
Solutions to 2015 Entrance Examination for BSc Programmes at CMI

Part A Solutions

1. Ten people sitting around a circular table decide to donate some money for charity. You
are told that the amount donated by each person was the average of the money donated
by the two persons sitting adjacent to him/her. One person donated Rs. 500. Choose the
correct option for each of the following two questions. Write your answers as a sequence
of two letters (a/b/c/d).

What is the total amount donated by the 10 people?

(a) exactly Rs. 5000 (b) less than Rs. 5000 (c) more than Rs. 5000

(d) not possible to decide among the above three options.

What is the maximum amount donated by an individual?

(a) exactly Rs. 500 (b) less than Rs. 500 (c) more than Rs. 500

(d) not possible to decide among the above three options.

Answer: exactly Rs. 5000, exactly Rs. 500. Consider the person who donated Rs. 500.
Suppose the neighbor to the left donates 500 + x. Then the one on the right donates
500−x. But continuing leftward, the amounts donated are 500+2x, 500+3x, . . ., forcing
x to be 0, since you come around to the neighbor to the right.

2. Consider all finite letter-strings formed by using only two letters A and B. We consider
the usual dictionary order on these strings. See below for the formal rule with examples.

Formal rule: To compare two strings w1 and w2, read them from left to right. We say
“w1 is smaller than w2” or “w1 < w2” if the first letter in which w1 and w2 differ is A in
w1 and B in w2 (for example, ABAA < ABB by looking at the third letters) or if w2 is
obtained by appending some letters at the end of w1 (e.g. AB < ABAA).

For each of the statements below, state if it is true or false. Write your answers as a
sequence of three letters (T for True and F for False) in correct order.

(a) Let w be an arbitrary string. There exists a unique string y satisfying both the
following properties: (i) w < y and (ii) there is no string x with w < x < y .

Answer: True, append A to w.

(b) It is possible to give an infinite decreasing sequence of strings, i.e. a sequence
w1, w2, . . . , such that wi+1 < wi for each positive integer i.

Answer: True. B, AB, AAB, AAAB, . . .

(c) Fewer than 50 strings are smaller than ABBABABB.

Answer: False. There are infinitely many such strings e.g. A, AA, AAA, AAAA,
. . . .
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3. A positive integer n is called a magic number if it has the following property: if a and b
are two positive numbers that are not coprime to n then a+ b is also not coprime to n.
For example, 2 is a magic number, because sum of any two even numbers is also even.
Which of the following are magic numbers? Write your answers as a sequence of four
letters (Y for Yes and N for No) in correct order.

(i) 129 (ii) 128 (iii) 127 (iv) 100.

Answer: Only 128 and 127 are magic numbers. See that n is a magic number if and
only if n is a power of a prime. (Otherwise, write n = ab with a, b coprime.)

4. Let A,B and C be unknown constants. Consider the function f(x) defined by

f(x) = Ax2 +Bx+ C when x ≤ 0 ,

= ln(5x+ 1) when x > 0 .

Write the values of the constants A,B and C such that f ′′(x), i.e., the double derivative
of f , exists for all real x. If this is not possible, write “not possible”. If some of the
constants cannot be uniquely determined, write “not unique” for each such constant.

Answer: The only problem is at x = 0. For continuity, ln(0+1) = C. For f ′(0) to exist,
f must be continuous and the left and right derivatives of f at x = 0 (which are easily
seen to exist) must match, i.e. 5 = B. For f ′′(0) to exist, f ′(0) must exist and left and
right derivatives of f ′ at x = 0 must match, i.e. 2A = −52. So A = − 25

2
, B = 5, C = 0.

5. Consider the polynomial p(x) = (x + a1)(x + a2) · · · (x + a10) where ai is a real number
for each i = 1, . . . , 10. Suppose all of the eleven coefficients of p(x) are positive. For each
of the following statements, decide if it is true or false. Write your answers as a sequence
of four letters (T/F) in correct order.

(i) The polynomial p(x) must have a global minimum. (ii) Each ai must be positive.

(iii) All real roots of p′(x) must be negative. (iv) All roots of p′(x) must be real.

