
Solutions for 2013 Entrance Examination for BSc Programmes at CMI

Part A. (10 problems × 5 points = 50 points.) Attempt all questions in this part
before going to part B. Carefully read the details of marking scheme given
below. Note that wrong answers will get negative marks!

In each problem you have to fill in 4 blanks as directed. Points will be given based only on
the filled answer, so you need not explain your answer. Each correct answer gets 1 point
and having all 4 answers correct will get 1 extra point for a total of 5 points per problem.
But each wrong/illegible/unclear answer will get minus 1 point. Negative points from any
problem will be counted in your total score, so it is better not to guess! If you are unsure
about a part, you may leave it blank without any penalty. If you write something and then
want it not to count, cross it out and clearly write “no attempt” next to the relevant part.

1. For sets A and B, let f : A→ B and g : B → A be functions such that f(g(x)) = x for
each x. For each statement below, write whether it is TRUE or FALSE.

a) The function f must be one-to-one.
b) The function f must be onto.
c) The function g must be one-to-one.
d) The function g must be onto.

Answer: FTTF.

If g(x1) = g(x2), then x1 = f(g(x1)) = f(g(x2)) = x2, so g is one-to-one. Also f is onto
because each x ∈ B is in the image of f , namely x = f(g(x)). The other two statements
are false, e.g. by constructing an example in which A is a larger finite set than B.

2. Let f : R → R be a function, where R is the set of real numbers. For each statement
below, write whether it is TRUE or FALSE.

a) If |f(x)− f(y)| ≤ 39|x− y| for all x, y then f must be continuous everywhere.
b) If |f(x)− f(y)| ≤ 39|x− y| for all x, y then f must be differentiable everywhere.
c) If |f(x)− f(y)| ≤ 39|x− y|2 for all x, y then f must be differentiable everywhere.
d) If |f(x)− f(y)| ≤ 39|x− y|2 for all x, y then f must be constant.

Answer: TFTT

In parts a and b, we have |f(x) − f(a)| sandwiched between ±39|x − a|. As x → a,
±39|x − a| → 0 and hence f(x) − f(a) → 0, so f is continuous. But it need not be
differentiable, e.g. f(x) = |x| satisfies f(x)− f(y) = |x| − |y| ≤ |x− y| ≤ 39|x− y|. But f
is not differentiable at 0.

In parts c and d, we have | f(x)−f(a)x−a | ≤ 39|x − a|, so by reasoning as for part a, we have

limx→a
f(x)−f(a)

x−a = 0, i.e., f ′(a) = 0 for all a, so f is a constant function.
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3. Let S be a circle with center O. Suppose A,B are points on the circumference of S with
∠AOB = 120◦. For triangle AOB, let C be its circumcenter and D its orthocenter (i.e.,
the point of intersection of the three lines containing the altitudes). For each statement
below, write whether it is TRUE or FALSE.

a) The triangle AOC is equilateral.
b) The triangle ABD is equilateral.
c) The point C lies on the circle S.
d) The point D lies on the circle S.

Answer: TTTT

Draw a picture and see that the bisector of ∠AOB splits this angle into two angles of
60◦ each and meets the circle, say in point C ′. Now the triangles OAC ′ and OBC ′ are
both equilateral, so AC ′ = OC ′ = BC ′, making C ′ = C, the cirumcenter of triangle
AOB. Similarly, letting CD′ be a diameter of the circle S, it is easy to deduce that
∠AOD′ = ∠BOD′ = 120◦ and that triangle ABD′ is also equilateral with O as its
centroid. Hence CD′ ⊥ AB, line BO ⊥ AD′ and line AO ⊥ BD′, making D′ = D, the
orthocenter of triangle AOB.

4. A polynomial f(x) with real coefficients is said to be a sum of squares if we can write
f(x) = p1(x)2 + · · ·+ pk(x)2, where p1(x), . . . , pk(x) are polynomials with real coefficients.
For each statement below, write whether it is TRUE or FALSE.

a) If a polynomial f(x) is a sum of squares, then the coefficient of every odd power of x in
f(x) must be 0.
b) If f(x) = x2 + px+ q has a non-real root, then f(x) is a sum of squares.
c) If f(x) = x3 + px2 + qx+ r has a non-real root, then f(x) is a sum of squares.
d) If a polynomial f(x) > 0 for all real values of x, then f(x) is a sum of squares.

