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Part A

(1) A, B, C.
(2) B, C, D.
(3) D.
(4) A, C, D.
(5) B, D.
(6) B, D.
(7) A, C, D.
(8) A.
(9) A, C, D.
(10) C, D.

Part B

(11) For 0 < 𝑥 < 1, write 𝑥−𝑥 = 𝑒 ln𝑥−𝑥
=

∑∞
𝑛=0 1/𝑛! (−𝑥 ln𝑥)𝑛. It converges pointwise. Since the

terms in the summation are positive, by Dini’s theorem, the convergence is uniform.
Change order of the summation and the integral using uniform convergence. Now integrate

each term as follows to get the result.∫ 1

0
(−𝑥 ln𝑥)𝑛𝑑𝑥 =

∫ ∞

0
𝑢𝑛𝑒−(𝑛+1)𝑢𝑑𝑢 =

1
(𝑛 + 1)𝑛+1

∫ ∞

0
𝑣𝑛𝑒−𝑣𝑑𝑢 = 𝑛!

1
(𝑛 + 1)𝑛+1 .

(First equality by substitution𝑢 = − ln𝑥 , secondby (𝑛+1)𝑢 = 𝑣, and thenby repeated integration
by parts.)

(12) (A) If 𝑃𝑄 were a group, then, its order would be |𝑃 | |𝑄 |/|𝑃 ∩𝑄 |.
Note that 𝑃 ∩ 𝑄 ⊂ 𝑄. If 𝑃 ∩ 𝑄 = 𝑄, then 𝑄 ⊂ 𝑃 , a contradiction. If 𝑃 ∩ 𝑄 ⊄ 𝑄, then
|𝑄 |/|𝑃 ∩𝑄 | = 𝑝𝑒 for some 𝑒 ≥ 1, so 𝑃𝑄 is a 𝑝-group bigger than 𝑃 , a contradiction.

(B) The condition on Γ implies that all Sylow subgroups are normal and hence unique.
Write |Γ | = 𝑝

𝑒1
1 · · · 𝑝𝑒𝑟𝑟 with 𝑒𝑖 > 0 for each 1 ≤ 𝑖 ≤ 𝑟 . Write |𝐻 | = 𝑝

𝑓1
1 · · · 𝑝 𝑓𝑟

𝑟 with 𝑓𝑖 ≥ 0 for
each 1 ≤ 𝑖 ≤ 𝑟 . For 1 ≤ 𝑖 ≤ 𝑟 , let 𝑃𝑖 be the Sylow 𝑝𝑖-subgroup of Γ. Then 𝑃𝑖 ∩ 𝐻 = ⟨1⟩ or
is a 𝑝𝑖-subgroup of𝐻 . Conversely, if 𝑓𝑖 > 0, then every 𝑝𝑖-subgroup of𝐻 is inside 𝑃𝑖 , so is
inside 𝑃𝑖 ∩ 𝐻 . Hence if 𝑓𝑖 > 0, then 𝑃𝑖 ∩ 𝐻 is the unique Sylow 𝑝𝑖-subgroup of𝐻 .
Now consider the group homomorphism∏

𝑖

(𝑃𝑖 ∩ 𝐻 ) −→ 𝐻, (𝑔1, . . . , 𝑔𝑟 ) ↦→ 𝑔1 · · ·𝑔𝑟 .

(This indeed is a group homomorphism.) The orders of the groups on the two sides are the
same, so it suffices to show that the homomorphism is injective. Suppose that𝑔1 · · ·𝑔𝑟 = 1.
Then 𝑔1 = (𝑔2 · · ·𝑔𝑟 )−1 ∈ 𝑃1 ∩ 𝑃2 · · · 𝑃𝑟 = ⟨1⟩, so 𝑔1 = 1. Repeatedly doing this, we see that
𝑔𝑖 = 1 for each 𝑖.

(13) (A) Write 𝑓 = 𝑎𝑋𝑛 + 𝑔 where 𝑔 is a homogeneous polynomial of degree 𝑛 that does have𝑋𝑛 as
its term. Then 𝑓 (𝑝) = 𝑎. Moreover,

𝜕𝑓

𝜕𝑋
= 𝑎𝑛𝑋𝑛−1 + 𝜕𝑔

𝜕𝑋
so

𝜕𝑓

𝜕𝑋
(𝑝) = 𝑎𝑛.

