CHENNAI MATHEMATICAL INSTITUTE Postgraduate Programme in Mathematics MSc/PhD Entrance Examination 1st August 2021

Part A

A, B, D.
C.
B, C.
A, B.
A, B.
A, B.
B, D.
B, C, D.
A, C.
A, B, D.

PART B

(11) Write Z for the centre of G. If $Z \notin M$, then MZ > M and by maximality MZ = G. But then M is a normal subgroup of G, a contradiction. Conversely $\langle M, N \rangle = G$ by maximality. Also since M and *N* are abelian, we have

$$G = \langle M, N \rangle \subset C_G(M \cap N)$$

and hence $(M \cap N) \subset Z$.

- (12) $f(D) \cap D$ is open in D by Inverse mapping theorem. $f(D) \cap D$ is also closed in D. Let $z_n = f(x_n)$ be a sequence in $f(D) \cap D$ converging to $\alpha \in D$ with $x_n \in D$. Then $\alpha = f(\beta)$ for some $\beta \in D$. But the hypothesis ensures that $\beta \in D$. $f(D) \cap D$ is non-empty as 0 belongs to this. So $f(D) \cap D = D$.
- (13) Union of connected sets having a point in common is connected. So A is connected. Closure of a connected set is connected. So \overline{A} is connected and, hence, $\overline{A} \in S$ so $\overline{A} \subseteq A$.
- (14) Without loss of generality, we may assume that $\text{Image}(f) \subseteq (0, \infty)$. Let $\epsilon = 1$. There exists a positive integer N such that for all $x, x' \in [1, \infty)$ with $|x - x'| < \frac{1}{N}$, |f(x) - f(x')| < 1. Hence |f(n+1) - f(n)| < N for each positive integer *n*. Therefore f(n+1) < 1f(1) + nN for each positive integer *n*. Hence

$$\sum_{n\geq 1} \frac{1}{f(n)} \ge \sum_{n\geq 0} \frac{1}{f(1) + nN}$$

which is a divergent series.

- (15) On [0, 1] it is a continuous function. Need only show integral from 1 to infinity is finite. Change variable $x = y^{100}$, $dx = 100y^{99}dy$ the integral becomes $100 \int_{1}^{\infty} y^c e^{-y} dy$ for some c and if you take an integer N > c the integral is bounded by $\int_{-\infty}^{\infty} y^N e^{-y} dy$ which is finite.
- (16) False in both cases. Take $F = \mathbb{F}_3$ the finite field of order 3 and $I_1 = (x^2 + 1)$ and $I_2 = (x^2 + 2x + 1)$ 2). Both these are maximal ideals (check that the generating polynomials are irreducible since they have no roots) and hence the quotients R/I_1 , R/I_2 are both finite fields of order 9 and they isomorphic. But $I_1 \neq I_2$. If $F = \mathbb{R}$, then for every irreducible quadratic polynomial $f(X) \in R$, $R/(f(X)) \simeq \mathbb{C}.$
- (17^{*}) (A) Let v_1, v_2 be the columns of A; they form a basis of \mathbb{R}^2 . Let $u_1 = v_1/|v_1|$, $a = (u_1 \cdot v_2)$, $v_2' = (u_1 \cdot v_2)$ $v_2 - au_1$, $u_2 = v'_2/|v'_2|$. Since u_1 and u_2 form an orthonormal basis of \mathbb{R}^2 , define A_o to be the matrix with columns u_1, u_2 . Define A_b to be the inverse of

$$\begin{bmatrix} \frac{1}{|v_1|} & \mathsf{O} \\ \mathsf{O} & 1 \end{bmatrix} \begin{bmatrix} 1 & -a \\ \mathsf{O} & 1 \end{bmatrix} \begin{bmatrix} 1 & \mathsf{O} \\ \mathsf{O} & \frac{1}{|v_2'|} \end{bmatrix}.$$

Then $A = A_o A_b$.

(B) Suppose $A'A'' = A'_1A''_1$, with $A', A'_1 \in O(2, \mathbb{R})$ and $A'', A''_1 \in B_+(2, \mathbb{R})$. Then $A''(A''_1)^{-1} \in A'_1A''_1$ $O(2, \mathbb{R})$. Note that

$$\begin{bmatrix} a & b \\ 0 & c \end{bmatrix} \begin{bmatrix} a' & b' \\ 0 & c' \end{bmatrix} = \begin{bmatrix} aa' & ab' + bc' \\ 0 & cc' \end{bmatrix} \in \mathcal{O}(2, \mathbb{R})$$

if and only if

$$\begin{bmatrix} a' & b' \\ 0 & c' \end{bmatrix} = \left(\begin{bmatrix} a & b \\ 0 & c \end{bmatrix} \right)^{-1}$$

Therefore $A'' = A_1''$, and, hence, $A' = A_1''$.

