CHENNAI MATHEMATICAL INSTITUTE Postgraduate Programme in Mathematics MSc/PhD Entrance Examination 24th May 2025

PART A

- A, B, C.
 A, B, D.
 C, D.
 C, C.
 A, B, C, D.
 A, B, C, D.
 A, C.
 A, D.
- (8) B.
- (9) B.
- (10) A.

Part B

- (11) (A) \Rightarrow (B) : Let K be a nontrivial minimal subgroup of G. Then $K \cap H$ is nontrivial and by minimality $K \cap H = K$. This gives the first statement of (B). Let $0 \neq x \in G$. Then $\langle x \rangle \cap H \neq 0$, so that $nx \in H$ for a positive integer n. Here $\langle x \rangle$ denotes the subgroup generated by x in G. This gives the second statement of (B). (B) \Rightarrow (A) : Let K be a nontrivial subgroup of G. To prove that $K \cap H \neq 0$, it is enough to show that $\langle a \rangle \cap H \neq 0$ for some nonzero element $a \in K$. So let us assume that $K = \langle a \rangle$ is cyclic. If K is finite then it will contain a minimal nontrivial subgroup which is contained in H by the first statement of (B). So $K \cap H \neq 0$. Suppose that K is infinite. By hypothesis, $na \in H$ for a positive integer n. Since a has infinite order, we conclude that $0 \neq na \in H \cap K$.
- (12) (A) Since $IJ \subseteq I \cap J$, $Z(I \cap J) \subseteq Z(IJ)$. To prove the containment in the other direction, let $a \in Z(IJ)$ and $f \in I \cap J$. We want to show that f(a) = 0. Note that $f^2 \in IJ$. Hence $f(a)^2 = 0$. Therefore f(a) = 0.
 - (B) I(a) is the kernel of the surjective ring homomorphism $\mathcal{C}(\mathbb{R}) \longrightarrow \mathbb{R}, f \mapsto f(a)$.
 - (C) If f and g have compact support, so does f + g. If f has compact support and g is any continuous function, gf has compact support. Hence the given set is an ideal. If it were not a proper ideal, it would contain the unit, i.e., the constant function 1, which is not compactly supported. For every $a \in \mathbb{R}$, there exists a compactly supported continuous function f such that $f(a) \neq 0$.
 - (D) False. Choose a maximal ideal \mathfrak{p} containing the ideal I given in (C). Then $Z(\mathfrak{p}) \subseteq Z(I) = \emptyset$.
- (13) The relation h(f(x)+g(y)) = xy, for all points $x, y \in \mathbb{R}$ imply that h is surjective. If f(x) = f(y) then x = h(f(x)+g(1)) = h(f(y)+g(1)) = y, hence f is injective. Also since f is continuous, f is strictly monotone. If f is bounded above then $\lim_{x\mapsto\infty} f(x) = \alpha$ exists, but

$$h(\alpha + g(1)) = \lim_{x \mapsto \infty} h(f(x) + g(1)) = \lim_{x \mapsto \infty} x = \infty.$$

So f is unbounded above, and similarly unbounded below. Thanks to continuity f maps onto \mathbb{R} . So f is a bijection. So f(x) + g(0) takes all values in \mathbb{R} . But h(f(x) + g(0)) = 0 for all x, which is a contradiction.

