CHENNAI MATHEMATICAL INSTITUTE Postgraduate Programme in Mathematics MSc/PhD Entrance Examination 19th May 2024

Part A

- (1) B
 (2) B, D.
 (2) A C
- (3) A, C.(4) A, B, C.
- (4) A, D, (5) B, D.
- (*b*) *B*, *D*.
- (7) A, B.
- (8) A.
- (9) B, C.
- (10) C.

Part B

(11) Write $D_{2n} = \langle \sigma, \tau \mid \sigma^n = e, \tau^2 = e, \tau \sigma \tau^{-1} = \sigma^{-1} \rangle$.

Let $\Phi \in \operatorname{Aut}(D_{2n})$. Note that Φ is determined by $\Phi(\sigma)$ and $\Phi(\tau)$. Since $\Phi(\sigma)^n = \Phi(\sigma^n) = e$, we find that $\Phi(\sigma)$ has order dividing n. Since Φ is injective, $\Phi(\sigma^d) \neq e$ for d < n. Hence, the order of $\Phi(\sigma)$ is exactly n. Every element of D_{2n} is either of the form $\tau \sigma^j$ or σ^i . Note that $\tau \sigma^j$ has order 2. Since n > 2, we find that $\Phi(\sigma) \neq \tau \sigma^j$. Therefore, there is an index i such that $\Phi(\sigma) = \sigma^i$. The order of σ^i is $n/\gcd(n, i)$, and therefore, i is coprime to n. Thus, there are $\varphi(n)$ choices for $\Phi(\sigma)$. The elements in D_{2n} that have order 2 are all of the form $\tau \sigma^j$, where $j \in \{0, 1, \ldots, n-1\}$, or if n is even, $\sigma^{n/2}$. Note that since $\Phi(\sigma) \in \langle \sigma \rangle$, it follows that Φ would fail to be surjective if $\Phi(\tau) = \sigma^{n/2}$. Thus, $\Phi(\tau)$ is an element of the form $\tau \sigma^j$, with $j \in \{0, 1, \ldots, n-1\}$. Hence $|\operatorname{Aut}(D_{2n})| \leq n\varphi(n)$.

$$\frac{ai+b}{ci+d} = \frac{(ai+b)(-ci+d)}{c^2+d^2} = \frac{ac+bd+(ad-bc)i}{c^2+d^2} = \frac{ac+bd+i}{c^2+d^2},$$

so it is in H. Given $x + yi \in H$, choose a, b, d such that $x = b/d, y = 1/d^2$ and ad = 1. Now

$$f\left(\begin{bmatrix}a&b\\0&d\end{bmatrix}\right) = x + yi$$

- (B) Let K be a compact subset of H. For each M ∈ SL(2, ℝ), choose a compact neighbourhood V(M) of M. Since f is open and the sets f(V(M)), M ∈ SL(2, ℝ) cover K, a finitely many subcollection, say f(V(M₁)),..., f(V(M_n)) will cover K. Let L = ⋃_{i=1}ⁿ V(M_i); it is a compact subset of SL(2, ℝ). Now f⁻¹(K) ⊂ L · SO(2, ℝ). Now consider the multiplication map SL(2, ℝ) × SL(2, ℝ) → SL(2, ℝ) which is continuous. Note that L · SO(2, ℝ) is the image of the compact subset L × SO(2, ℝ) of SL(2, ℝ). Hence L · SO(2, ℝ) is compact, so the closed subset f⁻¹(K) is compact.
- (13) (A) $\sum_{g \in G} s_g = |\{(g, H) \in G \times S \mid gHg^{-1} = H\}| = \sum_{i=1}^3 |N_i|.$
 - (B) Consider the action of G on S by conjugation. The orbit of H_1 is equal to $\{H_1, H_2, H_3\}$ by hypothesis. So the action is transitive. Hence the order of each N_i is |G|/3. Note that $s_e = 3$ where e is the identity element of G. So by the solution to (A), $s_q = 0$ for some g.
- (14) (A) For each $x \in X$, the set $Y_x := \{f(x) : f \in S\}$ is an ideal of \mathbb{Z} . We are done if $Y_x \neq \mathbb{Z}$ for some $x \in X$. If not, then $Y_x = \mathbb{Z}$ for all $x \in X$ and hence for every $x \in X$, there exists $f_x \in S$ such that $f_x(x) = 1$. Then