Hence 𝑎 = 𝑎𝑛, so 𝑎 = 0. Hence dim𝑉 /𝑊 = 1.
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(B) Let𝑉 be the subspaceofR9 spannedby𝑒2, 𝑒3, . . . , 𝑒9 and𝑊 the subspace spannedby𝑒2, 𝑒3, . . . , 𝑒8.
It is clear that 𝑇 (𝑉 ) = 𝑊 . In greater detail, by the formulas defining 𝑇 , 𝑇𝑒𝑖 ∈ 𝑊 for
𝑖 = 2, . . . , 9, whence 𝑇 (𝑉 ) ⊂ 𝑊 . Since the elements spanning𝑊 occur in 𝑇 (𝑉 ), we get
𝑇 (𝑉 ) = 𝑊 . Since R9 is spanned by𝑉 and 𝑒1, it follows that𝑇 (R9) is spanned by𝑇 (𝑉 ) and
𝑇𝑒1. In otherwords𝑇 (R9) is the linear span of𝑊 and 𝑒1+𝑒3+𝑒8. Since 𝑒1 ∉𝑊 , it follows that
𝑇𝑒1 = 𝑒1+𝑒3+𝑒8 ∉𝑊 . Thus𝑊 +R𝑇𝑒1 =𝑊 ⊕R𝑇𝑒1, whencedim𝑇 (R9) = dim𝑊 +1 = 7+1 = 8.
The nullity of𝑇 is therefore 1 by the rank-nullity theorem.

(14) (A) Can be checked directly.
(B) 𝐼 is a prime ideal. In fact, 𝐼 = ker𝜙 where 𝜙 : 𝑆 → 𝑅 is the surjective ring map 𝜙 (𝑓 (𝑥)) =

𝑓 (0).
(C) 𝐼 is a non-zero prime ideal that is not maximal. Hence 𝑆 is not a PID.

(15) (A) We have (𝑓 (𝑥) − 𝑓 (𝑦)) (𝑔(𝑥) − 𝑔(𝑦)) ≥ 0 for all 𝑥,𝑦 ∈ [0, 1]. So the double integral∫ ∫
[0,1]×[0,1]

(𝑓 (𝑥) − 𝑓 (𝑦)) (𝑔(𝑥) − 𝑔(𝑦)) 𝑑𝑥𝑑𝑦 ≥ 0.

Iterating and expanding we get the inequality.
(B) ByRolle’sTheorem, there exists𝑦1 ∈ (0, 1) such that 𝑓 ′(𝑦1) = 0. Since 𝑓 ′(0) = 0 (byhypothe-

sis), we have, once again by Rolle’sTheorem, an element𝑦2 ∈ (0, 𝑦1) such that 𝑓 (2) (𝑦2) = 0.
If 𝑛 = 1, we are done. Assume 𝑛 > 1 and assume, by way of induction, that there exists
𝑦 ∈ (0, 1) such that 𝑓 (𝑛) (𝑦) = 0. Since 𝑓 (𝑛) (0) = 0, one more application of Rolle’s Theo-
rem gives us an 𝑥 ∈ (0, 𝑦) ⊂ (0, 1) such that 𝑓 (𝑛+1) (𝑥) = 0.

(16) (A) For 𝑡 ∈ Rwe have, by squaring both sides of the given inequality of non-negative numbers,

(x + 𝑡y) · (x + 𝑡y) ≥ x · x

whence
∥x∥2 + 2𝑡 (x · y) + 𝑡2∥y∥2 ≥ ∥x∥2

which means
2𝑡 (x · y) + 𝑡2∥y|2 ≥ 0. (∗)

For 𝑡 > 0 this yields 2x · y ≥ −𝑡 ∥y∥2, and letting 𝑡 −→ 0+, we get x · y ≥ 0. For 𝑡 < 0, (∗)
implies 2x · y ≤ −𝑡 ∥y∥2, whence, letting 𝑡 −→ 0−, we get x · y ≤ 0. This gives the result.

(B) Parametrise the circle as𝛾 : [0, 1] −→ R2,

𝛾 (𝑡) = (𝛾𝑥 (𝑡), 𝛾𝑦 (𝑡)) = (cos 2𝜋𝑡, sin 2𝜋𝑡)

Then, by definition, the required line integral is∫ 1

0
{𝑣𝑥 (cos 2𝜋𝑡, sin 2𝜋𝑡))𝑑𝛾𝑥 (𝑡)

𝑑𝑡
+ 𝑣𝑦 (cos 2𝜋𝑡, sin 2𝜋𝑡)

𝑑𝛾𝑦 (𝑡)
𝑑𝑡

}𝑑𝑡

=

∫ 1

0
2𝜋{−(cos 2𝜋𝑡 − sin 2𝜋𝑡) sin 2𝜋𝑡 + (sin 2𝜋𝑡 + cos 2𝜋𝑡) cos 2𝜋𝑡

=

∫ 1

0
2𝜋{sin2 2𝜋𝑡) + cos2 2𝜋𝑡}𝑑𝑡 = 2𝜋

On the other hand, if ®𝑣 were a gradient, this line integral would vanish, so there is no func-
tion such that ®𝑣 = 𝑔𝑟𝑎𝑑 𝑓 .