Answer: FTFT

For part b, complete the square to get f(x) = x2 + px+ q = (x+ p
2 )2 + ( 4q−p2

4 ), which is a
sum of squares since 4q−p2 > 0 due to the roots being non-real. Since p need not be 0, this
disproves part a. For part d, since all roots of f are non-real and occur in conjugate pairs,
f(x) = a product of quadratic polynomials each of which is a sum of squares by part b.
For part c, note that f(x)→ −∞ as x→ −∞, so in particular f(x) takes negative values
and hence can never be a sum of squares. (This applies to any odd degree polynomial.)

5. There are 8 boys and 7 girls in a group. For each of the tasks specified below, write an
expression for the number of ways of doing it. Do NOT try to simplify your answers.

a) Sitting in a row so that all boys sit contiguously and all girls sit contiguously, i.e., no
girl sits between any two boys and no boy sits between any two girls.

Answer: 2 × 8! × 7! (The factor of 2 arises because the two blocks of boys and girls can
switch positions.)
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b) Sitting in a row so that between any two boys there is a girl and between any two girls
there is a boy

Answer: 8!× 7! (There is no factor of 2 because there must be a boy at each end.)

c) Choosing a team of six people from the group Answer:
(
15
6

)
d) Choosing a team of six people consisting of unequal number of boys and girls

Answer:
(
15
6

)
−
(
8
3

)(
7
3

)
=
(
8
6

)
+
(
8
5

)(
7
1

)
+
(
8
4

)(
7
2

)
+
(
8
2

)(
7
4

)
+
(
8
1

)(
7
5

)
+
(
7
6

)
6. Calculate the following integrals whenever possible. If a given integral does not exist,
state so. Note that [x] denotes the integer part of x, i.e., the unique integer n such that
n ≤ x < n+ 1.

a)
∫ 4

1
x2dx = x3

3 |
4
1 = 21 using the fundamental theorem of calculus.

b)
∫ 3

1
[x]2dx = 1(12) + 1(22) = 5 = area under the piecewise constant function [x]2

c)
∫ 2

1
[x2]dx = 1(

√
2− 1) + 2(

√
3−
√

2) + 3(2−
√

3) = 5−
√

2−
√

3 since the function [x]2

is constant on intervals [1,
√

2), [
√

2,
√

3), [
√

3, 2), taking values 1, 2, 3 respectively.

d)
∫ 1

−1
1
x2 dx = 2 limt→0+

∫ 1

t
1
x2 dx = 2 limt→0+(−1 + 1

t ) = ∞. The fundamental theorem

does not apply over the interval [−1, 1] because 1
x2 goes to ∞ in the interval. It is also ok

to answer that the integral does not exist (as a real number).

7. Let A,B,C be angles such that eiA, eiB , eiC form an equilateral triangle in the complex
plane. Find values of the given expressions.

a) eiA + eiB + eiC = 0 by taking the vector sum of the three points on the unit circle.

b) cosA+ cosB + cosC = 0 = real part of eiA + eiB + eiC , which is 0 by part a.

c) cos 2A+cos 2B+cos 2C = 0 because the points e2iA, e2iB , e2iC on the unit circle also form
an equilateral triangle in the complex plane, since taking B = A+(2π/3), C = A+(4π/3),
we get 2B = 2A+ (4π/3) and 2C = 2A+ (8π/3) = 2A+ (2π/3) + 2π and the last term 2π
does not change the position of the point.

d) cos2A + cos2B + cos2 C = 3
2 because, using the formula for cos 2θ in part c, we get

cos2A+ cos2B + cos2 C = sin2A+ sin2B + sin2 C and the sum of the LHS and the RHS
in this equation is 3.

8. Consider the quadratic equation x2 + bx + c = 0, where b and c are chosen randomly
from the interval [0,1] with the probability uniformly distributed over all pairs (b, c). Let
p(b) = the probability that the given equation has a real solution for given (fixed) value of
b. Answer the following questions by filling in the blanks.
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a) The equation x2 + bx+ c = 0 has a real solution if and only if b2 − 4c is ≥ 0.

b) The value of p( 1
2 ), i.e., the probability that x2 + x

2 + c = 0 has a real solution is

Answer: 1
16 since a real solution occurs precisely when b2−4c = 1

4−4c ≥ 0, i.e., 0 ≤ c ≤ 1
16 ,

which is 1
16

th
fraction of the interval [0, 1] over which c ranges.

c) As a function of b, is p(b) increasing, decreasing or constant?