- (14) $\int_{0}^{1} f(x)g(nx)dx = \frac{1}{n}\int_{0}^{n} f\left(\frac{y}{n}\right)g(y)dy = \frac{1}{n}\sum_{k=1}^{n}\int_{k}^{k+1} f\left(\frac{y}{n}\right)g(y)dy = \frac{1}{n}\sum_{k=1}^{n}\int_{0}^{1} f\left(\frac{k+z}{n}\right)g(z)dz,$ by periodicity of g. By replacing g by g + c for some constant c, we can assume g is non-negative. Using continuity and mean value theorem for integrals, we can write the above sum as $\frac{1}{n}\sum_{k=1}^{n} f\left(\frac{k+z_k}{n}\right)\int_{0}^{1} g(z)dz$ for $z_k \in (0,1)$. Now $\frac{1}{n}\sum_{k=1}^{n} f\left(\frac{k+z_k}{n}\right)$ converges to the Riemann integral $\int_{0}^{1} f(x)dx.$
- (15) (A) True. Let $a \in \mathbb{R}^2$ be such that f(a) > 0 and $b \in \mathbb{R}^2$ be such that f(b) < 0. Let ℓ be the line perpendicular to the segment joining a and b passing through the midpoint of the segment. For each $p \in \ell$, there is a straight-line path joining a with p and then p with b. On each such path there is a point q such that f(q) = 0.
 - (B) True. Let U = (a, b). Suppose that f(U) is open. Note that f(U) is bounded. Then $\partial f(U)$ is uncountable. On the other hand, since ∂U has exactly two elements, $\partial f(U)$ is finite.
- (16) (A) False. The point z = 0 is an essential singularity. To see this, suppose that for some $n \ge 1, g(z) = z^{-n} f(z)$ is such that $\lim_{z\to 0} g(z) = \infty$, then z = 0 is a pole of g(z). Let k be the order of the pole of g(z) at z = 0and write $g(z) = z^{-k}h(z)$ where h(z) is analytic in |z| < r for some $r \le 1$ with $h(z) \ne 0$. Then $f(z) = z^{n-k}h(z)$. If $n \ge k$, then f(z) is analytic at z = 0 and hence continuous at z = 0, contrary to our assumption on f(z). If n < k, then n - k < 0. As $h(0) \ne 0$, we have $\lim_{z\to 0} f(z) = \infty$, again a contradiction.
 - (B) False. Write a_n for the fractional part of en!. Note that $a_n \to 0$. Hence $f(e^{2\pi i a_n}) = 0$.
- (17*) (A) Write $\gamma(t) = I_n + tA + O(t^2)$ where $A = \gamma'(0) \in M_n$. Now consider γ_A .
 - (B) Every tangent vector of G is also a tangent vector of GL_2 , so there exists $A \in M_2$ such that $\gamma'_A(0) = A$ is the tangent vector. $I_2 = (I_2 + tA + O(t^2))^*(I_2 + tA + O(t^2)) = I_2 + t(A^* + A) + O(t^2)$, so $A^* = -A$. Since det $\gamma_A(t) = 1$ for all t, Tr A = 0.
 - (C) $\Phi(I_2) = (1, 0, 0, 0)$ and the tangent space there is \mathbb{R}^3 . Let $A = \begin{bmatrix} ia & z \\ -\bar{z} & -ia \end{bmatrix} \in V$. Then

$$\begin{split} \Phi(\gamma_A(t)) &= \Phi\left(\begin{bmatrix} 1+iat+O(t^2) & zt+O(t^2) \\ -\bar{z}t+O(t^2) & 1+iat+O(t^2) \end{bmatrix} \right) \\ &= (1+O(t^2), at+O(t^2), \Re(z)t+O(t^2), \Im(z)t+O(t^2)). \end{split}$$

Therefore $(D\Phi)_{I_2}(A) = (a, \Re(z), \Im(z))$. Note that the map $(A, B) \longrightarrow [A, B]$ is \mathbb{R} -bilinear. An \mathbb{R} -basis for V is

$$\left\{ \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix} \right\}.$$

Call these A_1, A_2, A_3 respectively. $(D\Phi)_{I_2}(A_i)$ is the *i*th standard basis vector e_i of \mathbb{R}^3 . Moreover, $[A_1, A_2] = A_3, [A_2, A_3] = A_1, [A_3, A_1] = A_2$. Hence the induced multiplication on \mathbb{R}^2 is the vector cross product.

(18^{*}) Since P is irreducible, $\mathbb{F}_q(\alpha) = \mathbb{F}_{q^{2d}}$ for each root α of P. Thus the splitting field of P over \mathbb{F}_q is $\mathbb{F}_{q^{2d}}$. One has that $\operatorname{Gal}(\mathbb{F}_{q^{2d}}/\mathbb{F}_q) \simeq \mathbb{Z}/(2d)$, generated by the

Frobenius element $\sigma : x \mapsto x^q$. Since the Galois group is cyclic, all roots of P are of the form $\sigma^i(\alpha)$, where α is a chosen root. Then we set

