Chennai Mathematical Institute

Entrance Examination for B.Sc. (Mathematics \& Computer Science) May 2010

PART A

Instructions:

- There are 13 questions in this part. Each question carries 4 marks.
- Answer all questions.

1. Find all $x \in[-\pi, \pi]$ such that $\cos 3 x+\cos x=0$.
2. A polynomial $f(x)$ has integer coefficients such that $f(0)$ and $f(1)$ are both odd numbers. Prove that $f(x)=0$ has no integer solutions.
3. Evaluate:
(a) $\lim _{x \rightarrow 1} \frac{n-\sum_{k=1}^{n} x^{k}}{1-x}$
(b) $\lim _{x \rightarrow 0} \frac{e^{-1 / x}}{x}$
4. Show that there is no infinite arithmetic progression consisting of distinct integers all of which are squares.
5. Find the remainder given by $3^{89} \times 7^{86}$ when divided by 17 .
6. Prove that

$$
\frac{2}{0!+1!+2!}+\frac{3}{1!+2!+3!}+\cdots+\frac{n}{(n-2)!+(n-1)!+n!}=1-\frac{1}{n!}
$$

7. If a, b, c are real numbers >1, then show that

$$
\frac{1}{1+\log _{a^{2} b} \frac{c}{a}}+\frac{1}{1+\log _{b^{2} c} \frac{a}{b}}+\frac{1}{1+\log _{c^{2} a} \frac{b}{c}}=3
$$

8. If 8 points in a plane are chosen to lie on or inside a circle of diameter 2 cm then show that the distance between some two points will be less than 1 cm .
9. If $f(x)=\frac{x^{n}}{n!}+\frac{x^{n-1}}{(n-1)!}+\cdots+x+1$, then show that $f(x)=0$ has no repeated roots.
10. Given $\cos x+\cos y+\cos z=\frac{3 \sqrt{ } 3}{2}$ and $\sin x+\sin y+\sin z=\frac{3}{2}$ then show that $x=$ $\frac{\pi}{6}+2 k \pi, y=\frac{\pi}{6}+2 \ell \pi, z=\frac{\pi}{6}+2 m \pi$ for some $k, \ell, m \in \mathbf{Z}$.
11. Using the fact that \sqrt{n} is an irrational number whenever n is not a perfect square, show that $\sqrt{3}+\sqrt{7}+\sqrt{21}$ is irrational.
12. In an isoceles $\triangle \mathrm{ABC}$ with A at the apex the height and the base are both equal to 1 cm . Points D, E and F are chosen one from each side such that BDEF is a rhombus. Find the length of the side of this rhombus.
13. If b is a real number satisfying $b^{4}+\frac{1}{b^{4}}=6$, find the value of $\left(b+\frac{i}{b}\right)^{16}$ where $i=\sqrt{-1}$.

PART B

Instructions:

- There are seven questions in this part. Each question carries 8 marks.
- Answer any six questions.

1. Let $a_{1}, a_{2}, \ldots, a_{100}$ be 100 positive integers. Show that for some m, n with $1 \leq m \leq n \leq$ $100, \sum_{i=m}^{n} a_{i}$ is divisible by 100 .
2. In $\triangle \mathrm{ABC}, \mathrm{BE}$ is a median, and O the mid-point of BE . The line joining A and O meets BC at D. Find the ratio $\overline{\mathrm{AO}}: \overline{\mathrm{OD}}$ (Hint: Draw a line through E parallel to AD.)
3. (a) A computer program prints out all integers from 0 to ten thousand in base 6 using the numerals $0,1,2,3,4$ and 5 . How many numerals it would have printed?
(b) A 3-digt number $a b c$ in base 6 is equal to the 3 -digit number $c b a$ in base 9 . Find the digits.
4. (a) Show that the area of a right-angled triangle with all side lengths integers is an integer divisible by 6 .
(b) If all the sides and area of a triangle were rational numbers then show that the triangle is got by 'pasting' two right-angled triangles having the same property.
5. Prove that $\int_{1}^{b} a^{\log _{b} x} d x>\ln b$ where $a, b>0, b \neq 1$.
6. Let C_{1}, C_{2} be two circles of equal radii R. If C_{1} passes through the centre of C_{2} prove that the area of the region common to them is $\frac{R^{2}}{6}(4 \pi-\sqrt{27})$.
7. Let $a_{1}, a_{2}, \ldots, a_{n}$ and $b_{1}, b_{2}, \ldots, b_{n}$ be two arithmetic progressions. Prove that the points $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right), \ldots,\left(a_{n}, b_{n}\right)$ are collinear.
