
Solutions to 2014 Entrance Examination for BSc Programmes at CMI

A1. Let α, β and c be positive numbers less than 1, with c rational and α, β irrational.

(A) The number α + β must be irrational.
(B) The infinite sum

∑∞
i=0 αc

i = α + αc+ αc2 + · · · must be irrational.
(C) The value of the integral

∫ π
0

(β cosx+ c) dx must be irrational.

Answer: FTT

A2. Consider the intergal I =
∫∞
1
eax

2+bx+c dx, where a, b, c are constants. Some combi-
nations of values for these constants are given below and you have to decide in each case
whether the integral I converges.

(A) I converges for a = −1 b = 10 c = 100.
(B) I converges for a = 1 b = −10 c = −100.
(C) I converges for a = 0 b = −1 c = 100.
(D) I converges for a = 0 b = 0 c = −100.

Answer: TFTF

A3. Given a real number x, define g(x) = x2ex if x ≥ 0 and g(x) = xe−x if x < 0.

(A) The function g is continuous everywhere.
(B) The function g is differentiable everywhere.
(C) The function g is one-to-one.
(D) The range of g is the set of all real numbers.

Answer: TFTT

A4. Find the slope of a line L that satisfies both of the following properties: (i) L is tangent
to the graph of y = x3. (ii) L passes through the point (0,2000).

Answer: 300 (Note: if the point in (ii) is taken to be (0,200), then the answer is 30(10)
1
3 .)

A5. A regular 100-sided polygon is inscribed in a circle. Suppose three of the 100 vertices
are chosen at random, all such combinations being equally likely. Find the probability that
the three chosen points form vertices of a right angled triangle.

Answer: 1
33

A6. What is the smallest positive integer n for which 50!
24n

is not an integer?

Answer: 16



A7. Let f(x) = (x − a)(x − b)3(x − c)5(x − d)7, where a, b, c, d are real numbers with
a < b < c < d. Thus f(x) has 16 real roots counting multiplicities and among them 4 are
distinct from each other. Consider f ′(x), i.e. the derivative of f(x). Find the following, if
you can: (i) the number of real roots of f ′(x), counting multiplicities, (ii) the number of
distinct real roots of f ′(x).

Answers: 15, 6

A8. Let f(x) = 7x32 + 5x22 + 3x12 + x2. (i) Find the remainder when f(x) is divided by
x2 + 1. (ii) Find the remainder when xf(x) is divided by x2 + 1. In each case your answer
should be a polynomial of the form ax+ b, where a and b are constants.

Answers: 0x+ 4, 4x+ 0

A9. Let θ1, θ2, . . . , θ13 be real numbers and let A be the average of the complex numbers
eiθ1 , eiθ2 . . . , eiθ13 , where i =

√
−1. As the values of θ’s vary over all 13-tuples of real numbers,

find (i) the maximum value attained by |A|, (ii) the minimum value attained by |A|.

Answers: 1, 0

A10. In each of the following independent situations we want to construct a triangle ABC
satisfying the given conditions. In each case state state how many such triangles ABC exist
up to congruence.

(i) AB = 30 BC = 95 AC = 55

(ii) ∠A = 30◦ ∠B = 95◦ ∠C = 55◦

(iii) ∠A = 30◦ ∠B = 95◦ BC = 55

(iv) ∠A = 30◦ AB = 95 BC = 55

Answers: 0, infinite, 1, 2

A11. Let An = the area of a regular n-sided polygon inscribed in a circle of radius 1 (i.e.,
vertices of this regular n-sided polygon lie on a circle of radius 1). (i) Find A12. (ii) Find
bA2014c, i.e., the greatest integer ≤ A2014.

Answers: 3, 3

A12. The total length of all 12 sides of a rectangular box is 60. (i) Write the possible values
of the volume of the box. Your answer should be an interval. Now suppose in addition that
the surface area of the box is given to be 56. Find, if you can, (ii) the length of the longest
diagonal of the box (iii) the volume of the box.

Answers: (0, 125], 13, not possible to decide
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B1. Find the area of the region in the XY plane consisting of all points in the set

{(x, y)|x2 + y2 ≤ 144 and sin(2x+ 3y) ≤ 0}.

