CHENNAI MATHEMATICAL INSTITUTE

Postgraduate Programme in Mathematics
MSc/PhD Entrance Examination
7th May 2023

Part A

(1) Let R be an integral domain containing \mathbb{C} such that it is a finite-dimensional \mathbb{C}-vector-space. Pick the correct statement(s) from below.
(A) For every $a \in R$, the set $\left\{1, a, a^{2}, \ldots\right\}$ is linearly dependent over \mathbb{C}.
(B) R is a field.
(C) $R=\mathbb{C}$.
(D) The transcendence degree of R over \mathbb{C} is 1 .
(2) Let R be a euclidean domain that is not a field. Let $d: R \backslash\{0\} \longrightarrow \mathbb{N}$ be the euclidean size (degree) function. Write R^{\times}for the invertible elements of R. Pick the correct statements from below.
(A) $R=R^{\times} \cup\{0\}$.
(B) There exists $a \in R \backslash\left(R^{\times} \cup\{0\}\right)$ such that $d(a)=\inf \left\{d(r) \mid r \in R \backslash\left(R^{\times} \cup\{0\}\right)\right\}$.
(C) With a defined as above, for all $r \in R$, there exists $u \in R^{\times} \cup\{0\}$ such that a divides $(r-u)$.
(D) With a defined as above, the ideal generated by a is a maximal ideal.
(3) Let X be a compact topological space. Let $f: X \longrightarrow \mathbb{R}$ be a function satisfying $f^{-1}([n, \infty))$ is closed for all $n \in \mathbb{N}$. Pick the correct statements from below.
(A) f is continuous.
(B) $f(U)$ is open for each open subset U of X.
(C) $f(U)$ is closed for each closed subset U of X.
(D) f is bounded above.
(4) Let $f:[0,1] \longrightarrow \mathbb{R}$ be a continuous function and $E \subseteq[0,1]$. Which of the following are true?
(A) If E is closed, then $f(E)$ is closed.
(B) If E is open, then $f(E)$ is open.
(C) If E is a countable union of closed sets, then $f(E)$ is a countable union of closed sets.
(D) If f injective and E is a countable intersection of open sets, then $f(E)$ is a countable intersection of open sets.
(5) Consider the real matrix

$$
A=\left(\begin{array}{ll}
\lambda & 2 \\
3 & 5
\end{array}\right) .
$$

Assume that -1 is an eigenvalue of A. Which of the following are true?
(A) The other eigenvalue is in $\mathbb{C} \backslash \mathbb{R}$.
(B) $A+I_{2}$ is singular.
(C) $\lambda=1$.
(D) Trace of A is 5 .
(6) Let $a_{n}, n \geq 1$, be a sequence of positive real numbers such that $a_{n} \longrightarrow \infty$ as $n \longrightarrow \infty$. Then which of the following are true?
(A) There exists a natural number M such that

$$
\sum_{n=1}^{\infty} \frac{1}{\left(a_{n}\right)^{M}} \in \mathbb{R}
$$

(B)

$$
\sum_{n=1}^{\infty} \frac{1}{\left(n^{2} a_{n}\right)} \in \mathbb{R}
$$

(C)

$$
\sum_{n=1}^{\infty} \frac{1}{\substack{\left.n a_{n}\right) \\ 1}} \in \mathbb{R} .
$$

(D) For all positive real numbers R,

$$
\sum_{n=1}^{\infty} \frac{R^{n}}{\left(a_{n}\right)^{n}} \in \mathbb{R}
$$

(7) Let A be the ring of all entire functions under point-wise addition and multiplication. Then which of the following are true?
(A) A does not have non-zero nilpotent elements.
(B) In the group of the units of A (under multiplication), every element other than 1 has infinite order.
(C) For every $f \in A$, there is a sequence of polynomials which converges to f uniformly on compact sets.
(D) The ideal generated by z and $\sin z$ is principal.
(8) Which of the following groups are cyclic?
(A) $\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 9 \mathbb{Z}$
(B) $\mathbb{Z} / 3 \mathbb{Z} \oplus \mathbb{Z} / 9 \mathbb{Z}$
(C) Every group of order 18 .
(D) $\left(\mathbb{Q}^{\times}, \cdot\right)$
(9) Let p, q be distinct prime numbers and let ζ_{p}, ζ_{q} denote (any) primitive p-th and q-th roots of unity, respectively. Choose all the correct statements.
(A) $\zeta_{13} \notin \mathbb{Q}\left(\zeta_{31}\right)$.
(B) If p divides $q-1$, then $\zeta_{p} \in \mathbb{Q}\left(\zeta_{q}\right)$.
(C) If $\zeta_{p} \in \mathbb{Q}\left(\zeta_{q}\right)$, then $p-1$ divides $q-1$.
(D) If there exists a field homomorphism $\mathbb{Q}\left(\zeta_{p}\right) \longrightarrow \mathbb{Q}\left(\zeta_{q}\right)$, then $p-1$ divides $q-1$.
(10) Let $f, g: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ be functions. Let $F=(f, g): \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$. Assume that F is infinitely differentiable and that $F(0,0)=(0,0)$. Suppose further that the function $f g: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ is everywhere non-negative. Then
(A) $f_{x}(0,0)=0, f_{y}(0,0)=0$.
(B) $g_{x}(0,0)=0, g_{y}(0,0)=0$.
(C) The image of F is not dense in \mathbb{R}^{2}.
(D) $\operatorname{det} J(0,0)=0$ where J is the matrix of first partial derivatives (i.e., the jacobian matrix).