Answer: All are true. (i) The degree is even, so p(x) goes to +∞ as x→ ±∞. So p(x)
must attain a global minimum somewhere by continuity. (ii) The roots of p(x) are −ai.
By positivity of coefficients of p(x), no nonnegative number is a root of p(x). Thus all
−ai are negative, so all ai > 0. (iii + iv) All 10 roots of p(x) are real and negative. There
is a root of p′(x) between consecutive roots of p(x) (this is valid even in case of multiple
roots). So all 9 roots of p′(x) are real and negative as well. For negativity, one can also
note that all coefficients of p′(x) are positive and apply the logic in (ii) to p′(x).

6. Fill in the blanks. Let C1 be the circle with center (−8, 0) and radius 6. Let C2 be the
circle with center (8, 0) and radius 2. Given a point P outside both circles, let `i(P ) be
the length of a tangent segment from P to circle Ci. The locus of all points P such that
`1(P ) = 3 `2(P ) is a circle with radius and center at ( , ).

Answer: Center = (10,0), radius = 6. Use the distance formula and the Pythagorean
theorem to get y2+(x+8)2−62 = 9(y2+(x−8)2−4). Simplifying gives y2+(x−10)2 = 62.
Another way, assuming the locus to be a circle: note that the ratio of the radii of C1, C2

and that of the tangents is the same (namely 3). Now use similar triangles to see that
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the desired circle intersects the X-axis at coordinates 4 and 16, giving a diameter of the
desired circle (why?)

7. (i) By the binomial theorem (
√

2+1)10 =
10∑
i=0

Ci(
√

2)i, where Ci are appropriate constants.

Write the value of i for which Ci(
√

2)i is the largest among the 11 terms in this sum.

Answer: i = 6. One way: simplify the ratio Ci+1(
√
2)i+1

Ci(
√
2)i

and see that this ratio is > 1 till

i = 5 and < 1 from i = 6 onwards.

(ii) For every natural number n, let (
√

2+1)n = pn+
√

2 qn, where pn and qn are integers.
Calculate lim

n→∞
(pn
qn

)10 .

Answer: 32. Using binomial expansion see that (
√

2− 1)n = ±(pn −
√

2 qn), where the
sign depends on the parity of n. As n→∞, (

√
2 − 1)n → 0 since (

√
2 − 1) < 1. Thus

(pn −
√

2 qn)→ 0 and so pn
qn
→
√

2.

8. The format for car license plates in a small country is two digits followed by three vowels,
e.g. 04 IOU . A license plate is called “confusing” if the digit 0 (zero) and the vowel O are
both present on it. For example 04 IOU is confusing but 20 AEI is not. (i) How many
distinct number plates are possible in all? (ii) How many of these are not confusing?

Answer: (i) 102 × 53 = 12500. (ii) 102 × 43 plates without vowel O + 92 × (53 − 43)
plates with vowel O but without 0. This gives 6400 + 4941 = 11341.

9. Recall that sin−1 is the inverse function of sin, as defined in the standard fashion. (Some-
times sin−1 is called arcsin.) Let f(x) = sin−1(sin(πx)). Write the values of the following.
(Some answers may involve the irrational number π. Write such answers in terms of π.)

(i) f(2.7) (ii) f ′(2.7) (iii)
∫ 2.5

0
f(x) dx

(iv) the smallest positive x at which f ′(x) does not exist.

Answer: The graph of f is periodic with period 2. From x = −0.5 to x = 0.5 it is the
line y = πx of slope π passing through the origin and from x = 0.5 to x = 1.5 it is the
line with slope −π, which crosses the X axis at x = 1. Using this we see that (i) f(2.7) =
sin−1(sin(2.7π)) = sin−1(sin(0.7π)) = sin−1(sin(0.5π + 0.2π)) = 0.5π − 0.2π = 0.3π. (ii)

f ′(2.7) = −π (iii)
∫ 2.5

0
f(x) dx =

∫ 2.5

2
f(x) dx = π/8 and (iv) the smallest positive x at

which f ′(x) does not exist is x = 1/2.