Answer: The area of the circular region S = {(x, y)|x2 + y2 ≤ 144} is 144π. The condition
sin(2x + 3y) ≤ 0 is equivalent to 2x + 3y being in one of the intervals [kπ, (k + 1)π], where
k is an odd integer. The key point is that due to the symmetry of the circle S about any
diameter, in particular the diameter 2x + 3y = 0, the strip inside S lying between the lines
2x + 3y = kπ and 2x + 3y = (k + 1)π is the mirror image of strip lying between the lines
2x + 3y = −kπ and 2x + 3y = −(k + 1)π. For each integer k, precisely one of these two
equal strips is included in the desired area. Thus the desired area is half that of S, i.e., 72π.

B2. Let x be a real number such that x2014−x2004 and x2009−x2004 are both integers. Show
that x is an integer. (Hint: it may be useful to first prove that x is rational.)

Answer: Here is one of several possible ways. x2014−x2009 = x2009(x5−1) and x2004(x5−1)
are integers, which we may assume to be nonzero (else x = 0 or 1 and we are done). Dividing,
we get that x5 is rational. Now dividing the integer x2004(x5 − 1) by the rational number
x5 − 1, we see that x2004 is rational. Since 2004 and 5 are coprime, x is rational as well.
(E.g., x5 is rational, so (x5)401 = x2005 is rational. Now divide by the rational number x2004.)

Let x = a
b

with a, b coprime integers. Consider the integer a2009

b2009
− a2004

b2004
= a2009−b5a2004

b2009
. If a

prime p divides the denominator, it must divide the numerator as well. Now p|b, so p|b5a2004,
so p|a2009 and finally p|a, a contradiction. Thus b = 1, i.e., x is an integer.

B3. (i) How many functions are there from the set {1, . . . , k} to the set {1, . . . , n}?
(ii) Let Pk denote the set of all subsets of {1, . . . , k}. Find a formula for the number of
functions f from Pk to {1, . . . , n} such that f(A ∪B) = the larger of the two integers f(A)
and f(B). Your answer need not be a closed formula but it should be simple enough to use
for given values of n and k, e.g., to see that for k = 3 and n = 4 there are 100 such functions.

Example: When k = 2, the set P2 contains 4 elements: the empty set φ, {1}, {2} and
{1, 2}. The function f given by φ → 2, {1} → 3, {2} → 4, {1, 2} → 4 satisfies the given
condition. But the function g given by φ → 2, {1} → 3, {2} → 4, {1, 2} → 5 does not,
because g({1} ∪ {2}) = g({1, 2}) = 5 6= the larger of g({1}) and g({2}) = max(3, 4) = 4.

Answer: (i) As there are n choices each for the values of f(1), . . . , f(k) and as all these
choices are independent of each other, the number of functions is nk.

(ii) Note that f(A) = max {f({j})|j ∈ A}, so the function f is completely decided by its
values on the empty set φ and on the one element subsets {1}, {2}, . . . , {k}. If f(φ) = i, then
each of f({1}), f({2}), . . . , f({k}) can be chosen to be any of the numbers i, i + 1, . . . , n.
Thus there are k independent choices for each of which there are n − i + 1 options. So the
number of desired functions for which f(φ) = i is (n− i + 1)k. Now we sum over all values
of i = 1, 2, . . . , n to get the total number to be 1k + 2k + · · ·+ nk. (When k = 3 and n = 4,
we get 13 + 23 + 33 + 43 = 100, as mentioned in the problem.)
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B4. (i) Let f be continuous on [−1, 1] and differentiable at 0. For x 6= 0, define a function g

by g(x) = f(x)−f(0)
x

. Can g(0) be defined so that the extended function g is continuous at 0?

(ii) For f as in part (i), show that the following limit exists.

lim
r→0+

(∫ −r
−1

f(x)

x
dx+

∫ 1

r

f(x)

x
dx

)
(iii) Give an example showing that without the hypothesis of f being differentiable at 0, the
conclusion in (ii) need not hold.

Answer: (i) Yes. We must define g(0) = limx→0 g(x) = f ′(0), which exists by hypothesis.