$$\prod_{x \in X} (f_x - 1_R) = 0 \in R.$$

Expand this to write 1_R as a polynomial expression in $\{f_x \mid x \in X\}$. Since every polynomial expression in $\{f_x \mid x \in X\}$ belongs to S and S is an additive subgroup of R, it follows that $1_R \in S$. This is a contradiction. Hence we have $Y_x \subsetneq \mathbb{Z}$ for some $x \in X$.

(B) Assume that P is reducible in K[x]. Let g be an irreducible factor of P in K[x]. It suffices to show that $\deg g = (\deg P)/2$. Let α a root of g. Now

$$K(\alpha):K][K:\mathbb{Q}] = [K(\alpha):\mathbb{Q}] = [K(\alpha):\mathbb{Q}(\alpha)][\mathbb{Q}(\alpha):\mathbb{Q}]$$

so $2 \deg(g) = \deg(P)[K(\alpha) : \mathbb{Q}(\alpha)]$. Since $\deg g < \deg P$, it follows that $[K(\alpha) : \mathbb{Q}(\alpha)] < 2$ so $[K(\alpha) : \mathbb{Q}(\alpha)] = 1$. Hence $\deg(g) = \deg(P)/2$.

(15) Write f(z) for the meromorphic function $\frac{A(z)}{B(z)}$.

We first note that

$$\frac{A(\alpha_i)}{B'(\alpha_i)} = \operatorname{Res}_{\alpha_i} f(z)$$

Hence we need to show that

$$\sum_{i=1}^{k} \operatorname{Res}_{\alpha_i} f(z) = 0$$

Solution 1: Expand $\frac{A(X)}{B(X)}$ as partial fractions

$$\frac{A(X)}{B(X)} = \sum_{i=1}^{k} \frac{a_i}{X - \alpha_i}$$

We can assume that B is monic, i.e., $B = \prod_{i=1}^k (X - \alpha_i).$ Hence

$$A(X) = \sum_{i=1}^{\kappa} a_i \prod_{j \neq i} (X - \alpha_j).$$

from which it follows that the coefficient of X^{k-1} in $A(X) = \sum_{i=1}^{k} a_i$. Since deg A(X) < k - 1, it follows that $\sum_{i=1}^{k} a_i = 0$. On the other hand,

$$a_i = \operatorname{Res}_{\alpha_i} \left(\sum_{j=1}^k \frac{a_j}{z - \alpha_j} \right).$$

Hence

$$\sum_{i=1}^{k} \operatorname{Res}_{\alpha_i} f(z) = \sum_{i=1}^{k} a_i = 0.$$

Solution 2:

For each real number $R > \max_i |\alpha_i|$, define

$$I_R := \int_{C_R} f(z) dz,$$

where C_R is the circle of radius R with centre at 0, oriented counter-clockwise. Hence

