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Part B
(11) T is not Hausdorff; it is the co-finite topology on C. For any polynomial f , f−1(A) is a

closed set for every finite set A, so f is continuous.
(12)

∑
n≥0 anz

n is convergent on {z ∈ C : |z| < 1}.
For each real number ε > 0, there exists Nε such that for all n ≥ Nε, |an| < ε. Then

we can write

|F (z)| ≤ Cε +
∑
n≥Nε

ε|z|n = Cε +
ε|z|Nε

(1− |z|)

for some Cε ∈ R that does not depend on z. Hence for z ∈ C with |z| < 1, (1−|z|)|F (z)|
can be made to take values arbitrarily close to ε, for any ε > 0, by taking |z| −→ 1.

By way of contradiction assume that G = F . Let ζ ∈ C with |ζ| = 1 is a pole of G.
Let M be the order of the pole at ζ. Write

G(z) =
c−M

(z − ζ)M
+ · · ·+ c−1

(z − ζ)
+G1(z)

where G1(z) is an analytic function. As z −→ ζ, (1− |z|)|G(z)| = |(z− ζ)G(z)| exhibits
one of the following behaviours: if M > 1, then it approaches infinity; if M = 1 (which
implies that c−1 6= 0), it approaches c−1 6= 0. This is a contradiction.

(13) Assume that {|n| : n ∈ Z} is bounded. Let N be such that |n| ≤ N for every n ∈ Z. Let
x, y ∈ R. Without loss of generality, |x| ≥ |y|, and we want to show that |x+ y| ≤ |x|.

|x+ y|n ≤
n∑
r=0

|
(
n

r

)
||x|r|y|n−r

≤ (n+ 1)N |x|n for every n

Hence |x+ y| ≤ N
1
n (n+ 1)

1
n |x| for every n, so |x+ y| ≤ |x|.

(14) Write an =
[∫ 1

0 |f(x)|ndx
] 1
n

. Let M = sup{|f(x)| : 0 ≤ x ≤ 1}. Then an ≤M for every

n, so lim sup an ≤ M . Since [0, 1] is compact, for every ε > 0, there exists an interval
Iε ⊆ [0, 1] of positive length such that M − ε ≤ |f(x)| ≤M for every x ∈ Iε. Then

an ≥
[∫

Iε

|f(x)|ndx

] 1
n

≥ [(M − ε)n · length(Ie)]
1
n = (M − ε)(length(Ie))

1
n .

Hence lim inf an ≥M − ε for every ε > 0; therefore lim inf an ≥M , so lim an = M .
(15) Without loss of generality, we may assume that V 6= 0. Let M,N ∈ V be non-zero

elements. Let λ be an eigenvalue of NM−1. Then det(λM − N) = detM det(λIn −
NM−1) = 0. However, (λM −N) ∈ V , so λM −N = 0.
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(16) If p2 divides n, then there is a non-cyclic group Z/pZ× Z/pZ× Z/(n/p2)Z. There are
exactly pq such matrices, and they form a nonabelian group. If p1, . . . , pr are the distinct
prime divisors of n, then φ(n) =

∏t
i=1(pi − 1), which is coprime to n, by above.

(17∗) Let g ∈ G be of order 2. Then the minimal polynomial of g divides X2−1. If charF 6= 2,
then the minimal polynomial of g is X + 1 or X2− 1. In either case, g is diagonalizable
and the conjugacy class of g is determined by the number of −1s on the diagonal; there
must be at least one −1. Hence |X| = n. If charF = 2, then X2 − 1 = (X − 1)2, which
must be the minimal polynomial of g. (It cannot beX−1.) Hence g is not diagonalizable,
and the conjugacy class of g is determined by the number of 2× 2 Jordan blocks (with
eigenvalue 1). Hence |X| = bn2 c.

(18∗) Consider the sequences 2
(4n+1)π and 1

nπ . Both converge to 0, but f( 2
(4n+1)π ) = 1 and

f( 1
nπ ) = 0 for every n ≥ 1, so f does not extend to Y . Let h : X −→ X1, t 7→ (t, sin 1

t ).
It is a homeomorphism. Since X1 ⊆ [0, 1] × [−1, 1], Y1 is compact. Identifying X with
X1 using h, we get that Y1 is a compactification of X. Further, f = π2 ◦ h, where π2 is
the projection Y1 −→ R on to the second component. Note that f extends to the map
π2 (after identifying X with X1 using h).

(19∗) Let α, 3α, β3, . . . , βn be the roots of f , so f(0) = 3α2β3 · · ·βn. If f(0) = 1, then 1
3 =

α2β3 · · ·βn satisfies a monic irreducible polynomial g ∈ Z[X]. Since g is irreducible in
Q[X], g = (X − 1

3), which is a contradiction. Hence f(0) 6= 1.
Note that K = Q(α, 3α, β3, . . . , βn) and that every field automorphism of K permutes

these generators of K. Hence there are at most n! distinct field automorphisms of K,
so σ is of finite order, which we denote by m. Then α = σm(α) = σ(σm−1(α)) =
3(3m−1α) = 3mα), so α = 0.

(20∗) Since [0, x] is compact and f is continuous, one can use max, so g is well-defined. Note
that f is uniformly continuous, so for every ε > 0, there exists δ > 0 such that for every
x, y with |x−y| < δ |f(x)−f(y)| < ε. Let u < v < u+δ. Then f(u)−ε ≤ f(x) ≤ f(u)+ε
for every x ∈ [u, v], so g(v) ≤ g(u)+ε. On the other hand g(v) ≥ g(u), so |g(v)−g(v)| < ε.
Hence g is continuous.
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