(ii) Consider
∫ −r
−1 g(x) dx =

∫ −r
−1

f(x)
x
dx −

∫ −r
−1

f(0)
x
dx =

∫ −r
−1

f(x)
x
dx − f(0) ln r. Similarly∫ 1

r
g(x) dx =

∫ 1

r
f(x)
x
dx −

∫ 1

r
f(0)
x
dx =

∫ 1

r
f(x)
x
dx + f(0) ln r. (Or observe that since 1

x
is an

odd function, for 0 < a < b,
∫ b
a

1
x
dx = −

∫ −a
−b

1
x
dx.) Thus the expression inside the given

limit is equal to
∫ −r
−1 g(x) dx+

∫ 1

r
g(x) dx, as ±f(0) ln r cancels out.

Applying the fundamental theorem of calculus to the continuous function g, we get an
antiderivative G of g, where G is defined on [−1, 1] by G(t) =

∫ t
−1 g(x) dx. So the given

limit = limr→0+(
∫ −r
−1 g(x) dx +

∫ 1

r
g(x) dx) = limr→0+(G(−r) − G(−1) + G(1) − G(r)) =

G(0)− 0 +G(1)−G(0) = G(1), where we have used the fundamental theorem to calculate
the integrals and the fact that G, being differentiable, is also continuous.

(iii) Define f(x) = 1
− ln x

2
for x ∈ (0, 1], f(x) = 1

ln |x
2
| for x ∈ [−1, 0), and f(0) = 0. Verify

that this works: f is continuous at 0 and so on [−1, 1]. It is not differentiable at 0 as the
relevant limit is +∞. The two integrals in the desired limit are equal (because f is an odd

function, so f(x)
x

is even) and each integral is +∞ as it amounts to limt→0+ ln | ln t|. Can you

see how one might think of such f ? E.g., check that choices like |x| or even x
1
3 do not work.

Compare the behaviour of these functions at x = 0 with that of chosen f . (Minor point: we
used x

2
instead of x only to avoid trouble with dividing by ln |x| at endpoints x = ±1. We

could have used 1
± ln |x| if a smaller interval of definition is allowed, e.g., x ∈ [−0.9, 0.9]).

B5. (i) Let f(x) = anx
n + · · ·+ a1x+ a0 be a polynomial, where a0, . . . , an are real numbers

with an 6= 0. Define the “discrete derivative of f”, denoted ∆f , to be the function given by
∆f(x) = f(x)− f(x− 1). Show that ∆f is also a polynomial and find its leading term.

(ii) For integers n ≥ 0, define polynomials pn of degree n as follows: p0(x) = 1 and for n > 0,
let pn(x) = 1

n!
x(x− 1)(x− 2) · · · (x− n+ 1). So we have

p0(x) = 1 , p1(x) = x , p2(x) =
x(x− 1)

2
, p3(x) =

x(x− 1)(x− 2)

3!
· · ·

Show that for any polynomial f of degree n, there exist unique real numbers b0, b1, . . . , bn
such that f(x) =

∑n
i=0 bipi(x).
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(iii) Now suppose that f(x) is a polynomial such that for each integer m, f(m) is also an
integer. Using the above parts (or otherwise), show that for such f , the bi obtained in part
(ii) are integers.

Answer: (i) It is obvious that f(x − 1) is a polynomial in x (use binomial expansion of
powers of (x − 1)) and therefore so is ∆f(x) = f(x) − f(x − 1), being the difference of
polynomials. The point of the question is to find the leading term of ∆f(x). It is easy to see
that after expanding the powers of (x− 1), the degree n terms of f(x) and f(x− 1) cancel
out, as does the degree n− 1 term from f(x) with the leading term of an−1(x− 1)n−1. The
only remaining term of degree n − 1 comes from an(x − 1)n. So ∆f(x) = nanx

n−1+ lower
degree terms. Compare with the usual derivative.

(ii) Induction on the degree of f . If f(x) = a0 is constant, b0 = a0 works uniquely. Assuming
the result for polynomials of degree < n, let f be of degree n, so an 6= 0. We are forced to take
bn = n!an by comparing leading coefficients of f(x) and

∑n
i=0 bipi(x). Now f(x)−bnpn(x) is a

polynomial of degree d < n and hence by induction equals
∑d

i=0 bipi(x) for unique b0, . . . , bd.
Therefore f(x) =

∑n
i=0 bipi(x), where bd+1, . . . , bn−1 are all 0. To see uniqueness of bi’s, let∑n

i=0 bipi(x) =
∑n

i=0 cipi(x). Subtract all terms with bi = ci. If any terms are remaining,
compare the leading coefficients on each side to get a contradiction.

