CHENNAI MATHEMATICAL INSTITUTE Postgraduate Programme in Mathematics MSc/PhD Entrance Examination 15 May 2019

- (1) A, B.
- (2) D.
- (3) A, C.
- (4) C, D.
- (5) A, B, C.
- (6) B, C, D.
- (7) C.
- (8) C.
- (9) C, D.
- (10) 0.

Part B

- (11) \mathcal{T} is not Hausdorff; it is the co-finite topology on \mathbb{C} . For any polynomial $f, f^{-1}(A)$ is a closed set for every finite set A, so f is continuous.
- (12) $\sum_{n>0} a_n z^n$ is convergent on $\{z \in \mathbb{C} : |z| < 1\}$.

For each real number $\epsilon > 0$, there exists N_{ϵ} such that for all $n \ge N_{\epsilon}$, $|a_n| < \epsilon$. Then we can write

$$|F(z)| \le C_{\epsilon} + \sum_{n \ge N_{\epsilon}} \epsilon |z|^n = C_{\epsilon} + \frac{\epsilon |z|^{N_{\epsilon}}}{(1 - |z|)}$$

for some $C_{\epsilon} \in \mathbb{R}$ that does not depend on z. Hence for $z \in \mathbb{C}$ with |z| < 1, (1 - |z|)|F(z)|can be made to take values arbitrarily close to ϵ , for any $\epsilon > 0$, by taking $|z| \longrightarrow 1$.

By way of contradiction assume that G = F. Let $\zeta \in \mathbb{C}$ with $|\zeta| = 1$ is a pole of G. Let M be the order of the pole at ζ . Write

$$G(z) = \frac{c_{-M}}{(z-\zeta)^M} + \dots + \frac{c_{-1}}{(z-\zeta)} + G_1(z)$$

where $G_1(z)$ is an analytic function. As $z \to \zeta$, $(1 - |z|)|G(z)| = |(z - \zeta)G(z)|$ exhibits one of the following behaviours: if M > 1, then it approaches infinity; if M = 1 (which implies that $c_{-1} \neq 0$), it approaches $c_{-1} \neq 0$. This is a contradiction.

(13) Assume that $\{|n|: n \in \mathbb{Z}\}$ is bounded. Let N be such that $|n| \leq N$ for every $n \in \mathbb{Z}$. Let $x, y \in \mathbb{R}$. Without loss of generality, $|x| \geq |y|$, and we want to show that $|x + y| \leq |x|$.

$$\begin{aligned} |x+y|^n &\leq \sum_{r=0}^n |\binom{n}{r} ||x|^r |y|^{n-r} \\ &\leq (n+1)N|x|^n \quad \text{for every } n \end{aligned}$$

Hence $|x+y| \le N^{\frac{1}{n}}(n+1)^{\frac{1}{n}}|x|$ for every n, so $|x+y| \le |x|$.

(14) Write $a_n = \left[\int_0^1 |f(x)|^n dx\right]^{\frac{1}{n}}$. Let $M = \sup\{|f(x)| : 0 \le x \le 1\}$. Then $a_n \le M$ for every n, so $\limsup a_n \le M$. Since [0,1] is compact, for every $\epsilon > 0$, there exists an interval $I_{\epsilon} \subseteq [0,1]$ of positive length such that $M - \epsilon \le |f(x)| \le M$ for every $x \in I_{\epsilon}$. Then

$$a_n \ge \left[\int_{I_{\epsilon}} |f(x)|^n \mathrm{d}x\right]^{\frac{1}{n}} \ge \left[(M-\epsilon)^n \cdot \operatorname{length}(I_e)\right]^{\frac{1}{n}} = (M-\epsilon)(\operatorname{length}(I_e))^{\frac{1}{n}}.$$

Hence $\liminf a_n \ge M - \epsilon$ for every $\epsilon > 0$; therefore $\liminf a_n \ge M$, so $\lim a_n = M$.

