CHENNAI MATHEMATICAL INSTITUTE Postgraduate Programme in Mathematics MSc/PhD Entrance Examination 7th May 2023

Part A

- (1) Let *R* be an integral domain containing \mathbb{C} such that it is a finite-dimensional \mathbb{C} -vector-space. Pick the correct statement(s) from below.
 - (A) For every $a \in R$, the set $\{1, a, a^2, ...\}$ is linearly dependent over \mathbb{C} .
 - (B) R is a field.
 - (C) $R = \mathbb{C}$.
 - (D) The transcendence degree of *R* over \mathbb{C} is 1.
- (2) Let *R* be a euclidean domain that is not a field. Let $d : R \setminus \{0\} \longrightarrow \mathbb{N}$ be the euclidean size (degree) function. Write R^{\times} for the invertible elements of *R*. Pick the correct statements from below.
 - (A) $R = R^{\times} \cup \{0\}.$
 - (B) There exists $a \in R \setminus (R^{\times} \cup \{0\})$ such that $d(a) = \inf\{d(r) \mid r \in R \setminus (R^{\times} \cup \{0\})\}$.
 - (C) With *a* defined as above, for all $r \in R$, there exists $u \in R^{\times} \cup \{0\}$ such that *a* divides (r u).
 - (D) With *a* defined as above, the ideal generated by *a* is a maximal ideal.
- (3) Let X be a compact topological space. Let $f : X \longrightarrow \mathbb{R}$ be a function satisfying $f^{-1}([n, \infty))$ is closed for all $n \in \mathbb{N}$. Pick the correct statements from below.
 - (A) f is continuous.
 - (B) f(U) is open for each open subset U of X.
 - (C) f(U) is closed for each closed subset U of X.
 - (D) f is bounded above.
- (4) Let $f : [0,1] \longrightarrow \mathbb{R}$ be a continuous function and $E \subseteq [0,1]$. Which of the following are true?
 - (A) If *E* is closed, then f(E) is closed.
 - (B) If E is open, then f(E) is open.
 - (C) If *E* is a countable union of closed sets, then f(E) is a countable union of closed sets.
 - (D) If f injective and E is a countable intersection of open sets, then f(E) is a countable intersection of open sets.
- (5) Consider the real matrix

$$A = \begin{pmatrix} \lambda & 2 \\ 3 & 5 \end{pmatrix}.$$

Assume that -1 is an eigenvalue of A. Which of the following are true?

- (A) The other eigenvalue is in $\mathbb{C} \setminus \mathbb{R}$.
- (B) $A + I_2$ is singular.
- (C) $\lambda = 1$.
- (D) Trace of A is 5.
- (6) Let a_n, n ≥ 1, be a sequence of positive real numbers such that a_n → ∞ as n → ∞. Then which of the following are true?

(A) There exists a natural number M such that

$$\sum_{n=1}^{\infty} \frac{1}{(a_n)^M} \in \mathbb{R}.$$

(B)

$$\sum_{n=1}^{\infty} \frac{1}{(n^2 a_n)} \in \mathbb{R}$$

 $\sum_{n=1}^{\infty} \frac{1}{(na_n)} \in \mathbb{R}.$

(C)

(D) For all positive real numbers R,

$$\sum_{n=1}^{\infty} \frac{R^n}{(a_n)^n} \in \mathbb{R}.$$

- (7) Let A be the ring of all entire functions under point-wise addition and multiplication. Then which of the following are true?
 - (A) A does not have non-zero nilpotent elements.
 - (B) In the group of the units of A (under multiplication), every element other than I has infinite order.
 - (C) For every $f \in A$, there is a sequence of polynomials which converges to f uniformly on compact sets.
 - (D) The ideal generated by z and $\sin z$ is principal.
- (8) Which of the following groups are cyclic?
 - (A) $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/9\mathbb{Z}$
 - (B) $\mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/9\mathbb{Z}$
 - (C) Every group of order 18.
 - (D) $(\mathbb{Q}^{\times}, \cdot)$
- (9) Let p, q be distinct prime numbers and let ζ_p, ζ_q denote (any) primitive p-th and q-th roots of unity, respectively. Choose all the correct statements.
 - (A) $\zeta_{13} \notin \mathbb{Q}(\zeta_{31})$.
 - (B) If *p* divides q 1, then $\zeta_p \in \mathbb{Q}(\zeta_q)$.
 - (C) If $\zeta_p \in \mathbb{Q}(\zeta_q)$, then p-1 divides q-1.
- (D) If there exists a field homomorphism $\mathbb{Q}(\zeta_p) \longrightarrow \mathbb{Q}(\zeta_q)$, then p-1 divides q-1. (10) Let $f, g : \mathbb{R}^2 \longrightarrow \mathbb{R}$ be functions. Let $F = (f, g) : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$. Assume that F is infinitely differentiable and that F(0,0) = (0,0). Suppose further that the function $fg : \mathbb{R}^2 \longrightarrow \mathbb{R}$ is everywhere non-negative. Then
 - (A) $f_x(0,0) = 0, f_y(0,0) = 0.$
 - (B) $g_x(0,0) = 0, g_u(0,0) = 0.$
 - (C) The image of *F* is not dense in \mathbb{R}^2 .
 - (D) det J(0, 0) = 0 where J is the matrix of first partial derivatives (i.e., the jacobian matrix).