Answer: increasing, because b2 − 4c ≥ 0 if and only if 0 ≤ c ≤ b2

4 , so p(b) = b2

4 , which is
increasing for 0 ≤ b ≤ 1.

d) As b and c both vary, what is the probability that x2 + bx+ c = 0 has a real solution?

Answer: This is the fraction of the area of the unit square [0, 1]× [0, 1] that is occupied by

the region b2 − 4c ≥ 0, i.e., it is the area under the parabola c = b2

4 from b = 0 to b = 1,

which is
∫ 1

0
b2

4 db = 1
12 .

9. Let R = the set of real numbers. A continuous function f : R → R satisfies f(1) = 1,
f(2) = 4, f(3) = 9 and f(4) = 16. Answer the independent questions below by choosing
the correct option from the given ones.

a) Which of the following values must be in the range of f ?
Options: 5 25 both neither

Answer: 5, by the intermediate value theorem, e.g., over the interval [2,3]. Also f(x) need
not take the value 25, e.g., take f(x) = x2 for x < 4 and f(x) = 16 for x ≥ 4.

b) Suppose f is differentiable. Then which of the follwing intervals must contain an x such
that f ′(x) = 2x ? Options: (1,2) (2,4) both neither

Answer: both

c) Suppose f is twice differentiable. Which of the following intervals must contain an x
such that f ′′(x) = 2 ? Options: (1,2) (2,4) both neither

Answer: (2,4)

d) Suppose f is a polynomial, then which of the following are possible values of its degree?
Options: 3 4 both neither

Answer: 4

For parts b,c and d, let g(x) = f(x) − x2. We have g(1) = g(2) = g(3) = g(4) = 0. For
part b, applying Rolle’s theorem to g(x) gives g′(x) = 0 for some values of x in each of the
intervals (1, 2), (2, 3), (3, 4). For these values of x, we have f ′(x) = g′(x) + 2x = 2x.

Far part c, take from part b values r ∈ (2, 3) and s ∈ (3, 4) with g′(r) = 0 = g′(s). Applying
Rolle’s theorem to g′(x) in the interval [r, s], we get for some x ∈ (r, s) ⊂ (2, 4) the equality
g′′(x) = 0 and so f ′′(x) = g′′(x) + 2 = 2. There need not be an x ∈ (1, 2) with f ′′(x) = 2,
i.e., g′′(x) = 0. There are many ways to arrange this, for example let g(x) = sin(πx). Then
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g′′(x) = −π2 sin(πx), which is 0 only when x is an integer, in particular g′′(x) 6= 0 for any
x ∈ (1, 2).

For part d, note that g(x), now being a polynomial vanishing at 1, 2, 3 and 4, must be
divisible by (x− 1)(x− 2)(x− 3)(x− 4). So g(x), if non-zero, must have degree at least 4.
Thus f(x) = x2 or a polynomial of degree at least 4.

10. Let

f(x) =
x4

(x− 1)(x− 2) · · · (x− n)

where the denominator is a product of n factors, n being a positive integer. It is also given
that the X-axis is a horizontal asymptote for the graph of f . Answer the independent
questions below by choosing the correct option from the given ones.

a) How many vertical asymptotes does the graph of f have?
Options: n less than n more than n impossible to decide

Answer: n, at x = 1, 2, . . . , n.

b) What can you deduce about the value of n ?
Options: n < 4 n = 4 n > 4 impossible to decide

Answer: n > 4, because limx→±∞ f(x) = 0 and for this to happen, the degree of the
denominator of f(x) must be greater than that of the numerator.

c) As one travels along the graph of f from left to right, at which of the following points
is the sign of f(x) guaranteed to change from positive to negative?
Options: x = 0 x = 1 x = n− 1 x = n

Answer: x = n−1, because f(x) is positive for x > n and f(x) changes sign precisely when
it passes through x = 1, 2 . . . , n. Note that the sign of f(x) for x < 0 and for x ∈ (0, 1)
depends on the parity of n.

d) How many inflection points does the graph of f have in the region x < 0 ?
Options: none 1 more than 1 impossible to decide
(Hint: Sketching is better than calculating.)

