

Nested words are very similar to trees. We can map all trees as

nested words. And there can be many tree interpretations of a nested

word. One mapping from tree to nested word is illustrated below with

an example.

1

2

3

4 5

6

7 8

1 2 3 4 4’ 5 5’ 3’ 2’ 6 7 7’ 8 8’ 6’ 1’

Each node x of the tree corresponds to two nodes x and x′ in the

nested word, where x and x′ are connecting by nesting edge. If a

node x in the tree has children y1, . . . , yk then, in the nested word,

ix < iy1 < iy′
1

< ⋅ ⋅ ⋅ < iyk < iy′
k

< ix′. Thus the parent-child relation and

order among the siblings in tree are maintained in the nested word.

Ordered trees, Binary trees, ranked trees, unranked trees etc. can

be represented by trees. Word operations such as prefixes, suffixes,

concatenation, reversal, as well as tree operations referring to the

hierarchical structure, can be defined naturally on nested words.

4.6 Emptiness and finiteness of 1-NW is decidable

Nonempty nested words can be generated by the following context free grammar:

S ∶∶= a ∣ a b ∣ a S b ∣ S S

We can check if this grammar generates finite language or not. The only way a grammar with
no useless productions can generate an infinite set of words is by repetition. We start at S and keep
expanding until we hit a non-terminal that we have already expanded. So now we can copy the sub-
tree corresponding to that non-terminal and paste it. We can do this forever so it must be that the
grammar generates infinitely many words.
We can give a directed graph to represent a context-free grammar, where the non-terminals of the
grammar are the vertices of the directed graph. There is an edge from some node X to some node Y
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in the directed graph iff there is a production rule in the grammar where X is in the l.h.s. and Y is in
the r.h.s. Now, the grammar generates an infinite set if and only if the graph is cyclic.

4.7 Finiteness of 1-NW is decidable : Tree automata approach

Here we give another approach to show that the finiteness of 1-NWs is decidable.
We can give a tree-interpretation of 1-Nested Words using the grammar described in the above section
as the following.

Tree Interpretation : Parse Trees of NWs

• If x is a node in the NW, x is a leaf node in the tree.

• If x and y are connected by a nesting edge in the NW, x and y have the same parent in the tree.

• If x and y are connected by a linear edge in the NW, y is the nearest successor in the inorder
traversal of the tree which is not labeled by S.

An example of nested word and the corresponding tree interpretation is shown below :

a a a b b a b b

S

a S

S

a S

a b

b

S

a b

b

We can change the parse trees to binary trees by replacing each

S

a S b by

S

S′

a S

b

So, the modified parse tree of the above example is,

S

S′

a S

S

S′

a S

a b

b

S

a b

b

We can give a bottom-up tree automaton A = (Q,Σ,Qf ,∆) which accepts exactly the modified
parse trees.

• Q = {qa, qb, qacc, q
′

acc}

• Σ = {a, b, S, S′}
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• Qf = {qacc}

• ∆ is a set of transition rules of the following type:

{a→ qa, b→ qb,

S(qa, qb) → qacc, S
′

(qa, qacc) → q′acc, S(q
′

acc, qb) → qacc, S(qacc, qacc) → qacc}

Given a MPDS with 1 stackM, we can also obtain a tree automata AM over parse trees ofM.

• A leaf node a is labeled by the state (q1, q2) if and only if there is a transition (q1, a, q2, q3,1) ∈

∆push.

• A leaf node b is labeled by the state (q1, q2) if and only if there is a transition (q1, q3, b, q2,1) ∈

∆pop.

• A leaf node x is labeled by the state (q1, q2) if and only if there is a transition (q1, x, q2) ∈ ∆int.

• A binary internal node S at a level above leaves, is labeled by the state (q1, q2) if and only if
there is a transition (q1, a, q, q

′

1,1) ∈ ∆push and (q′1, q, b, q2,1) ∈ ∆pop.

• A 3-ary internal node S is labeled by the state (q1, q2) if and only if its children from left to right
are labeled by (q1, q

′

1), (q′1, q
′

2) and (q′2, q2) and there is a transition (q1, a, q, q
′

1,1) ∈ ∆push and
(q′2, q, b, q2,1) ∈ ∆pop.

• A binary internal node S is labeled by the state (q1, q2) if and only if its children from left to
right are labeled by (q1, q

′

1) and (q′1, q2).

We can get similar tree automata AM over modified parse trees also.

