CHENNAI MATHEMATICAL INSTITUTE

Ph.D. Programme in Physics

Entrance Examination, 15 May 2013

- [I] Consider a simple pendulum consisting of a bob of mass m suspended from a fixed support via a massless rigid rod of length l. It is free to oscillate (not necessarily through small angles) in a plane, under the influence of the Earth's constant acceleration due to gravity g.
 - 1. Write the Lagrangian for this pendulum and plot the potential energy $V(\theta)$. Denote the angle made by the pendulum relative to its stable equilibrium position by θ anti-clockwise. Choose the additive constant so that V(0) = -mql.
 - 2. Find Lagrange's equation for the pendulum. Obtain all static (time-independent) solutions and comment on their physical meaning and stability.
 - 3. Find the momentum p_{θ} conjugate to θ . Starting from the Lagrangian, obtain the Hamiltonian expressed in terms of phase space variables via a Legendre transform.
 - 4. What is the phase space of this system?
 - 5. For energy $-mgl \le E < mgl$, find the maximum angle of deflection θ_0 , and show that the time period of oscillation is as below. What is the origin of the pre-factor 4?

$$T = 4 \int_0^{\theta_0} \frac{d\theta}{\sqrt{\frac{2}{ml^2} [E + mgl\cos\theta]}}$$

- 6. Find θ_0 and T as E approaches mgl from below. What does the answer mean physically?
- [II] Consider the wave function of a spin-two system given by

$$|\psi\rangle = \frac{a|S=2, S_z=2> + b|S=2, S_z=1>}{(|a|^2+|b|^2)^{1/2}}$$

where

$$S_z|S=2, S_z=m> = \hbar m|S=2, S_z=m>$$

and

$$S^2|J=2, S_z=m> = 6\hbar^2|S=2, S_z=m>$$

and $|S=2,S_z=m>$ is normalised to unity. Let the Hamiltonian of the system be

$$H = \lambda \vec{S}^2 + \mu S_x^2$$

where \vec{S} is the spin operator and S_x is the x-component. In the above equations, a and b are complex constants and λ and μ are real constants.

- 1. Suppose a measurement of S_z is made on $|\psi\rangle$. What are the possible outcomes and what is the probability of each?
- 2. What are the dimensions of λ and μ ?
- 3. What are the conserved quantities of the Hamiltonian?
- 4. Find the expectation value of the Hamiltonian in the state $|\psi\rangle$.

[III]

1. A is a 2×2 matrix

$$A = \left(\begin{array}{cc} 1 & 2 \\ 0 & 3 \end{array}\right)$$

Diagonalise A and find $\exp(A)$.

- 2. Show that the Fourier Transform of $f(x) = \frac{1}{\mathbf{r}^2 + \lambda^2}$, where $\mathbf{r} = (x, y, z)$, $\mathbf{r}^2 = x^2 + y^2 + z^2$ and $\lambda^2 > 0$ is given by $\tilde{F}(\mathbf{k}) = \frac{4\pi^2}{k} e^{-\lambda k}$, where $k = |\mathbf{k}|$.
- [IV] Consider a point particle of mass m and charge q.
 - 1. Using the Lorentz force equation, find the transformation properties of electric field $\vec{E}(\vec{r},t)$, magnetic field $\vec{B}(\vec{r},t)$, vector potential $\vec{A}(\vec{r},t)$ and scalar potential $\phi(\vec{r},t)$, under parity and (separately) time-reversal transformations.
 - 2. Solve completely the force equation for the particle moving in a constant magnetic field in z-direction, giving the radius of the helix and the pitch angle.
- [V] An ideal gas is at a temperature T_1 and volume V_1 . The gas is taken through an isobaric (constant pressure) process to a state of higher temperature T_2 . It is then taken via an isochoric (constant volume) process to a state of temperature T_1 , and finally back to the initial state in an isothermal (constant temperature) process.
 - 1. Calculate the amount of heat transferred (Q) to the gas in the cycle.
 - 2. Same as above, but in the reverse cycle.
 - 3. What would be the result if δQ were an exact differential?
 - 4. Calculate the work done by the gas during the cycle. Is it equal to Q? Why?
 - 5. Draw a P-V diagram to illustrate the cycle.
 - 6. Comment on the change in entropy, if any, during the cycle.