CHENNAI MATHEMATICAL INSTITUTE Postgraduate Programme in Mathematics MSc/PhD Entrance Examination 22nd May 2022

Part A

A, C.
D.
A.
A.
A.
B, C, D.
B, C.
A, D.
B, C, D.
B, C, D.
B, C, D.
B, C.
B, C, D.

Part B

(11) (A) Multiplying by the transpose, we get

$$3 = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} A^{t} A \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \lambda^{2} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = 3\lambda^{2}$$

so $\lambda = \pm 1$.

(B) Similarly,

$$\lambda(x+y+z) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \lambda \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} A^t A \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} = 0$$

so x + y + z = 0 since $\lambda \neq 0$.

(12) The ratio above can be expressed as

$$\frac{\frac{1}{n}\sum_{j=1}^{n}(\frac{j}{n})^{a}}{(1+\frac{1}{n})^{a-1}\cdot\frac{1}{n}\sum_{j=1}^{n}(a+\frac{j}{n})}$$

In the limit, the numerator becomes the integral $\int_0^1 x^a dx$. Likewise, the denominator tends to $\int_0^1 (a+x)dx$. Setting S(a) = 1/60 gives the quadratic equation $2a^2 + 3a - 119 = 0$. So the answer is -3/2.

(13) By way of contradiction, let $\alpha \in V \setminus f(U)$. Find a countable collection of nested closed balls $\{C_n\}$ around α whose intersection is $\{\alpha\}$. Then

$$\cap_n f^{-1}(C_n) = \emptyset.$$

But then $f^{-1}(C_n) = \phi$ for some *n* and hence the interior of C_n contains α and is in $V \setminus f(U)$. So $V \setminus f(U)$ is open, it is also closed, contradicting the hypothesis that *V* is connected. Thus f(U) = V.

- (14) (A) By way of contradiction, assume that p and q are distinct prime numbers that divide |G|. Then G has subgroups of orders p and q, so such an N cannot exist. Hence G is a finite p-group for some p.
 - (B) Hence the centre $Z(G) \neq \{1_G\}$. Since Z(G) is abelian, and a normal subgroup of G and N a subgroup of Z(G), it follows that N is a normal subgroup of G.
- (15) Chose $\alpha \in \mathbb{C}$ such that $\Re(\alpha) < 0$ and $\Re(\alpha f'(1)) > 0$. This is possible if $f'(1) \notin \mathbb{R}$. Since $f(D) \subset D$, for small t > 0

$$\Re \frac{f(1+t\alpha)-1}{t} < 0$$

and hence as $t \to 0^+$, $\Re(\alpha f'(1)) \le 0$. For the second part, note that by Schwartz lemma and 0 < t < 1, $|f(t)| \le t$ and hence

$$\frac{|f(t) - 1|}{1 - t} \ge \frac{1 - |f(t)|}{1 - t} \ge 1$$

and as $t \longrightarrow 1$, we have the inequality.

(16) Since every finite extension of a finite field is Galois, *F* is infinite By way of contradiction, assume that $V = \bigcup_{i=1}^{r} V_i$. Pick $x \neq 0 \in V_1$ and $y \in V \setminus V_1$. Then there exists j > 1 such that $x + \alpha y \in V_j$ for infinitely many $\alpha \in F^{\times}$. Hence $y \in V_j$ and, so, $x \in V_j$. Therefore $V = \bigcup_{i=2}^{r} V_i$. Repeating this argument, we get a contradiction.

 (17^*) Fibre is

$$\mathbb{C}[X,Y]/(XY-1,X+\alpha Y-\beta).$$

If $\alpha = \beta = 0$, then it is the zero ring since $(XY - 1, X) = \mathbb{C}[X, Y]$. Otherwise,

 $\mathbb{C}[X,Y]/(XY-1,X+\alpha Y-\beta) \simeq \mathbb{C}[X]/(-(\alpha Y-\beta)Y-1) \simeq \mathbb{C}[Y]/((\alpha Y-\beta)Y+1)$

The equation $\alpha Y^2 - \beta Y + 1$ has at least one solution; it has exactly one solution if and only if $\beta^2 = 4\alpha$. Hence for n = 0, the answer is $\{(0,0)\}$. For each (α,β) with $\beta^2 = 4\alpha$, the fibre has exactly one prime ideal; for all other values of (α, β) , the fibre has exactly two prime ideals.

(18^{*}) (A) Consider the projection maps $\pi_i : Q \longrightarrow \mathbb{R}, (y_1, \ldots) \mapsto y_i$. Then

$$Q_2 = \bigcap_{i \ge 1} \pi_i^{-1}([0, \frac{1}{n}])$$

so it is a closed subset of *Q*. Since *Q* is compact by Tychonoff's theorem, Q_2 is compact.

- (B) The maps $(y_1, \ldots) \mapsto iy_i$ is continuous for each *i*, so *D* is continuous. It is bijective. Since *Q* is Hausdorff and Q_2 compact, D is continuous.
- (C) Take $L = \ell_2$ and $\mathbf{a} = (1, \frac{1}{2}, \dots, \frac{1}{n}, \dots)$. (Note that $Q_2 \subseteq \ell_2$.) (D) *D* is a homeomorphism and $S \circ D$ is continuous.
- (19^{*}) (A) is false since the polynomial $X^{12} p$ has two real roots.
 - (B) is a consequence of the fact that any degree 11 polynomial has a real root.
 - (C) If the group Aut(E) of all field automorphisms of *E* has odd order, then every embedding $E \longrightarrow \mathbb{C}$ is real. note that if σ is a complex embedding, then complex conjugation yields a nontrivial automorphism *E* of order 2.
- (20*) (A) $d_X(a,-a) = 2R$. Hence $2R/\lambda \le d_Y(f(a), f(-a)) \le L_R + 2$, so $L_R \ge 2R/\lambda 2$. $L_R =$ $d_Y(f(a), f(b)) \le \lambda d_X(a, b)$. Hence $d_X(a, b) \ge L_R/\lambda \ge 2R/\lambda^2 - 2/\lambda$.
 - (B) Note that $\overline{f}(C_1) = \overline{f}(C_2) = \overline{f}(C_R)$. Hence there exist such x_i as asserted. Since $\{f(x_1), f(x_2)\} \subseteq f(C_R)$. $\mathbb{S}^1 \times \{\frac{f(a)+\hat{f}(b)}{2}\}$, it follows that $d_Y(f(x_1), f(x_2)) \leq 2$.
 - (C) $d_Y(f(x_1), \tilde{f}(a)) \ge L_R/2$, so $d_X(x_1, a) \ge L_R/2\lambda \ge (R \lambda)/\lambda^2$. Similarly $d_X(x_2, a) \ge L_R/2\lambda \ge L_R/2\lambda$ $(R - \lambda)/\lambda^2$. Choose $a_i \in C_i$ be such that $d_X(a, a_i) = (R - \lambda)/\lambda^2$; Elementary trigonometric arguments show that for all $R \gg 0$, $d_X(a_1, a_2) > 2\lambda$. Hence $d_X(x_1, x_2) > 2\lambda$. Therefore $d_Y(f(x_1), f(x_2)) > 2.$
 - (D) There does not exist any bilipschitz map $X \longrightarrow Y$.