$$Q_1 := \prod_{i \text{even}} (x - \sigma^i(\alpha))$$

and

$$Q_2 := \prod_{i \text{odd}} (x - \sigma^i(\alpha)),$$

we have that $P = Q_1 Q_2$. Each of the polynomials Q_i have coefficients which are symmetric polynomials in their roots, and it is easy to see that these coefficients are fixed by σ^2 . The fixed field of $\langle \sigma^2 \rangle$ is \mathbb{F}_{q^2} and thus Q_i has coefficients in \mathbb{F}_{q^2} . Since all roots of Q_i lie in a single Galois orbit for $\langle \sigma^2 \rangle$, Q_i is irreducible in $\mathbb{F}_{q^2}[x]$. (19*) If $0 < \alpha < 1$ is rational $\omega := e^{2\pi i \alpha}$ is a root of unity. So $(r\omega)^{m!} = r^{m!}$ for all $m \ge n$ for $n := o(\omega)$. Summing from the the first N th terms we obtain $s = \sum_{m \ge n} r^{m!}$ and it suffices to show this sum diverges to ∞ . Consider the sum up to m + 1 terms of the above series: $s_m = r^{n!} + \cdots + r^{m!}$.

Let $N \geq 1$. Choose r so that $r^{N!} \geq 1/2$. This is possible since $t \mapsto t^{N!}$ is continuous at 1 and so $\lim_{r \to 1^-} r^{N!} = 1$. For this choice of r, we have $s_N \geq (N-n+1)/2$. As $n = o(\omega)$ is fixed, we see that $s_N \to \infty$ as $N \to \infty$.

(20^{*}) (A) Cover \mathbb{R}^2 by unit squares $R_{m,n}$ with sides parallel to the coordinate axes and centres at (m + 1/2, n + 1/2) with $(m, n) \in \mathbb{Z}^2$. It is easily seen that the rectangles $\{R_{m,n} \mid (m, n) \in \mathbb{Z}^2\}$ can be arranged in a sequence $S_0 = R_{0,0}, S_1, S_2, \dots, S_n, \dots$ so that (i) $S_k \neq S_l$ if $k \neq l$, (ii) $S_i \cap S_{i+1}$ is a common edge of both S_i, S_{i+1} .

Suppose that $f_0: I \to I^2$ is a surjective continuous map. We may arrange so that $f_0(0) = (0,0) = f(1)$. (Otherwise let $\alpha : I \to I^2$ describe the straight-line segment from f(0) to 0 and $\beta : I \to I^2$, the straight-line segment joining f(1) to (0,0) and consider the concatenation $f := \alpha \cdot f_0 \cdot \beta : I \to I^2$, which describes α, f_0, β with thrice the speed in succession. Then f maps $0, 1 \in I$ to (0,0).)

Consider $\phi : \mathbb{R} \to \mathbb{R}^2$ is defined as follows: $\phi(t) = (0,0)$ if $t \leq 0, \phi(t) = f_0(t), 0 \leq t \leq 1$, and , inductively, having defined ϕ on [j-1,j] such that $\phi([j-1,j]) = S_{j-1} = R_{m,n}$, with $\phi(j-1) = (m,n)$, we proceed to define ϕ on [j, j+1] as follows. By our hypothesis, $S_j = R_{k,l}$ where $(k,l) \in \{(m,n+1), (m,n-1), (m+1,n), (m-1,n)\}$. Let $\sigma : I \to R_{m,n} \cup R_{k,l}$ be the straight line segment that joins (m,n) to (k,l). Then define

$$\phi(j+t) = \left\{ \begin{array}{ll} \sigma(2t), & \text{if } 0 \leq t \leq 1/2 \\ (k,l) + f_0(2t-1), & \text{if } 1/2 \leq t \leq 1 \end{array} \right.$$

Then $\phi : \mathbb{R} \to \mathbb{R}^2$ is a continuous surjection. (Continuity follows from pasting lemma and surjectivity follows from the fact that $\bigcup R_{m,n} = \mathbb{R}^2$.)

(B) The complement of the graph of ϕ is path connected. Suppose that both $p_0 = (x_0, y_0, z_0), p_1 = (x_1, y_1, z_1)$ are not in Γ . If $x_0 = x_1$, then p_0, p_1 belong the plane P with equation $x = x_0$ and $\Gamma \cap P$ is a singleton. So $P \setminus \Gamma$ is a punctured plane, which is path connected.

Suppose that $x_0 < x_1$. Then $\Gamma \cap \{(t, y, x) \mid x_0 \leq t \leq x_1\}$ is compact. So we can choose a c > 0 large such that Γ is contained in the half space $\{(x, y, z) \mid z < c\}$. Now the straight-line segment joining $q_0 = (x_0, 0, c)$ and

 $q_1=(x_1,0,c)$ does not meet $\Gamma.$ Applying first case (twice) we get a path from p_0 to q_0 to q_1 to p_1 not meeting $\Gamma.$