$$I_R = 2\pi i \sum_{i=1}^k \operatorname{Res}_{\alpha_i} f(z).$$

On the other hand, since $\deg A(X) < \deg B - 1$, it follows that

$$|I_R| \le \int_{C_R} |f(z)| dz \le \frac{2\pi}{R}$$

Hence

$$\sum_{i=1}^k \operatorname{Res}_{\alpha_i} f(z) = 0$$

- (16) (A) Let r < r' be rational numbers and write $r r' = \frac{m}{n}$ for some positive integers m, n. Then $f(r) = f(r + \frac{1}{n}) = f(r + \frac{2}{n}) = \cdots = f(r')$. Therefore there exists $c \in \mathbb{R}$ such that f(r) = c for all $r \in \mathbb{Q}$. Now let $r \in \mathbb{R}$. Then there exists a sequence $r_k \in \mathbb{Q}, k \ge 1$ converging to r. Since f is continuous, $f(r) = \lim_k f(r_k) = c$. Hence f is a constant function.
 - (B) Let $\alpha = \inf_n \frac{a_n}{n}$. Then for any $\epsilon > 0$, there exists N such that $a_N < N(\alpha + \epsilon)$. Let $\beta = \max\{a_1, \dots, a_N\}$. Let n > N. Write n = Nq + r with $0 \le r < N$. By the sub-additivity of a_n ,

$$a_n \le qa_N + a_r \le qa_N + \beta$$

and hence

$$\alpha \leq \frac{a_n}{n} \leq \frac{qa_N}{n} + \frac{\beta}{n} < \frac{qN(\alpha + \epsilon)}{n} + \frac{\beta}{n} \longrightarrow \alpha + \epsilon$$

since $\frac{qN}{n} \longrightarrow 1$ as $n \longrightarrow \infty$, Hence

$$\lim \frac{a_n}{n} = \alpha$$

(17*) Consider the set $X = \{(v_1, v_2) \mid v_1, v_2 \text{ are linearly independent vectors in } V\}$. Then $|X| = (p^n - 1)(p^n - p)$. For a two-dimensional subspace W of V, define $X_W := \{(v_1, v_2) \in X \mid v_1, v_2 \text{ is a basis of } W\}$. For each two-dimensional subspace W of V, $\operatorname{GL}_2(\mathbb{F}_p)$ acts transitively and without fixed points on X_W . Moreover X = $\cup_W X_W$ where W runs over all the two-dimensional subspaces of V. Hence the orbits of the action on X are in bijective correspondence with the set of two-dimensional \mathbb{F}_p -subspaces of V. Hence the number of twodimensional \mathbb{F}_p -subspaces of V is

$$\frac{(p^n-1)(p^n-p)}{(p^2-1)(p^2-p)}.$$

- (18*) Let $s, t : \mathbb{N}^2 \longrightarrow \mathbb{R}$ be the restrictions of the first and second projections $\mathbb{R}^2 \longrightarrow \mathbb{R}$. We now show that the \mathbb{R} -subalgebra of R generated by s, t is isomorphic to a polynomial ring in two variables. To do this, it suffices to show that the natural map $\mathbb{R}[X,Y] \longrightarrow R, X \mapsto s, Y \mapsto t$ is injective. Let f(X,Y) be in the kernel of this map, i.e, $f(s,t) \equiv 0$. We want to show that f(X, Y) is the zero polynomial. By way of contradiction, assume that it is non-zero. Write $f(X, Y) = \sum_{k=0}^{d} f_k(X)Y^k$ for some suitable d. For each $0 \le k \le d$, $f_k(X)$ has only finitely many zeros. Hence there exists $n \in \mathbb{N}$ such that f(n, Y) is a non-zero polynomial. Therefore there exists $m \in \mathbb{N}$ such that $f(n,m) \neq 0$. Thus f(s,t) is non-zero at (n,m), a contradiction. Therefore f(X,Y)is the zero polynomial.
- (19*) We show that the set S is closed and bounded. First, we show that S is bounded. Let $\lambda \in S$, there exists a non-zero vector $v \in \mathbb{R}^n$ and a matrix $A = (a_{i,j}) \in X$ such that $Av = \lambda v$. Then, we find that

$$|\lambda||v_i| = |\sum_j a_{i,j}v_j| \le \max\{|a_{i,j}| : 1 \le i, j \le n\} \times \max\{|v_j| \mid 1 \le j \le n\}$$

Taking the maximum value of $|v_i|$, we thus find from the above that

$$|\lambda| \le \max\{|a_{i,j}| : 1 \le i, j \le n\}.$$

Since X is a compact subset of $M_n(\mathbb{R}) \simeq \mathbb{R}^{n^2}$, it is bounded. Hence, there exists D > 0 such that $\max\{|a_{i,j}|:$ $1 \leq i, j \leq n \} \leq D$ for all $A \in X$. Thus, we have shown that S is bounded.