(15) Without loss of generality, we may assume that $V \neq 0$. Let $M, N \in V$ be non-zero elements. Let λ be an eigenvalue of NM^{-1} . Then $\det(\lambda M - N) = \det M \det(\lambda I_n - NM^{-1}) = 0$. However, $(\lambda M - N) \in V$, so $\lambda M - N = 0$.

- (16) If p^2 divides n, then there is a non-cyclic group $\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/(n/p^2)\mathbb{Z}$. There are exactly pq such matrices, and they form a nonabelian group. If p_1, \ldots, p_r are the distinct prime divisors of n, then $\phi(n) = \prod_{i=1}^{t} (p_i 1)$, which is coprime to n, by above.
- (17*) Let $g \in G$ be of order 2. Then the minimal polynomial of g divides X^2-1 . If char $F \neq 2$, then the minimal polynomial of g is X + 1 or $X^2 1$. In either case, g is diagonalizable and the conjugacy class of g is determined by the number of -1s on the diagonal; there must be at least one -1. Hence |X| = n. If char F = 2, then $X^2 1 = (X 1)^2$, which must be the minimal polynomial of g. (It cannot be X-1.) Hence g is not diagonalizable, and the conjugacy class of g is determined by the number of 2×2 Jordan blocks (with eigenvalue 1). Hence $|X| = |\frac{n}{2}|$.
- eigenvalue 1). Hence $|X| = \lfloor \frac{n}{2} \rfloor$. (18*) Consider the sequences $\frac{2}{(4n+1)\pi}$ and $\frac{1}{n\pi}$. Both converge to 0, but $f(\frac{2}{(4n+1)\pi}) = 1$ and $f(\frac{1}{n\pi}) = 0$ for every $n \ge 1$, so f does not extend to Y. Let $h: X \longrightarrow X_1, t \mapsto (t, \sin \frac{1}{t})$. It is a homeomorphism. Since $X_1 \subseteq [0, 1] \times [-1, 1]$, Y_1 is compact. Identifying X with X_1 using h, we get that Y_1 is a compactification of X. Further, $f = \pi_2 \circ h$, where π_2 is the projection $Y_1 \longrightarrow \mathbb{R}$ on to the second component. Note that f extends to the map π_2 (after identifying X with X_1 using h).
- (19*) Let $\alpha, 3\alpha, \beta_3, \ldots, \beta_n$ be the roots of f, so $f(0) = 3\alpha^2\beta_3 \cdots \beta_n$. If f(0) = 1, then $\frac{1}{3} = \alpha^2\beta_3 \cdots \beta_n$ satisfies a monic irreducible polynomial $g \in \mathbb{Z}[X]$. Since g is irreducible in $\mathbb{Q}[X], g = (X \frac{1}{3})$, which is a contradiction. Hence $f(0) \neq 1$. Note that $K = \mathbb{Q}(\alpha, 3\alpha, \beta_2, \ldots, \beta_n)$ and that every field automorphism of K permutes

Note that $K = \mathbb{Q}(\alpha, 3\alpha, \beta_3, \dots, \beta_n)$ and that every field automorphism of K permutes these generators of K. Hence there are at most n! distinct field automorphisms of K, so σ is of finite order, which we denote by m. Then $\alpha = \sigma^m(\alpha) = \sigma(\sigma^{m-1}(\alpha)) =$ $3(3^{m-1}\alpha) = 3^m\alpha)$, so $\alpha = 0$.

(20*) Since [0, x] is compact and f is continuous, one can use max, so g is well-defined. Note that f is uniformly continuous, so for every $\epsilon > 0$, there exists $\delta > 0$ such that for every x, y with $|x-y| < \delta |f(x)-f(y)| < \epsilon$. Let $u < v < u+\delta$. Then $f(u)-\epsilon \leq f(x) \leq f(u)+\epsilon$ for every $x \in [u, v]$, so $g(v) \leq g(u)+\epsilon$. On the other hand $g(v) \geq g(u)$, so $|g(v)-g(v)| < \epsilon$. Hence g is continuous.