10. Answer the three questions below. To answer (i) and (ii), replace ? with exactly one of
the following four options: < , = , > , not enough information to compare.

(i) Suppose z1, z2 are complex numbers. One of them is in the second quadrant and the
other is in the third quadrant. Then

∣∣ |z1| − |z2| ∣∣ ? |z1 + z2|.
(ii) Complex numbers z1, z2 and 0 form an equilateral triangle. Then |z21 + z22 | ? |z1z2|.
(iii) Let 1, z1, z2, z3, z4, z5, z6, z7 be the complex 8-th roots of unity. Find the value of

Π
i=1,...,7

(1− zi), where the symbol Π denotes product.
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Answer: (i)
∣∣ |z1| − |z2| ∣∣ < |z1 + z2|. One way: using triangle inequality for z1 + z2

and −z2 we get |z1| ≤ |z1 + z2| + | − z2| and so |z1| − |z2| ≤ |z1 + z2|. Now we may
take absolute value on the LHS because switching z1 and z2 keeps RHS the same. For
equality, z1 + z2 and −z2 must point in the same direction, so z1 and z2 must be along
the same line. But they are in quadrants 2 and 3, so this cannot happen.

(ii) z2 must be obtained by rotating z1 by angle π/3, say in the counterclockwise direction

(otherwise interchange the two). Then z2 = z1e
πi
3 . Then z21 + z22 = z21(1 + e

2πi
3 ) and

z1z2 = z21e
πi
3 . Now 1 + e

2πi
3 = e

πi
3 (see by calculation or picture), so we have in fact

z21 + z22 = z1z2.

(iii) We have Π
i=1,...,7

(x−zi) = x8−1
x−1 = 1+x+. . .+x7. Putting x = 1 gives Π

i=1,...,7
(1−zi) = 8.

11. There are four distinct balls labelled 1,2,3,4 and four distinct bins labelled A,B,C,D. The
balls are picked up in order and placed into one of the four bins at random. Let Ei denote
the event that the first i balls go into distinct bins. Calculate the following probabilities.

Notation: Pr[X] = the probability of event X taking place. Pr[X|Y ] = the probability
of event X taking place, given that event Y has taken place.

Answer:

(i) Pr[E4] = 4!
44

= 3
32

(ii)Pr[E4|E3] = 1
4

(iii) Pr[E4|E2] = 2!
42

= 1
8

(iv) Pr[E3|E4] = 1.

Part B Solutions

1. Carefully solve the following series of questions. If you cannot solve an earlier part, you
may still assume the result in it to solve a later part.

(a) For any polynomial p(t), the limit lim
t→∞

p(t)
et

is independent of the polynomial p. Justify

this statement and find the value of the limit.

(b) Consider the function defined by

q(x) = e−1/x when x > 0 ,

= 0 when x = 0 ,

= e1/x when x < 0 .

Show that q′(0) exists and find its value. Why is it enough to calculate the relevant limit
from only one side?

(c) Now for any positive integer n, show that q(n)(0) exists and find its value. Here q(x)
is the function in part (b) and q(n)(0) denotes its n-th derivative at x = 0.

Answer: (a) If p(t) is constant, then the limit = 0. Otherwise we get a form ±∞
∞ . Using

L’Hospital’s rule, we get lim
t→∞

p(t)
et

= lim
t→∞

p′(t)
et

= 0 by induction on the degree of t (or apply

L’Hospital’s rule repeatedly).
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(b) The right side derivative = lim
h→0+

q(h)−q(0)
h

= lim
h→0+

e−1/h

h
= lim

h→0+

1/h

e1/h
= lim

t→+∞
t
et
. (Let

t = 1/h. As h→ 0+, t→ +∞.) This limit is 0, e.g. by part (a).

Now q is an even function, so letting k = −h, the left side derivative = lim
h→0−

q(h)−q(0)
h

=

lim
k→0+

q(−k)
−k = lim

k→0+

q(k)
−k . Using the earlier calculation this also equals −0 = 0.

Note: It is wrong to argue that q′(0) = lim
x→0

q′(x) because to do so, we first need to know

that q′ is continuous at 0, but we have not even shown that q′(0) exists! For the same
reason it is wrong to argue below that q(n)(0) = lim

x→0
q(n)(x).