(17∗) {1, 𝑋, 𝑋 2, . . . , } is aQ-basis of𝑉 . EveryQ-linear map from𝑉 toQ is determined by what it does
to the above basis. I.e., 𝑉 ∗ as a set is the same as the set of functions from N to Q. Hence 𝑉 ∗

is an uncountable set, and, therefore, it cannot have a countable basis over Q. Hence𝑉 ∗ is not
isomorphic to𝑉 .

(18∗) (A) By openmapping theorem, a nhd around zero will go to a nhd around zero and hencemax-
imummodulus for𝑈 ensures positivity.

(B) The real part of 𝑓 is at most 𝐵, hence real part of 2𝐵 − 𝑓 does not vanish on the closed ball.
(C) On the boundary, |2𝐵 − 𝑓 (𝑧) |2 = (2𝐵 −𝑈 )2 +𝑉 2 ≥ 𝑈 2 +𝑉 2 = |𝑓 |2.
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(D) Applying maximummodulus to note that for any𝑤 in the interior,

| 𝑓 (𝑤)
𝑤 (2𝐵 − 𝑓 (𝑤)) | ≤

1
𝑅

|𝑓 (𝑤) | ≤ |𝑤 |
𝑅

(2𝐵 + |𝑓 (𝑤) |)

|𝑓 (𝑤) | ≤ 2|𝑤 |
𝑅 − |𝑤 |𝐵

For |𝑤 | = 𝑅/2, we have |𝑓 (𝑤) | ≤ 2𝐵.
(19∗) When𝑛 = 1, the statement is valid since𝑈 (1) is the group of unit complex numbers and 𝑃 equals

set 𝜇 of all the roots of unity {𝑒2𝜋𝑖𝑡 | 𝑡 ∈ Q}.
Now consider any 𝑛 ≥ 1. The diagonal subgroup 𝑇 ⊂ 𝑈 (𝑛) equals 𝑈 (1) × · · · × 𝑈 (1) and

so 𝑃 ∩ 𝑇 = 𝜇 × · · · × 𝜇 (𝑛 factors) is dense in 𝑇 . Now let 𝑋 ∈ 𝑈 (𝑛) and let 𝑉 ⊂ 𝑋 be any
open neighbourhood of𝑋 . There exists a unitary matrix𝐴 such that𝐴𝑋𝐴−1 = 𝐴𝑋𝐴𝑡 ∈ 𝑈 (𝑛) is
diagonal. Choose such an𝐴. Now the set𝑊 := 𝐴𝑉𝐴𝑡 = {𝐴𝑌𝐴𝑡 | 𝑌 ∈ 𝑉 } is an open subset of
𝑈 (𝑛). Since𝑊 ∩𝑇 is a non-empty open set in𝑇 and since 𝑃 ∩𝑇 is dense in𝑇 , there exists a finite
order element 𝐵 ∈𝑊 ∩𝑇 . It follows that𝐴−1𝐵𝐴 ∈ 𝑉 has finite order.

(20∗) Since𝐴 ⊂ R,𝐴 has no nontrivial finite order element. Since𝐴 is also a finitely generated abelian
group, it is isomorphic to Z𝑛 for some 𝑛 ≥ 1.
Let 𝜌 : 𝐴 −→ 𝐴 be the endomorphism of 𝐴 defined by multiplication by 𝑟 . Thus 𝜌 (𝑎) = 𝑟𝑎

and 𝜌𝑘 (𝑎) = 𝑟𝑘𝑎 for all 𝑎 ∈ 𝐴 and 𝑘 ≥ 1. The matrix of 𝜌 with respect to a basis of𝐴 has integer
entries and with determinant equal to = ±1.
Note that 𝜌𝑘 (𝑎) = 𝑟𝑘𝑎 for all 𝑎 ∈ 𝐴. Suppose that 𝑃 (𝑇 ) = 𝑇𝑛 + 𝑐1𝑇

𝑛−1 + · · · + 𝑐𝑛 be the
characteristic polynomial of 𝜌. Then0 = 𝑃 (𝜌)𝑎 = 𝑃 (𝑟 ) ·𝑎 for all𝑎 ∈ 𝐴. Choosing𝑎 ∈ 𝐴 to benon-
zero,we see that𝑃 (𝑟 ) = 0. Since𝑃 (𝑇 ) ismonicwith integer coefficients, 𝑟 is an algebraic integer.
Since the constant term of 𝑃 (𝑇 ) equals (−1)𝑛 det(𝜌) = ±1, 𝑟−1 is also an algebraic integer. (Or
apply the same argument to 𝑟−1 to arrive at the same conclusion.)
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