Answer: more than 1. Note that f(x) = 0 only at x = 0, with multiplicity 4. Without loss
of generality, let n be even. (If n is odd, the reasoning is completely parallel, see note at
the end.) Now f(x) > 0 for x < 1 except at x = 0 and f has all derivatives for x < 1. Due
to the multiple root at x = 0, the graph of f must be concave up (i.e. f ′′(x) > 0) near
x = 0. Further, as x → −∞, the values of f(x) stay positive and → 0. Therefore, as one
traces the graph leftward from the origin, it must become concave down at least once and
eventually concave up again so as to approach the X-axis from above. (Note: If n is odd,
f(x) < 0 for x < 1 except at x = 0. As one traces the graph leftward from the origin, the
function is initially as well as eventually concave down and must be concave up at least
once in-between so as to approach the X-axis from below.)
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Part B. (Problems 1–4 × 15 points + problems 5–6 × 20 points = 100 points.) Solve
these problems in the space provided for each problem after this page. You may solve only
part of a problem and get partial credit. Clearly explain your entire reasoning. No
credit will be given without reasoning.

1. In triangle ABC, the bisector of angle A meets side BC in point D and the bisector of
angle B meets side AC in point E. Given that DE is parallel to AB, show that AE = BD
and that the triangle ABC is isosceles.

Answer: ∠EAD = ∠DAB = ∠EDA, the first equality because AD bisects ∠EAB and
the second because alternate angles made by line AD intersecting parallel lines DE and
AB are equal. Thus 4EAD is isosceles with EA = ED. Similarly ED = DB using the
fact that BE bisects ∠DBA also intersects parallel lines DE and AB. Therefore EA =
ED = DB. Now by the basic proportionality theorem, CE

EA = CD
DB . As the denominators

EA and DB are equal, the numerators must be equal as well, i.e., CE = CD. Finally,
CA = CE + EA = CD +DB = CB, so 4ABC is isosceles.

2. A curve C has the property that the slope of the tangent at any given point (x, y) on

C is x2+y2

2xy .

a) Find the general equation for such a curve. Possible hint: let z = y
x .

b) Specify all possible shapes of the curves in this family. (For example, does the family
include an ellipse?)

Answer: The defining property of the curve C is equivalent to the differential equation
dy
dx = x2+y2

2xy = 1
2 (x

y + y
x ). It is convenient to let z = y/x, so the equation becomes

dy
dx = 1

2 ( 1
z +z). To get this in terms of only x and z, differentiate z = y/x with respect to x

to get dz
dx = 1

x
dy
dx −

y
x2 = 1

x ( dy
dx − z) = 1

x ( 1
2 ( 1

z + z)− z) = 1
x
1−z2

2z , where we have substituted

for dy
dx using the differential equation and then simplified. Separating the variables and

integrating, we get
∫

dx
x =

∫
2zdz
1−z2 , which gives log |x| = − log |1 − z2|+ a constant, i.e.,

log |1 − z2| = − log |x| + K = log |x|−1 + K. Exponentiating, we get 1 − z2 = ± eK

x = c
x ,

where c is a nonzero constant. Substituting z = y/x, we get 1− y2

x2 = c
x , i.e., x2− y2 = cx.

To be precise, we have to delete the points (0, 0) and (c, 0) from this solution, because

for the given equation dy
dx = x2+y2

2xy to make sense, both x and y must be nonzero. If the

equation were given as 2xy dy
dx = x2 + y2, then this issue would not arise.

To see the shape of the curve, complete the square to get (x − c
2 )2 − y2 = c2

4 , which is
a hyperbola when c 6= 0. (Note: By differentiating x2 − y2 = cx, it is easy to see that
dy
dx = 2x−c

y = x2+y2

2xy and that this holds even when c = 0. Thus we get the two straight lines
y = ±x also as solutions. The reason the above answer missed this possibility was because
we put 1− z2 in the denominator while separating variables, which precludes z = ±1, i.e.,
y = ±x. To be precise, even here we have to delete the origin from the two lines.)
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3. A positive integer N has its first, third and fifth digits equal and its second, fourth and
sixth digits equal. In other words, when written in the usual decimal system it has the
form xyxyxy, where x and y are the digits. Show that N cannot be a perfect power, i.e.,
N cannot equal ab, where a and b are positive integers with b > 1.