(c) We will show by induction on n that q(n)(0) = 0. The case n = 1 is done. (We can
even start the induction at n = 0 by interpreting q(0)(x) = q(x).) Assuming that we are

done up to n and to prove the statement for n+1, we need to calculate lim
h→0

q(n)(h)−q(n)(0)
h

=

lim
h→0

q(n)(h)
h

, because q(n)(0) = 0 by induction. Therefore it is good to examine q(n)(h) for

h 6= 0. This is easy to calculate by the usual rules, but the formulas will be different for
positive and negative h. For h 6= 0, as q is even, q′ is odd, so q′′ is even, etc. and in
general q(n)(h) = (−1)nq(n)(−h). Therefore, just as for part (b), it suffices to show that

lim
h→0+

q(n)(h)
h

= 0. By another induction, we see easily that for h > 0, q(n)(h) = p(1/h)e−1/h

for some polynomial p.
[

Proof: q′(h) = ( 1
h2 )e−1/h. Assuming the result for n, we have

q(n+1)(h) = [p(1/h)e−1/h]′ = − 1
h2 (−p(1/h) + p′(1/h))e−1/h, which has the desired form.

]
So we have lim

h→0+

q(n)(h)
h

= lim
h→0+

p(1/h)e−1/h

h
= lim

t→∞
tp(t)e−t = lim

t→∞
tp(t)
et

= 0 by part (a). Here

we have again substituted t = 1/h.

2. Let p, q and r be real numbers with p2 + q2 + r2 = 1.

(a) Prove the inequality 3 p2q + 3 p2r + 2 q3 + 2 r3 ≤ 2.

(b) Also find the smallest possible value of 3 p2q + 3 p2r + 2 q3 + 2 r3. Specify exactly
when the smallest and the largest possible value is achieved.

Answer: We have 3 p2q + 3 p2r + 2 q3 + 2 r3 = (q + r)(3p2 + 2q2 + 2r2 − 2qr) =
(q+r)(3(p2+q2+r2)−(q2+r2+2qr)) = (q+r)(3−(q+r)2) = x(3−x2) = 3x−x3, where
x = q+ r. Let us examine possible values of x in view of the constraint p2 + q2 + r2 = 1.

We have 2qr ≤ q2 + r2 e.g. because (q− r)2 ≥ 0. Adding q2 + r2, we get q2 + r2 + 2qr ≤
2q2+2r2 ≤ 2, because q2+r2 ≤ p2+q2+r2 = 1. Thus (q+r)2 ≤ 2. So −

√
2 ≤ q+r ≤

√
2.

Note that equalities are achieved precisely when p = 0 and q = r = ±1/
√

2.

Thus altogether we have to find extrema of the odd function f(x) = 3x − x3 over the
interval [−

√
2,
√

2]. The critical points are when f ′(x) = 3− 3x2 = 0, i.e. x = ±1. Thus
we need to see only f(±

√
2) = ±

√
2 and f(±1) = ±2. Therefore −2 ≤ 3 p2q + 3 p2r +

2 q3 +2 r3 ≤ 2. Moreover, 3 p2q+3 p2r+2 q3 +2 r3 = ±2 precisely when x = q+ r = ±1.
In each case, this gives a line segment in the qr-plane joining (±1, 0) and (0,±1). Note
that both these segments lie within the circle q2 + r2 = 1, so each point on them leads
to two valid points (p, q, r) on the unit sphere.
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3. (a) Show that there are exactly 2 numbers a in {2, 3, . . . , 9999} for which a2−a is divisible
by 10000. Find these values of a.

(b) Let n be a positive integer. For how many numbers a in {2, 3, . . . , n2 − 1} is a2 − a
divisible by n2 ? State your answer suitably in terms of n and justify.