Part B

(11) Let $f: \mathbb{R}_{\geq 0} \longrightarrow \mathbb{R}$ be the function

$$
f(x)= \begin{cases}1, & x=0 \\ x^{-x}, & x>0\end{cases}
$$

Determine whether the following statement is true:

$$
\int_{0}^{1} f(x) \mathrm{d} x=\sum_{i=0}^{\infty} n^{-n}
$$

(12) (A) (3 marks) Let G be a group such that $|G|=p^{a} d$ with $a \geq 1$ and $(p, d)=1$. Let P be a Sylow p-subgroup and let Q be any p-subgroup of G such that Q is not a subgroup of P. Show that $P Q$ is not a subgroup of G.
(B) (7 marks) Let Γ be a group that is the direct product of its Sylow subgroups. Show that every subgroup of Γ also satisfies the same property.
(13) (A) (5 marks) Let $n \geq 2$ be an integer. Let V be the \mathbb{R}-vector-space of homogeneous real polynomials in three variables X, Y, Z of degree n. Let $p=(1,0,0)$. Let

$$
W=\left\{f \in V \left\lvert\, f(p)=\frac{\partial f}{\partial X}(p)\right.\right\}
$$

Determine the dimension of V / W.
(B) (5 marks) A linear transformation $T: \mathbb{R}^{9} \longrightarrow \mathbb{R}^{9}$ is defined on the standard basis e_{1}, \ldots, e_{9} by

$$
\begin{aligned}
T e_{i} & =e_{i-1}, \quad i=3, \ldots, 9 \\
T e_{2} & =e_{3} \\
T e_{1} & =e_{1}+e_{3}+e_{8}
\end{aligned}
$$

Determine the nullity of T.
(14) Let F be a field and R a subring of F that is not a field. Let x be a variable. Let $S=\left\{a_{0}+a_{1} x+\cdots+\right.$ $a_{n} x^{n} \mid n \geq 0$ and $\left.a_{0} \in R, a_{1}, \cdots a_{n}, \in F\right\}$.
(A) (2 marks) Show that, with the natural operations of addition and multiplication of polynomials, S is an integral domain.
(B) (4 marks) Let $I=\{f(x) \in S \mid f(0)=0\}$. Determine whether I is a prime ideal.
(C) (4 marks) Determine whether S is a PID.
(15) (A) (6 marks) Let $f, g:[0,1] \mapsto \mathbb{R}$ be monotonically increasing continuous functions. Show that

$$
\left(\int_{0}^{1} f(x) d x\right)\left(\int_{0}^{1} g(x) d x\right) \leq \int_{0}^{1} f(x) g(x) d x
$$

(Hint: try double integrals.)
(B) (4 marks) Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be an infinitely differentiable function such that $f(1)=f(0)=0$. Also, suppose that for some $n>0$, the first n derivatives of f vanish at zero. Then prove that for the $(n+1)$ th derivative of $f, f^{(n+1)}(x)=0$ for some $x \in(0,1)$.
(16) (A) (5 marks) Consider the eucliean space \mathbb{R}^{n} with the usual norm and dot product. Let $\mathrm{x}, \mathrm{y} \in \mathbb{R}^{n}$ be such that

$$
\|\mathrm{x}+t \mathrm{y}\| \geq\|\mathrm{x}\|, \text { for all } t \in \mathbb{R}
$$

Show that $x \cdot y=0$.
(B) (5 marks) Consider the vector field $\vec{v}=\left(v_{x}, v_{y}\right)$ (with components $\left(v_{x}, v_{y}\right)$) on \mathbb{R}^{2} :

$$
v_{x}(x, y)=x-y, v_{y}(x, y)=y+x
$$

Compute the line integral of \vec{v} along the unit circle (counterclockwise). Is there a function f such that $\vec{v}=\operatorname{grad} f$?
$\left(17^{*}\right)$ Denote by V the \mathbb{Q}-vector-space $\mathbb{Q}[X]$ (polynomial ring in one variable X). Show that V^{*} is not isomorphic to V.
(18*) Let f be a non-constant entire function with $f(0)=0$. Let u and v be the real and imaginary parts of f respectively. Let $R>0$ and

$$
B=\sup \{u(z):|z|=R\}
$$

(A) (2 marks) Show that $B>0$.
(B) (2 marks) Consider the function

$$
F(z):=\frac{f(z)}{z(2 B-f(z))}
$$

Show that F is analytic on the open ball with radius R and continuous on the boundary $\{z$: $|z|=R\}$.
(C) (3 marks) Show that $\sup \{|F(z)|:|z|=R\} \leq \frac{1}{R}$.
(D) (3 marks) Show that

$$
\sup \left\{|f(z)|:|z|=\frac{R}{2}\right\} \leq 2 B
$$

(19*) Let $U(n)$ be the group of $n \times n$ unitary complex matrices. Let $P \subset U(n)$ be the set of all finite order elements of $U(n)$, that is, $P=\left\{X \in U(n) \mid X^{m}=1\right.$ for some $\left.m \geq 1\right\}$. Show that P is dense in $U(n)$.
$\left(20^{*}\right)$ Let A be a non-trivial subgroup of \mathbb{R} generated by finitely many elements. Let r be a real number such that $x \longrightarrow r x$ is an automorphism of A. Show that r and r^{-1} are zeros of monic polynomials with integer coefficients.

