CHENNAI MATHEMATICAL INSTITUTE Postgraduate Programme in Mathematics MSc/PhD Entrance Examination 15 May 2018

Part A

- (1) A, D.
 (2) B, C, D.
 (3) B, D.
 (4) A, B, D.
 (5) A, B, D.
- (6) A, C, D. (6) A, C, D. (6) (6)
- (7) A, B, C.
- (8) C, D.
- (9) A, B, C.
- (10) 2.

Part B

(11) (A) Consider $r : \mathbb{R} \longrightarrow [0, 1]$

$$r(x) = \begin{cases} 0, & r < 0; \\ x, & r \in [0, 1]; \\ 1, & r > 1. \end{cases}$$

- (B) No. Every retract Y of $\mathbb R$ must be connected because the map r is continuous.
- (C) Every retract Y of \mathbb{R} is closed. To see this, consider $\phi : \mathbb{R} \longrightarrow \mathbb{R} \times \mathbb{R}, x \mapsto (r(x), x)$.
- Then $Y = \phi^{-1}$ (diagonal). Since \mathbb{R} is Hausdorff, the diagonal is closed, and so is Y. (12) Write

$$g_n(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{\xi^n}{\xi - z} d\xi.$$

Note that

$$g_n(z) = \begin{cases} 1, & n = 0, z = 0\\ 0, & n \neq 0, z = 0\\ z^n, & z \neq 0 \end{cases}$$

Hence

$$f(z) = \sum_{n=-N}^{n=N} a_n g_n(z) = \begin{cases} a_0, & z = 0; \\ F(z), & z \neq 0. \end{cases}$$

(13) Write $F_n = (-1)^n \frac{\int_0^1 \phi(t)t^n dt}{n!}$. Then $0 = \int_0^1 \phi(t)e^{-at} dt = \int_0^1 \phi(t) \left(\sum_{n=0}^\infty \frac{(-at)^n}{n!}\right) dt$ $= \lim_{N \to \infty} \int_0^1 \phi(t) \left(\sum_{n=0}^N \frac{(-at)^n}{n!}\right) dt$ $= \lim_{N \to \infty} \sum_{n=0}^N \int_0^1 \phi(t) \left(\frac{(-at)^n}{n!}\right) dt$ $= \sum_{n=0}^\infty F_n a^n$ Since $\sum_{n=0}^{\infty} F_n a^n = 0$ for every $a \in \mathbb{R}_+$, we see that $F_n = 0$ for every $n \ge 0$.

- (14) By way of contradiction assume that $U \subsetneq \mathbb{R}$. Then, since U is open, $U \subsetneq \overline{U}$. Pick $x \in \overline{U} \setminus U$ and a sequence $\{x_n\} \subseteq U$ converging to x. Since h is uniformly continuous, $\{h(x_n)\}$ is a Cauchy sequence in \mathbb{R} , it converges to $y \in \mathbb{R}$. Hence $\{x_n\}$ converges go $h^{-1}(y) \in U$, a contradiction.
- (15) Since det A = -1, the characteristic polynomial of A is of the form $X^2 + bX 1$ for some $b \in \mathbb{R}$, so A has real eigenvalues, λ_1, λ_2 . Let v_i be an eigenvector for λ_i , i = 1, 2. For i = 1, 2, $\lambda_i^2 v_i^t v_i = \lambda_i v_i^t \lambda_i v_i = v_i^t A^t A v_i = v_i^t v_i$, so λ_i is 1 or -1. Without loss of generality, $\lambda_1 = 1$ and $\lambda_2 = -1$. Then A gives a reflection about the line spanned by v_1 sending v_2 to $-v_2$.
- (16) (A) For any G, 0 is a characteristic subgroup. Let $0 \neq H \subseteq \mathbb{Q}$ be a characteristic subgroup. Let $0 \neq x \in H$ and $y \in \mathbb{Q}$. Then the map $r \mapsto ry/x$ is an automorphism of \mathbb{Q} , and it takes x to y. Hence $y \in H$, so $H = \mathbb{Q}$. Hence 0 and \mathbb{Q} are the only characteristic subgroups of \mathbb{Q} .
 - (B) For any $g \in G$, the map $G \longrightarrow G$, $g_1 \mapsto gg_1g^{-1}$ is an isomprphism, so, for every characteristic subgroup H of G, $gHg^{-1} = H$. Hence H is normal. The converse is false: take $H = \mathbb{Z}$ inside $G = \mathbb{Q}$.
- (17*) (A) $(A^t M A)^t = A^t M^t A = -A^t M A.$
 - (B) Check directly with $v = e_1, e_2, e_3$ after noting that he action of $SO_E(\mathbb{R})$ and Φ are k-linear. Also use the fact that the entries $A^t = A^{-1}$ are the signed minors of A, coming from the adjoint of A.
 - (C) Using (B) it is enough to show that there does not exist a nonzero $v \in \mathbb{R}^3$ whose span is stable under the action of SO_3 . This is true: if $v, w \in \mathbb{R}^3$ are non-zero vectors of the same length, there exists $A \in SO_3$ such that Av = w.
- (18*) For positive integers n, write $U_n = \{z \in \mathbb{C} \setminus \{0\} : |z| < n\}$. These form an open cover of $\mathbb{C} \setminus \{0\}$. Note that for every $z_1 \sim z_2$, $|z_1| = |z_2|$, so for every n, $\pi^{-1}(\pi(U_n)) = U_n$. Hence $\pi(U_n), n \ge 1$ is an open cover of X. This does not have a finite sub-cover since the open cover $U_n, n \ge 1$ does not have a finite sub-cover.
- (19^{*}) First note that the minimal polynomial of g divides $X^{|G|} 1$. (A) If char $\Bbbk = 0$ then for every g, g has distinct eigenvalues and hence is diagonalizable, so g = 1, contradicting the hypothesis that |G| > 1. (B) Let $p = \text{char } \Bbbk$. Let $g \in G$ and write its order as $p^e m$ with m = 1 or m > 1 and $p \nmid m$. The the minimal polynomial of g^{p^e} is $X^m - 1$ which has distinct roots, so, again, by the above argument, $g^{p^e} = 1$, so m = 1. (C) Hence Gis a p-group. Use class equation.
- (20^{*}) The limit is f(1). This is true for $x^k, k \ge 0$, and hence also for polynomials. By Weierstrass' theorem, it is true for all continuous functions.