Answer: We have N = (105 + 103 + 10)x + (104 + 102 + 1)y = 10101(10x + y) =
3 × 7 × 13 × 37 × (10x + y). Therefore for N to be a perfect power, the primes 3,7,13,37
must all occur (and in fact with equal power) as factors in the prime factorization of
10x + y. In particular 10x + y ≥ 10101. But since x and y are digits, each is between 0
and 9, so 10x+ y ≤ 99. So N cannot be a perfect power.

4. Suppose f(x) is a function from R to R such that f(f(x)) = f(x)2013. Show that there
are infinitely many such functions, of which exactly four are polynomials. (Here R = the
set of real numbers.)

Answer: If f is a polynomial, then we make two cases. (i) If f(x) = a constant c, then
the given condition is equivalent to c = c2013, which happens precisely for three values
of c, namely c = 0, 1,−1 (since we have c(c2012 − 1) = 0, so c = 0 or c2012 = 1). Thus
there are three constant functions with the given property. (ii) If f(x) is a non-constant
polynomial, then consider its range set A = {f(x)|x ∈ R}. Now for all a ∈ A, we have by
the given property f(a) = a2013. So the polynomial f(x)− x2013 has all elements of A as
its roots. Since there are infinitely many values in A (e.g. applying the intermediate value
theorem because f is continuous), the polynomial f(x) − x2013 has infinitely many roots
and thus must be the zero polynomial, i.e., f(x) = x2013 for all real number x.

Note: One can also deduce that the degree of f must be 0 or 2013 by equating the degrees
of f(f(x)) and f(x)2013. Then, in the non-constant case, it is possible to argue first that
the leading coefficient is 1 and then that all other coefficients must be 0.

To find infinitely many function with the given property, define f(0) = 0, f(1) = 1 and
f(−1) = −1. For every other real number x, arbitrarily define f(x) to be 0, 1 or −1. It is
easy to see that any such function satisfies the given property. (Other answers are possible,
e.g., more systematically, observe that f(a) = a2013 for at least one real number a (e.g.,

any number in the range of f) and then this forces f(x) = x2013 for all x ∈ S = {a2013i |i =
0, 1, 2, . . .}. We use this as follows. Fix a real number a. Then define f(x) = x2013 for all

x ∈ S = {a2013i |i = 0, 1, 2, . . .}. For all x 6∈ S, simply define f(x) = any element of the set
S, e.g., a itself will do.)

5. Consider the function f(x) = ax + 1
x+1 , where a is a positive constant. Let L = the

largest value of f(x) and S = the smallest value of f(x) for x ∈ [0, 1]. Show that L−S > 1
12

for any a > 0.

Answer: Let f(x) = ax + 1
x+1 . We wish to understand the minimum and maximum of

this function in the interval [0, 1]. Now f(0) = 1, f(1) = a + 1
2 and f ′(x) = a − 1

(x+1)2 .

Over the interval [0, 1], the value of f ′(x) increases from a− 1 at x = 0 to a− 1
4 at x = 1.
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We should consider what happens to the sign of f ′(x). For this we consider the following
cases.

(1) Suppose a ≤ 1/4. Because 1/(x + 1)2 ≥ 1/4 on the interval [0, 1], f ′(x) ≤ 0, so the
maximum is at 0 and the minimum is at x = 1. So the difference is 1 − (1/2 + a) =
1/2− a ≥ 1/4 ≥ 1/12.

(2) Suppose a ≥ 1. Then f ′(x) ≥ 0 on the interval [0, 1], so maximum is at 1 and minimum
at 0. We get a+ 1/2− 1 = a− 1/2 ≥ 1/2 ≥ 1/12.

(3) Suppose 1/4 ≤ a ≤ 1. Now f ′(x) = 0 at x̃ = 1√
a
− 1. For this range of a, x̃ ∈ [0, 1].

In the interval [0, x̃], f ′(x) ≤ 0 and in the interval [x̃, 1], f ′(x) ≥ 0. Now we make two
sub-cases depending on at which endpoint the maximum occurs.

(3i) Suppose 1/4 ≤ a ≤ 1/2. Then f(0) ≥ f(1). So minimum is at x̃, maximum is
at x = 0. f(x̃) =

√
a − a +

√
a = 2

√
a − a. So the difference between maximum and

minimum is 1 + a − 2
√
a = (1 −

√
a)2. This is smallest when

√
a is closest to 1 and so

(1−
√
a)2 ≥ (1− 1/

√
2)2 = 3/2−

√
2. This is bigger than 1/12 since ( 3

2 −
1
12 ) = 17/12 and

172 = 289 ≥ 2× 122.