Answer: (a) We have 10000 = 16×625 as product of prime powers. Recall the notation
a|b, meaning b is divisible by a. We have 10000|a2 − a if and only if (625|a(a − 1) and
16|a(a − 1)). Because a and a − 1 cannot share a factor, in turn this is equivalent to
having both the conditions (1) 625|a or 625|a − 1 AND (2) 16|a or 16|a − 1. Now if
the coprime integers 16 and 625 both divide the same natural number (in our case a or
a − 1), their product 10000 will also divide this number. In our case this would force
a = 0, 1, or ≥ 10000, all of which are not allowed. Thus the given requirement on a is
equivalent to having either (1) 16|a and 625|a− 1 OR (2) 16|a− 1 and 625|a. Each case
has a unique solution, respectively a = 9376 and a = 625 (e.g. use modular arithmetic:
in case 1, we have a = 625k+ 1, which is k+ 1 mod 16, forcing k = 15 because 16|a and
a ∈ {2, 3, . . . , 9999}).
(b) Let n = p1

e1 . . . pk
ek be the factorization of n into powers of distinct primes. The

analysis in part (a) tells that required values of a are obtained as follows: write n2 = xy
as a product of two coprime integers and find values of a in {2, 3, . . . , n2 − 1} that are
simultaneously 0 mod x and 1 mod y. These are precisely the values of a that we want.
This is because each p2eii must divide a or a− 1, as a and a− 1 are coprime.

Now the Chinese remainder theorem tells you that there is always an a that is 0 mod x
and 1 mod y. Moreover it is unique modulo xy = n2 because difference between any two
solutions would be divisible by xy.

The total number of ways to write n2 = xy as a product of coprime integers is exactly
2k as it amounts to choosing which of the k distinct primes to include in x and then
the rest go into y. (Notice that x and y are not interchangeable.) However, we have to
delete the two cases x = 1, y = n2 and y = 1, x = n2, as these will respectively lead to
solutions a = 1 and a = 0 or n2, which are not in {2, 3, . . . , n2 − 1}. Finally it is easy to
see that different choices of x lead to different values of a. This is because, of the primes
p1, . . . , pk in the factorization of n, precisely the ones dividing x will divide a and the
remaining primes will not, because they divide a− 1.

Thus the final answer is 2k − 2. Note that this matches with the special case in part (a).
Finally, note that there was nothing special about taking a square: instead of n2 it could
be any positive integer m and we would proceed the same way to find requisite integers
a in {2, 3 . . . ,m− 1} based on prime factorization of m.

4. Let f : R→ R be a twice differentiable function, where R denotes the set of real numbers.
Suppose that for all real numbers x and y, the function f satisfies

f ′(x)− f ′(y) ≤ 3|x− y|.

Answer the following questions. No credit will be given without full justification.

(a) Show that for all x and y, we must have |f(x)− f(y)− f ′(y)(x− y)| ≤ 1.5(x− y)2.
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(b) Find the largest and smallest possible values for f ′′(x) under the given conditions.

Answer: (a) Note that the given inequality stays valid if we take absolute value of the
LHS, because we may interchange x and y without affecting RHS.

Fix x, y and let t = x− y. For now let x ≥ y, i.e. t ≥ 0. For h ∈ [0, t], the value of y+ h
varies between y and x. We are given that |f ′(y + h) − f ′(y)| ≤ 3|h|. Integrate with
respect to h over the interval [0, t] to get

∫ t

0
|f ′(y + h) − f ′(y)|dh ≤

∫ t

0
3|h|dh = 1.5t2.

The LHS should remind us of the following general fact: the absolute value of a definite
integral ≤ the definite integral of absolute value the same function over the same interval.
So we get |

∫ t

0
f ′(y + h) − f ′(y)dh| ≤

∫ t

0
|f ′(y + h) − f ′(y)|dh. Combining with the

previous inequality we have |
∫ t

0
f ′(y + h) − f ′(y)dh| ≤ 1.5t2. Finally we calculate the

LHS. |
∫ t

0
f ′(y + h)dh −

∫ t

0
f ′(y)dh| = |f(y + t) − f(y) − f ′(y)t|, where the first integral

is calculated using the fundamental theorem of calculus and the second one is just the
integral of the constant f ′(y). Substituting x− y for t gives the desired result.