PART B

(11) Let $f : \mathbb{R}_{\geq 0} \longrightarrow \mathbb{R}$ be the function

$$f(x) = \begin{cases} 1, & x = 0\\ x^{-x}, & x > 0 \end{cases}$$

Determine whether the following statement is true:

$$\int_0^1 f(x) \mathrm{d}x = \sum_{i=0}^\infty n^{-n}.$$

- (12) (A) (3 marks) Let G be a group such that $|G| = p^a d$ with $a \ge 1$ and (p, d) = 1. Let P be a Sylow *p*-subgroup and let *Q* be any *p*-subgroup of *G* such that *Q* is not a subgroup of *P*. Show that PQ is not a subgroup of G.
 - (B) (7 marks) Let Γ be a group that is the direct product of its Sylow subgroups. Show that every subgroup of Γ also satisfies the same property.
- (13) (A) (5 marks) Let $n \ge 2$ be an integer. Let V be the \mathbb{R} -vector-space of homogeneous real polynomials in three variables X, Y, Z of degree n. Let p = (1, 0, 0). Let

$$W = \{ f \in V \mid f(p) = \frac{\partial f}{\partial X}(p) \}$$

Determine the dimension of V/W.

(B) (5 marks) A linear transformation $T : \mathbb{R}^9 \longrightarrow \mathbb{R}^9$ is defined on the standard basis e_1, \ldots, e_9 by

$$Te_i = e_{i-1}, \quad i = 3, ..., 9$$

 $Te_2 = e_3$
 $Te_1 = e_1 + e_3 + e_8.$

Determine the nullity of T.

- (14) Let *F* be a field and *R* a subring of *F* that is not a field. Let *x* be a variable. Let $S = \{a_0 + a_1x + \dots + a_nx^n \mid n \ge 0 \text{ and } a_0 \in R, a_1, \dots, a_n, \in F\}.$
 - (A) (2 marks) Show that, with the natural operations of addition and multiplication of polynomials, *S* is an integral domain.
 - (B) (4 marks) Let $I = \{f(x) \in S | f(0) = 0\}$. Determine whether *I* is a prime ideal.
 - (C) (4 marks) Determine whether S is a PID.
- (15) (A) (6 marks) Let $f, g : [0,1] \mapsto \mathbb{R}$ be monotonically increasing continuous functions. Show that

$$\left(\int_{0}^{1} f(x)dx\right)\left(\int_{0}^{1} g(x)dx\right) \le \int_{0}^{1} f(x)g(x)dx$$

e integrals)

(Hint: try double integrals.)

- (B) (4 marks) Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be an infinitely differentiable function such that f(1) = f(0) = 0. Also, suppose that for some n > 0, the first n derivatives of f vanish at zero. Then prove that for the (n + 1)th derivative of f, $f^{(n+1)}(x) = 0$ for some $x \in (0, 1)$.
- (16) (A) (5 marks) Consider the eucliean space \mathbb{R}^n with the usual norm and dot product. Let $x, y \in \mathbb{R}^n$ be such that

$$\|\mathbf{x} + t\mathbf{y}\| \ge \|\mathbf{x}\|$$
, for all $t \in \mathbb{R}$.

Show that $\mathbf{x} \cdot \mathbf{y} = 0$.

(B) (5 marks) Consider the vector field $\vec{v} = (v_x, v_y)$ (with components (v_x, v_y)) on \mathbb{R}^2 :

$$v_x(x,y) = x - y, v_y(x,y) = y + x$$

Compute the line integral of \vec{v} along the unit circle (counterclockwise). Is there a function f such that $\vec{v} = \text{grad} f$?

- (17*) Denote by V the \mathbb{Q} -vector-space $\mathbb{Q}[X]$ (polynomial ring in one variable X). Show that V* is not isomorphic to V.
- (18*) Let f be a non-constant entire function with f(0) = 0. Let u and v be the real and imaginary parts of f respectively. Let R > 0 and

$$B = \sup\{u(z) : |z| = R\}.$$

- (A) (2 marks) Show that B > 0.
- (B) (2 marks) Consider the function

$$F(z) \coloneqq \frac{f(z)}{z(2B - f(z))}.$$

Show that *F* is analytic on the open ball with radius *R* and continuous on the boundary $\{z : |z| = R\}$.

- (C) (3 marks) Show that $\sup\{|F(z)| : |z| = R\} \le \frac{1}{R}$.
- (D) (3 marks) Show that

$$\sup\left\{|f(z)|:|z|=\frac{R}{2}\right\}\leq 2B.$$

- (19*) Let U(n) be the group of $n \times n$ unitary complex matrices. Let $P \subset U(n)$ be the set of all finite order elements of U(n), that is, $P = \{X \in U(n) \mid X^m = 1 \text{ for some } m \ge 1\}$. Show that P is dense in U(n).
- (20*) Let A be a non-trivial subgroup of \mathbb{R} generated by finitely many elements. Let r be a real number such that $x \longrightarrow rx$ is an automorphism of A. Show that r and r^{-1} are zeros of monic polynomials with integer coefficients.