(3ii) Suppose 1/2 ≤ a ≤ 1. Now f(1) ≥ f(0). Max is at 1 and minimum is at x̃. The
difference is a + 1/2 −

√
a + a −

√
a = 2a − 2

√
a + 1/2 = (

√
2a − 1√

2
)2. By a calculation

similar to the above it is bigger than 1/12.

6. Define fk(n) to be the sum of all possible products of k distinct integers chosen from
the set {1, 2, . . . , n}, i.e.,

fk(n) =
∑

1≤i1<i2<...<ik≤n

i1i2 . . . ik .

a) For k > 1, write a recursive formula for the function fk, i.e., a formula for fk(n) in
terms of f`(m), where ` < k or (` = k and m < n).

b) Show that fk(n), as a function of n, is a polynomial of degree 2k.

c) Express f2(n) as a polynomial in variable n.

Answer: a) Break up the terms in the definition of fk(n) into two groups: the terms in
which ik = n add up to nfk−1(n − 1) and the remaining terms, i.e., the ones in which
ik ≤ n− 1, add up to fk(n− 1). So we get fk(n) = nfk−1(n− 1) + fk(n− 1).

c) By part a we have f2(n)− f2(n− 1) = nf1(n− 1) = n× n(n−1)
2 = 1

2 (n3−n2). Similarly
f2(n− 1)− f2(n− 2) = 1

2 ((n− 1)3 − (n− 1)2) and so on up to f2(2)− f2(1) = 1
2 (23 − 22).

Note that f2(1) = 0, which we may also write as 1
2 (13 − 12). Adding up, we get for

any n ≥ 1, f2(n) =
∑j=n

j=1
1
2 (j3 − j2) = 1

2 (n2(n+1)2

4 − n(n+1)(2n+1)
6 ), where we have used

standard formulas for the sum of first n cubes and of first n squares.
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b) We prove the statement by induction on k. First f1(n) =
∑n

i=1 i = n(n+1)
2 , a polynomial

of degree 2 as desired. For k > 1, we have by part a the equation fk(n) − fk(n − 1) =
nfk−1(n− 1). The right hand side is a polynomial of degree 1 + 2(k − 1) = 2k − 1, where
2(k − 1) is the degree of fk−1(n− 1) by induction and the added 1 comes from the factor
n. Since successive differences in the values of fk are given by a polynomial of degree
2k− 1, the function fk on positive integers is given by a polynomial of degree 1 more, i.e.,
of degree 2k.

Note: The previous statement is a standard fact, which can be explained as follows. (1)
If we assume that fk(n) is a polynomial, then its degree is easily found, because for any
polynomial f of degree m, its “successive difference” function f(x)−f(x−1) is a polynomial
of degree m − 1. (Reason: If the leading term of f(x) is axm, then the leading term in
f(x)− f(x− 1) is amxm−1, as seen by expanding the power of x− 1 in axm − a(x− 1)m.
The remaining terms in f(x) − f(x − 1) do not matter because by expanding powers of
x − 1 in them and simplifying, we only get monomials of degree < m − 1.) (2) In fact,
based on the difference equation, fk(n) must be a polynomial in the variable n. This is a
consequence of the following well-known fact.

Claim: given a polynomial h(x) of degree d, there is a polynomial g(x) of degree d + 1
such that g(x) − g(x − 1) = h(x). Proof: Induction on d, the degree of h. If h(x) = c,
a constant, then g(x) = cx works. Now for d > 1, it is enough to find a polynomial g(x)
such that g(x)− g(x− 1) = xd (because if h(x) = cxd + h̃(x), where h̃ has degree < d, by
induction we find g̃ for h̃ and then cg(x) + g̃(x) works for h(x)). To find such g(x), notice
that for g1(x) = xd+1, we have h1(x) = g1(x)− g1(x− 1) = (d+ 1)xd +h2(x), where h2(x)
is a polynomial of degree d− 1. By induction h2(x) = g2(x)− g2(x− 1) for a polynomial
g2(x) of degree d. Now g(x) = 1

d+1 (g1(x)− g2(x)) works.
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