In order to show that S is closed, take a sequence $\lambda_1, \lambda_2, \ldots, \lambda_i, \ldots$ in S which converges to $\lambda \in \mathbb{C}$. We show that $\lambda \in S$. For each λ_i , there is a non-zero vector v_i and $A_i \in X$ such that $A_i v_i = \lambda_i v_i$. Assume without loss of generality that $|v_i| = 1$ for all *i*. Since X is compact, there is a subsequence A_{n_i} such that A_{n_i} converges to $A \in X$. Since v_{n_i} all have norm 1, it follows that after passing to a subsequence if necessary, we can assume without loss of generality that v_i converge to a vector v of norm 1. Thus, we find that $Av = \lambda v$. Since $A \in X$, it follows that $\lambda \in S$. This shows that S is closed. Being a closed and bounded subset of \mathbb{C} , we find that S is compact.

(20*) (A) $|y + (A\psi)(y)| = |y - (y + \psi(y))^2| \le |y| + |(y + \psi(y))^2| \le \epsilon + \frac{\lambda^2}{4} \le \frac{\lambda}{2}$. (B) If we compose the two functions, we get the identity map. More precisely, $y = x + x^2 = (y + \psi(y)) + \frac{\lambda^2}{4} \le \frac{\lambda^2}{4}$. $(y + \psi(y))^2 = (y + \psi(y)) - \psi(y) = y.$

$$d(A\psi_1, A\psi_2) = \sup\{|(y + \psi_1(y))^2 - (y + \psi_2(y))^2| : y \in [-\epsilon, \epsilon]\}$$

= sup{ $|(2y + \psi_1(y) + \psi_2(y))(\psi_1(y) - \psi_2(y))| : y \in [-\epsilon, \epsilon]$ }
 $\leq \lambda d(\psi_1, \psi_2)$

(D) Let n, k be positive integers. Then

$$\begin{aligned} d(A^{n}\phi, A^{n+k}\phi) &\leq \lambda d(A^{n-1}\phi, A^{n-1+k}\phi) \leq \ldots \leq \lambda^{n} d(\phi, A^{k}\phi) \leq \\ \lambda^{n} \left(d(\phi, A\phi) + d(A\phi, A^{2}\phi) + d(A^{2}\phi, A^{3}\phi) + \cdots + d(A^{k-1}\phi, A^{k}\phi) \right) \leq \\ \lambda^{n} \left(1 + \lambda + \cdots + \lambda^{k-1} \right) d(\phi, A\phi) \leq \lambda^{n} (1 + \lambda + \cdots) d(\phi, A\phi) = \frac{\lambda^{n}}{1 - \lambda} d(\phi, A\phi). \end{aligned}$$

Hence this is a Cauchy sequence. Since X is complete, the sequence has a limit. (Proof that X is complete: It suffices to show that X is closed in $\mathcal{C}^1([-\epsilon,\epsilon])$, since closed subsets of complete spaces are complete. Consider the continuous function

$$F: \mathcal{C}^1([-\epsilon, \epsilon]) \longrightarrow \mathcal{C}^1([-\epsilon, \epsilon]) \qquad \phi \mapsto \mathrm{id} + \phi.$$

Composing this with the sup-norm function gives a continuous map $G : \mathcal{C}^1([-\epsilon, \epsilon]) \longrightarrow \mathbb{R}$. Then $X = G^{-1}([0, \frac{\lambda}{2}])$.) (E) Let $\phi \in X$. Since A is continuous, we see that

$$A\left(\lim_{n} A^{n}\phi\right) = \lim_{n} A^{n+1}\phi = \lim_{n} A^{n}\phi.$$

4

Hence take $\psi = \lim_n A^n \phi$.