From our constructions we can see that for a nested word we may have several parse trees, but
number of possible parse trees for a nested word is finite. SO, finitely many NWs implies finitely many
parse trees. Given an MPDSM and an integer k, we can construct a tree automaton A1,M = A ×AM

over modified parse trees, such that A1,M accepts all the valid parse trees of 1-NWs which have an
accepting run inM. Then we can check the finiteness of the tree automata using Algorithm 1, which
is described below. Hence, finiteness of 1-NWs is decidable.

Deciding language finiteness of tree automata

The finiteness problem for tree automata can be computed in linear-time by fix-point computation. We
compute the set of reachable states. If a state is repeated, then the language of the automaton is not
finite, otherwise it is finite. We present the following algorithm to check the finiteness of tree automata.
All states that occur in a leaf transition are reachable, and if there is a transition τ = (q1, . . . , qk, a, q)

such that q1, . . . , qk are already in the reachable set, then q can be added to the reachable set. We do
this by first defining the set pre(τ) = q1, . . . , qk. The algorithm is given in the next page.
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Result: True if the language of a nondeterministic tree automata is finite otherwise False
1 Input: Nondeterministic tree automata A = (Q,Σ,Qf ,∆);
2 R = {q ∈ Q∣∃a ∈ Σ ∶ (a, q) ∈ ∆}

// All states that occur in leaf transitions are reachable

3 forall the τ = (q1, . . . , qk, a, q) ∈ ∆ do
4 pre(τ) = {q1, . . . , qk};
5 post(τ) = q;
6 end
7 while (R ≠ Q) ∧ (f1 = True) do
8 f1 = False;

// f1 is true iff R changes

9 forall the τ = (q1, . . . , qk, a, q) ∈ ∆ do
10 if pre(τ) ⊆ R then
11 if post(τ) ∉ R then

// If post(τ) is not introduced before, we add post(τ)

in R

12 R ∶= R ∪ post(τ);
13 f1 = True;
14 else
15 Temp ∶= R;

// When a state repeats in R, we need to check if we

can reach to an accepting state or not; if we can

reach some accepting state that means the language

of a nondeterministic tree automata is infinite.

16 while (Temp ∩Qf = ∅) ∧ (f2 = True) do
17 f2 = False;

// f2 is true iff R changes

18 forall the τ = (q1, . . . , qk, a, q) ∈ ∆ do
19 if pre(τ) ⊆ Temp then
20 if post(τ) ∉ Temp then
21 Temp ∶= Temp ∪ post(τ);
22 f2 = True;
23 end
24 end
25 end
26 end
27 if Temp ∩Qf ≠ ∅ then
28 return True;

// If some accepting state is reached, we return

True

29 end
30 end
31 end
32 end
33 end
34 return False;

Algorithm 1: Finiteness of nondeterministic tree automata
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Chapter 5

Multiply Nested Words

5.1 Multi-Pushdown System

An MPDS is a finite state of system with finite number of stacks. A transition may push onto a stack,
pop from a stack or leave the stack untouched. However, in one transition an MPDS can touch at most
one stack. Moreover, the push transition and the pop transition are disjoint.

Definition 5.1.1 A MPDSMwith s ∈ N number of stacks is a tuple (Q,Σ, ι,∆, F ) where,

• Q is the finite set of states,

• Σ is the alphabet,

• ι ∈ Q is the initial state,

• F ⊆ Q is the set of final states,

• ∆ is partitioned into ∆int ⊎∆push ⊎∆pop such that,

– ∆int ⊆ Q ×Σ ×Q

– ∆push ⊆ Q ×Σ ×Q ×Q × [s]

– ∆pop ⊆ Q ×Q ×Σ ×Q × [s]

The language of a Multi-pushdown system is a set of multiply nested words, which we define for-
mally below.

Let S be a set. For a binary relation R ⊆ S × S, we define support of R, denoted supp(R) to be
{x ∈ S∣ there is some y ∈ S such that (x, y) ∈ S or (y, x) ∈ S}.