(C) By above, there is a well-defined function

$$\psi: \mathrm{GL}(2,\mathbb{R}) \longrightarrow \mathrm{O}(2,\mathbb{R}) \times \mathrm{B}_{+}(2,\mathbb{R}) \qquad A \mapsto (A_{o},A_{b})$$

that is the inverse of ϕ .

We first show that the map $A \mapsto (A_b)^{-1}$ is continuous. From the description of $(A_b)^{-1}$ given above, we see that its entries are rational functions of the entries of A, with non-zero denominators (since $A \in GL(2, \mathbb{R})$. Hence the map $A \mapsto (A_b)^{-1}$ is continuous. Hence the maps $A \longrightarrow A_o = A(A_b)^{-1}$ and $A \longrightarrow A_b$ are continuous. Therefore ψ is continuous. ϕ is continuous: The entries of A' and of A''.

- (18*) ϕ satisfies $T^{p^3} 1 = 0$. Hence the only eigenvalue of ϕ is 1. Let v_1 be an eigenvector for the eigenvalue 1. Then ϕ induces an invertible linear transformation of $V/\langle v_1 \rangle$; proceed by induction on dimension.
- (19*) (A) First, $[\mathbb{Q}(\zeta_5) : \mathbb{Q}] = 4$ since the polynomial $x^4 + x^3 + x^2 + x + 1$ is irreducible over \mathbb{Q} . Next, $[\mathbb{Q}(\sqrt[4]{2}) : \mathbb{Q}] = 5$ since $x^5 2$ is irreducible over \mathbb{Q} . For both use the Eisenstein criterion. So $[K : \mathbb{Q}]$ is divisible by both 4 and 5. On the other hand, we have $[K : \mathbb{Q}(\zeta_5)] \le 5$. So we conclude $[K : \mathbb{Q}] = 20$.
 - (B) If $\iota \in \mathbb{Q}(\zeta_5)$, then $\alpha := \iota \zeta_5 \in \mathbb{Q}(\zeta_5)$. Note that $\alpha^{20} = 1$ and $\alpha^n \neq 1$ for $1 \le n \le 19$. So α is a primitive 20th root of unity and it is contained in $\mathbb{Q}(\zeta_5)$. But we know that $[\mathbb{Q}(\zeta_5) : \mathbb{Q}] = 4$ and by the fact given in the hint, we have $[\mathbb{Q}(\alpha) : \mathbb{Q}] > 4$. So $\iota \notin \mathbb{Q}(\zeta_5)$.
 - (C) Suppose $\iota \in K$. Consider the tower $\mathbb{Q} \subset \mathbb{Q}(\zeta_5) \subset \mathbb{Q}(\zeta_5, \iota) \subset K$. The degree of the first extension is 4; the degree of the second extension is 2 (since $\iota \notin \mathbb{Q}(\zeta_5)$). So $[K : \mathbb{Q}]$ is divisible by 8. This is not possible since $[K : \mathbb{Q}] = 20$.

(20*) (A) Write
$$f(z) = \sum_{n \ge 0} a_n z^n$$
. Then

$$f(z) - 2zf(z) - z^{2}f(z) = a_{0} + a_{1}z + a_{2}z^{2} + a_{3}z^{3} + \cdots$$
$$- 2a_{0}z - 2a_{1}z^{2} - 2a_{2}z^{3} + \cdots$$
$$- a_{0}z^{2} - a_{1}z^{3} - a_{2}z^{4} + \cdots$$
$$= a_{0} + (a_{1} - 2a_{0})z$$

Let

$$g(z) = \frac{a_0 + (a_1 - 2a_0)z}{1 - 2z - z^2}$$

This is analytic in a neighbourhood of the origin. Let $\sum_{n\geq 0} b_n z^n$ be the Taylor series expansion of g(z) around 0. Then $(1 - 2z - z^2)f(z) = (1 - 2z - z^2)g(z)$, from which we see that $a_n = b_n$ for every n.

(B) Note that

$$g(z) = \frac{1}{1 - 2z - z^2}$$

Let γ_1, γ_2 be the roots of $1 - 2z - z^2$. Note that $\gamma_1 \neq \gamma_2$. Then there exist β_1, β_2 such that

$$g(z) = \frac{\beta_1}{z - \gamma_1} + \frac{\beta_2}{z - \gamma_2}$$

Therefore

$$g^{(n)}(z) = \frac{(-1)^n n! \beta_1}{(z-\gamma_1)^{n+1}} + \frac{(-1)^n n! \beta_2}{(z-\gamma_2)^{n+1}}.$$

Hence

$$a_n = -\frac{\beta_1}{\gamma_1^{n+1}} - \frac{\beta_2}{\gamma_2^{n+1}}.$$

Now replace β_i by $-\beta_i$ and γ_i by $\frac{1}{\gamma_i}$.