Notes: (1) If x < y, then t < 0. We use the same strategy but all definite integrals should

be taken over [t, 0]. Now
∫ 0

t
3|h|dh = 1.5t2 = LHS of the desired inequality. In the final

calculation we get
∫ 0

t
f ′(y + h) − f ′(y)dh = f(y) − f(y + t) + f ′(y)t = negative of the

previous answer. So when we take absolute value of this integral, we again get the same
RHS of the desired inequality. (2) f ′(y+ h)− f ′(y) and its absolute value are integrable
functions of h because they are continuous. This is because f ′(y + h) is just a shift of
the function f ′ and f ′ is continuous because it is differentiable by hypothesis.

(b) We have, for x 6= y, |f
′(x)−f ′(y)

x−y | ≤ 3, so −3 ≤ f ′(x)−f ′(y)
x−y ≤ 3. Taking limit as y → x,

we get −3 ≤ f ′′(x) ≤ 3. It is easy to provide examples where f ′′ attains the extreme
values ±3, e.g. f(x) = ±1.5x2. These satisfy the hypothesis and have constant f ′′ = ±3.

5. For an arbitrary integer n, let g(n) be the GCD of 2n + 9 and 6n2 + 11n − 2. What is
the largest positive integer that can be obtained as the value of g(n)? If g(n) can be
arbitrarily large, state so explicitly and prove it.

Answer: Long division gives 6n2 + 11n − 2 = (2n + 9)(3n − 8) + 70. By Euclidean
algorithm, GCD(6n2 + 11n− 2, 2n + 9) = GCD(2n + 9, 70). Thus g(n) divides 70. But
since g(n) divides 2n+ 9, which is odd, g(n) divides 35. When n = 13, 2n+ 9 = 35 and
hence g(13) = 35. Thus the maximum value of g(n) is 35. (Precisely for which n do we
have g(n) = 35 (or, if you wish, 1 or 5 or 7)? A bit more work will tell you. Try it.)

6. You are given the following: a circle, one of its diameters AB and a point X.

(a) Using only a straight-edge, show in the given figure how to draw a line perpendicular
to AB passing through X. No credit will be given without full justification. (Recall that
a straight-edge is a ruler without any markings. Given two points, a straight-edge can
be used to draw the line passing through the given points.)

Answer: Line AX cuts the circle in C. Line BX cuts the circle in D. Lines AD and BC
intersect in E. Line XE is perpendicular to line AB. Reason: Angles ADB and ACB are
right angles, being angles in a semicircle. The altitudes of triangle XAB are concurrent.
Two of them are AD and BC, so the third is contained in line XE. (Notice that we always
use lines rather than line segments - this is important for part (b).)
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(b) Do NOT draw any of your work for this part in the given figure. Reconsider your
procedure to see if it can be made to work if the point X is in some other position, e.g.,
when it is inside the circle or to the “left/right” of the circle. Clearly specify all positions
of the point X for which your procedure in part (a), or a small extension/variation of it,
can be used to obtain the perpendicular to AB through X. Justify your answer.

Answer: Case 1: Suppose X is not on the line AB (so XAB is a triangle), nor on the
tangents to the circle at A (so line XA meets the circle in a point C different from A),
nor on the tangent at B (so line XB meets the circle in a point D different from B) nor on
the given circle (so C, D and X are all different). In this case the exact same procedure
will work so long as we understand that the altitudes and their intersection point may
lie outside triangle XAB. This is because the lines XA and XB meet the circle in two
distinct points C and D that are different from X,A and B.

Case 2: Suppose X is on one of the two tangents, say the tangent at A, but X is different
from A. In this case XA itself is the desired line! In terms of the construction, here we
have A = C = E. Of course we have to assume that we can detect whether a line meeting
a circle does so in one point or two. But this assumption is implicit in Case 1 also,
because there we need to be able to identify the second point of intersection!

Case 3: If X is on line AB, then XAB is not a triangle. If X is not on line AB but
X is on the circle, then XAB is a triangle but X = C = D = E, so we cannot draw
line XE. Thus in these cases, the above procedure fails. Nonetheless even in these
cases it is possible to draw a perpendicular through X to line AB using only
a straightedge. It is a challenge to you to find a suitable procedure!
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