CHENNAI MATHEMATICAL INSTITUTE Postgraduate Programme in Mathematics MSc/PhD Entrance Examination 18 May 2017 Solutions

Part A

- (1) B.
- (2) B.
- (3) A, B.
- (4) A, C, D.
- (5) C
- (6) A.
- (7) B, D.(8) A, B, C, D.
- (9) B, D. (9) B, D.
- (10) (10) (10) (10) (10) (10) (10) (10)

Part B

- (11) (A) X is Hausdorff since the diagonal is closed.
 - (B) For all $x, y, d(x, y) \le d(x, x) + d(y, x) = d(y, x)$, so d(x, y) = d(y, x); hence d is a metric. In particular, τ' is the metric topology given by d.
 - (C) Identify $B_{x_0,\epsilon}$ with $d^{-1}([0,\epsilon)) \cap (\{x_0\} \times X)$. Since $d^{-1}([0,\epsilon))$ is open in $X \times X$, we see that $d^{-1}([0,\epsilon)) \cap (\{x_0\} \times X)$ is open in the subspace topology of $(\{x_0\} \times X)$ induced from the product topology of $X \times X$, which is the same as the topology τ on X. Hence $B_{x_0,\epsilon}$ is open in the topology τ , so τ' is coarser than τ .
- (12) (A) f has a power-series expansion around 0 that converges everywhere on \mathbb{C} . Since $|f(0)| \leq 0, f(0) = 0$, so f(z)/z is entire, and $|f(z)/z| \leq 1$. Hence, by Liouville's theorem, f(z)/z = C for some $C \in \mathbb{C}$, i.e., f(z) = Cz.
 - (B)

$$\int_{\Gamma} z \, \mathrm{d}z = 0$$

and use the fact that $x = \frac{z+\overline{z}}{2}$ and $y = \frac{z-\overline{z}}{2i}$.

(13) By way of contradiction, assume that there exist $\epsilon > 0$, an increasing sequence $n_1 < n_2 < \cdots$ of integers and $x_1, x_2, \ldots \in [0, 1]$ such that $|f_{n_k}(x_k) - f(x_k)| > \epsilon$ for every $k \ge 1$. Let $x_{k_i}, i \ge 1$ be a convergent subsequence, converging to $y \in [0, 1]$. Construct a new sequence y_j as follows:

$$y_j = \begin{cases} x_{k_i}, & \text{if } j = n_{k_i} \\ y, & \text{otherwise.} \end{cases}$$

Then the sequence $f_j(y_j)$ does not converge to f(y), a contradiction.

- (14) (A) If r is a positive rational number, then $\log(x) < x^r$ for all real numbers $x \gg 0$.
 - (B) The two sequences below are bounded and the series is convergent:

$$\frac{\log n}{n^{0.1}};$$
 $\frac{\log \log n}{n^{0.1}};$ $\sum \frac{1}{n^{3/2}};$

- (15) Write $\phi_a : \mathbb{F}_p \longrightarrow \mathbb{F}_p$ for the map $b \mapsto ab$. We check the following:
 - (A) For each $a \in \mathbb{F}_p \setminus \{0\}$, ϕ_a is a group automorphism.
 - (B) The map $a \mapsto \phi_a$ is a group homomorphism: $1 \mapsto \operatorname{id}_{\mathbb{F}_p}$; $\phi_{a'a}(b) = a'ab = (\phi_{a'} \circ \phi_a)(b)$.
 - (C) The map $a \mapsto \phi_a$ is injective: Indeed if $\phi_a = \mathrm{id}_{\mathbb{F}_p}$ then a = 1.