Definition 5.1.2 A multiply nested word (MNW)w over Σ is a structurew = (dom(w), λ,<,↷1, . . . ,↷s)

where,

• dom(w) is the set of positions

• λ ∶ dom(w) → Σ is a node labeling function

• < is a total order on dom(w)

• For each i ∈ [s], where [s] denotes the set {1, . . . , s} for s ∈ N, ↷i ⊆< is a binary relation such
that,

– For i ≠ j, supp(↷i) ∩ supp(↷i) = ∅

– For all i ∈ [s], x↷iy⇒ (∀z(x↷iz⇒ z = y) ∧ (z↷iy⇒ z = x))

– For all i ∈ [s], there do not exists x < x′ < y < y′ such that x↷iy and x′↷iy
′

Here is an example of multiply nested word with two stacks:

1

1
1

2
2

1
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5.2 Emptiness and finiteness of MPDS is undecidable

We can embed a grid inside a multiply nested word. As the emptiness and finiteness of graph au-
tomata that accept grids is undecidable, the emptiness and finiteness of multi-pushdown system is
also undecidable. Suppose we have a grid Gm,n as defined earlier and a multiply nested word N =

(V,→,{↷j}j∈{1,2}), where

• V is the set of vertices.

• →⊆ V × V is the linear edge relation.

• ↷j⊆ V × V is a nested relation, for every j ∈ {1,2}.

There are 2mn number of vertices in N . First m items are pushed in the first stack, then in the next 2m

vertices one item is popped from the first stack and one item is pushed in the second stack. Again in
the next 2m vertices one item is popped from the second stack and one item is pushed in the first stack
and this continues for n times.
In Gm,n if we go from (i, j) to (i, j + 1) that is similar to going from the (m × i + m)th vertex to
(m× i+m+2)th vertex by taking two linear edges in N , (i.e., the path (m× i+m) →→ (m× i+m+2)).
In Gm,n if we go from (i, j) to (i + 1, j) that is similar to going from the (m × i + m)th vertex to
(m × (i + 1))th vertex by taking the path →↷1→↷2 in N . Similarly,iIn Gm,n if we go from (i + 1, j) to
(i, j) or (i, j + 1) to (i, j), we can take the corresponding reverse paths. The below image illustrates
the nested word.

1

1

1

2

2

2

1

1

1

2

So, a grid can be embedded in a multiply nested word. Hence, the emptiness and finiteness of multi-
pushdown system is undecidable.

5.3 Emptiness of MPDS is decidable when the accepted MNWs
have bounded tree-width/split-width

[2] has shown that emptiness of graph automata is decidable, when evaluated over graphs that are
definable in MSO and are also of bounded tree-width.

Theorem 5.3.1 [8] The problem of checking, given k ∈ N and φ ∈ MSO over Σ-labeled graphs,
whether there is a Σ-labeled graph G of tree-width at most k that satisfies φ, is decidable.

From the Theorem 3.1.2 we can see that set of graphs accepted by a graph automata is definable in
MSO.

So, from Seese’s theorem and the Theorem 3.1.2 by [10], we can state the following corollary :
Corollary 5.3.1 Let C be a class Of MSO definable Σ-labeled graphs. The problem of checking, given
k ∈ N and a graph automaton GA, whether there is some G ∈ C of tree-width at most k that is accepted
by GA, is decidable.
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[6] has given uniform proofs of decidability of emptiness for different under approximations of
MPDS, such as bounded context-switching multi-stack automata [7], bounded phase multi-stack au-
tomata [5] by showing that they have bounded tree-width. [3] has shown similar results when the set
of graphs has bounded split width. To show that they have introduced the notion of split-width, which
we will define next.

5.3.1 Split-Width

We will now consider MNWs with few linear edges missing. An MNW will be split intom components
if m − 1 linear edges are missing. Such a structure is called m-split. We denote the missing edges by ⇢
and non-missing edges by→.

Definition 5.3.1 Given an MNWw = (dom(w), λ,<,↷1, . . . ,↷s), an m-split ofw is a w̄ = (dom(w), λ,→

,⇢,↷1, . . . ,↷s), where→ ∩ ⇢= ∅,→ ∪ ⇢=< and ∣ ⇢ ∣ =m − 1 .

Definition 5.3.2 A split multiply nested word (SMNW) is an m-split w̄ of some MNW w and some m.
We say that w̄ is an m-SMNW. An entire multiply nested word is always an 1-SMNW.

Now we define two operations shuffle and merge.

Definition 5.3.3 Shuffle : Let ū = (dom(u), λ,→,⇢,↷1, . . . ,↷s) be anm-SNMW and v̄ = (dom(v), λ,→

,⇢,↷1, . . . ,↷s) be an n-SNMW. shuffle(ū, v̄) is a set of (m + n)-SNMWs, if and only if,

• dom(w) = dom(u) ⊎ dom(v)

• λw = λu ⊎ λv

• →w = →u ∪→v

• ↷w = ↷u ∪↷v

Below is an example of shuffle:

1

2

1

2

1

2

1

2

1

2

1

2

Definition 5.3.4 Merge : Let (̄u) = dom(u), λ,→,⇢,↷1, . . . ,↷s) be an m-SMNW. merge(ū) is a set
of n-SNMW obtainted by replacing some⇢ by→ in ū.