(iii) Substitute x = 0, 1, 2, . . . one by one in the equation f(x) =
∑n

i=0 bipi(x) and solve for
b0, b1, b2, . . . successively. x = 0 gives b0 = f(0). Using x = 1 and 2 gives b1 = f(1) − b0,
b2 = f(2)− b0− 2b1. In general, for all integers t, pi(t) =

(
t
i

)
is an integer. Further, pi(t) = 0

if 0 ≤ t < i and 1 if t = i. So bt = f(t)−
∑t−1

i=0 bi
(
t
i

)
, which is an integer by induction. (Note:

We can also argue from the other end as follows. By repeated use of part (i), ∆nf , the n-th
discrete derivative of f , is the constant n!an, which must be an integer since the integrality
assumption on f passes easily to all its discrete derivatives. But by part (ii), bn = n!an, so
bn is an integer. Now induction along with integrality of

(
m
n

)
finishes the proof.)

B6. (i) See the figure below. Two circles G1, G2 intersect at points X, Y . Choose two other
points A,B on G1 as shown in the figure. The line segment from A to X is extended to
intersect G2 at point L. The line segment from L to Y is extended to meet G1 at point C.
Likewise the line segment from B to Y is extended to meet G2 at point M and the segment
from M to X is extended to meet G1 at point D. Show that AB is parallel to CD.

X

Y

B

A

L

C

M

D
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(ii) See the figure below. A triangle CDE is given. A point A is chosen between D and E.
A point B is chosen between C and E so that AB is parallel to CD. Let F denote the point
of intersection of segments AC and BD. Show that the line joining E and F bisects both
segments AB and segment CD. (Hint: You may use Ceva’s theorem. Alternatively, you
may additionally assume that the trapezium ABCD is a cyclic quadrilateral and proceed.)

D C

BA

E

F

(iii) Using parts (i) and (ii) describe a procedure to do the following task: given two circles
G1 and G2 intersecting at two points X and Y determine the center of each circle using
only a straightedge. Note: Recall that a straightedge is a ruler without any markings. Given
two points A,B, a straightedge allows one to construct the line segment joining A,B. Also,
given any two non-parallel segments, we can use a straightedge to find the intersection point
of the lines containing the two segments by extending them if necessary.

Answer (i): Draw segment BD. Now ∠BDC = ∠BY C = ∠LYM = ∠LXM = ∠AXD =
∠ABD, where the second and the fourth equalities are due to opposite angles and the other
three equalities due to angles being in the same arc. Therefore AB and CD are parallel.

Answer (ii): Let line EF meet segment CD in point H and segment AB in point I. By
Ceva’s theorem in 4CDE, we have DA

AE
EB
BC

CH
HD

= 1. As AB and CD are parallel, DA
AE

= BC
EB

,
so CH = DH. Also by the basic proportionality theorem, AI

DH
= AE

DE
= BE

CE
= BI

CH
and since

CH = DH, AI = BI. (If you assume additionally that ABCD is cyclic, it is easy to see
using equality of angles in the same arc and of alternate angles made by a transversal that
the triangles DEC and DFC are isosceles and in fact line EF is the perpendicular bisector
of segments CD and AB.)

Answer (iii): Extend AD and BC to meet in E and take F = the point of intersection of
AC and BD. By parts (i) and (ii), the line EF is the bisector of two parallel chords and
hence contains a diameter of the circle G1. Repeat the procedure with some other points A′

and B′ on G1 to get another diameter of G1. The intersection of the two diameters is the
center of G1. Repeat the procedure for G2.

Note: If lines AD and BC do not meet, they are parallel. Then ABCD must be a rectangle
(why?) and its diagonals are diameters, which intersect in the centre of G1. Note that here
we have to assume that we can decide if two lines are parallel, which is implicit in the given
assumption that if two lines intersect, then we can actually find the point of intersection by
extending the given finite segments.
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