The following image illustrates the merge operation. a b → a b

Definition 5.3.5 k-bounded splits (k-BS) : The class k-BS is the smallest set of SMNWs closed under
the following operations,

• a ∈ k-BS

• a b ∈ k-BS

• If ū is anm-SNMW in k-BS and v̄ is an n-SMNW in k-BS, and ifm+n ≤ k, then shuffle(ū, v̄) ⊆ k-BS

• If ū is an m-SNMW in k-BS then merge(ū) ⊆ k-BS.

5.4 Finiteness of MPDS is decidable when it has bounded
split width

To solve the finiteness problem for MPDSMwith k-bounded split-width, we give a tree representation
(proof trees) of multiply nested words. These proof trees can be accepted by a bottom up tree automata
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Ak. We can also obtain a tree automata AM over proof trees such that it accepts a proof tree iff the
corresponding MNW has k-bounded split-width and is accepted byM. The automata Ak,M = Ak ×

AM accepts all the valid proof trees of MNWs in k-bounded split-width which have an accepting run in
M. We have already seen in Algorithm 1 that we can check the language finiteness of tree automata.
By applying the algorithm on Ak,M we can check the language finiteness of multiply nested words
with bounded split-width.
First we describe the proof trees.

Proof trees : Let w̄ be an SMNW in k-BS.

• the root is labeled by w̄.

• leaves are labeled by atomic MNWs.

• if an internal node labeled ū has only one child labeled v̄, then ū ∈ merge(v̄).

• if an internal node labeled ū has two children labeled x̄ and ȳ, then ū ∈ shuffle(x̄, ȳ).

Internal nodes of the proof-tree are labeled by one of,

↷i, denotes nesting edge for stack i.

mrg(m, i1, . . . , in−1, in), where 1 ≤ i1 < ⋅ ⋅ ⋅ < in−1 < in. This denotes a merge operation on an SMNW
with m components resulting in an SMNW with n components.

shf(m,n, f`, fr), where 1 ≤ m < m + n ≤ k and f` ∶ [m] → [m + n] is a monotone map that describes
the positions in shuffled word of the m components coming from the left child and similarly for
fr and the n components coming from the right child.

We can construct a tree automaton Ak over proof trees of k-BS, where the relations are the states
and it checks few properties which are local to a node and its children to check proper shuffle and
merge.

This tree automata will have 2s×k2

states.
Given an MPDSM, we can obtain tree automata over proof trees AM in the following way:

• All leaves are marked by pair of states (p, q) iff it can take p to q in the MPDS

• A node v labeled↷i has a left child v1 labeled a and a right child v2 labeled b and the run labels
v1 with (q2, q

′

2) and v2 with (q1, q
′

1). v can be labeled (q1, q
′

1, q2, q
′

2) iff there exists a state q is a
transition (q1, a, q

′

1, q, i) ∈ ∆push and (q2, q, b, q
′

2, i) ∈ ∆pop of the MPDSM.

• For a shuffle node the start and end states of each components are inherited from the corre-
sponding child.

• For a merge node v with child v′, if components p and p+1 from v′ are merged, we check that the
end state of p equals the start state of p+ 1 and start state of p and end state of p+ 1 are inherited
to v.

We can construct the above described tree automata with ∣Q∣
2k number of states.

Each of the MNW may have several proof trees but the number of proof trees corresponding to an
MNW is finite. So, finite number of MNWs implies finite number of proof trees.

Theorem 5.4.1 [3] Given an MPDS M and an integer k, we can construct in exponential time a
tree automaton Ak,M = Ak × AM over proof trees, such that Ak,M accepts all the valid proof trees of
MNWs in k-BS which have an accepting run inM.

We can check the language finiteness of the tree automata by Algorithm 1. So, the language finite-
ness of the tree automata is decidable.
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Chapter 6

Conclusion

There are many interesting problems connecting graph automata and tree-width that we can look into
in future. In this thesis we have mainly studied that given a graph automata (or a multiply nested
word automata) the language accepted by it is empty or not and the language accepted by it is finite
or not. We may extend this to more complicated graph properties for the accepted set of graphs. One
of the open problem is, given a graph automata if we can say the set of graphs accepted by the graph
automata has bounded tree-width or not.
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