- (D) The map a → φ_a is surjective: Let φ be any group automorphism of (F_p, +), which is a cyclic group, generated by 1. Then φ is determined by φ(1). Since φ is an automorphism, φ(1) ≠ 0. Hence φ(b) = φ(1)b for every b ∈ F_p. Therefore φ = φ_{φ(1)}.
 (E) A bijective group homomorphism is a group isomorphism.
- (16) In each of the three cases, if \mathfrak{m} is a maximal ideal of R, then it is generated by (the residue class of) an irreducible polynomial dividing $X^7 1$. Further, if f(X) is an irreducible polynomial of degree d, then $\dim_{\mathbb{K}} \mathbb{k}[X]/f(X) = d$.

<u>k</u> = \mathbb{Q} : The irreducible factors of $X^7 - 1$ are (X - 1) and $(X^6 + X^5 + \dots + 1)$. (To see that $(X^6 + X^5 + \dots + 1)$ is irreducible over \mathbb{Q} , write it as $((Y + 1)^6 + (Y + 1)^5 + \dots + 1)$ (where Y = X - 1) and apply the Eisenstein criterion.) Hence the dimensions are 1 and 6.

 $\underline{\Bbbk} = \underline{\mathbb{C}}$: Every irreducible polynomial is linear, so the dimension is 1. <u>chark = 7</u>: $X^7 - 1 = (X - 1)^7$, so the dimension is 1.

- (17*) A has a pole if and only if 1 is an eigenvalue. If $A \in SO_3$, then its real eigenvalues are ± 1 , and its determinant is 1. Hence if all the eigenvalues are real, then at least one eigenvalue is 1. If it has exactly one real eigenvalue λ_1 , then $1 = \lambda_1(a + ib)(a ib)$, so $\lambda_1 > 0$, i.e., $\lambda_1 = 1$. For the second part, we need to show that for $p \in S^2$ if Ap = p for some $A \in G$ then for every $B \in G$, Bp is a pole for some $C \in G$. Take $C = BAB^{-1}$.
- (18*) First suppose that Y and the all fibres $f^{-1}(y)$, $y \in Y$ are compact. We prove a 'Tube lemma': Let $y \in Y$; if U is an open neighbourbood of $f^{-1}(y)$, then there exists an open neighbourbood V of y such that $f^{-1}(V) \subseteq U$. Proof of lemma: $X \setminus U$ is closed, so $f(X \setminus U)$ is closed. Since $f^{-1}(y) \subseteq U$, $y \notin f(X \setminus U)$. Let $V_y = Y \setminus f(X \setminus U)$. One can check immediately that $f^{-1}(V_y) \subseteq U$, finishing the proof of the lemma.

Let $U_{\lambda}, \lambda \in \Lambda$ be an open cover of X. For each $y \in Y$, we see, using the above lemma and the fact that $f^{-1}(y)$ is compact, that there is a finite subset $\Lambda_y \subset \Lambda$ and an open neighbourbood V_y of y such that $f^{-1}(y) \subseteq f^{-1}(V_y) \subseteq \bigcup_{\lambda \in \Lambda_y} U_{\lambda}$. Since Y is

compact, there exist $y_1, \ldots, y_n \in Y$ such that $Y = V_{y_1} \cup \cdots \cup V_{y_n}$. Thus $X = f^{-1}(Y) = f^{-1}(V_{y_1}) \cup \cdots \cup f^{-1}(V_{y_n}) \subseteq \bigcup_{i=1}^n \bigcup_{\lambda \in \Lambda_{y_i}} U_{\lambda}$, so the open cover $U_{\lambda}, \lambda \in \Lambda$ has a finite subcover.

Hence X is compact.

Conversely, assume that X is compact and Y is Hausdorff. Then Y is compact. Let $y \in Y$. Then $\{y\}$ is closed in Y, so $f^{-1}(y)$ is closed in X, and hence compact, as X is compact.

- (19*) The images in $F := R/\mathfrak{m}$ of the monomials in x_1, \ldots, x_n form a countable spanning set of F over \Bbbk . If $t \in F$ is transcendental over \Bbbk , then $\{\frac{1}{t-\alpha} \mid \alpha \in \Bbbk\}$ is linearly independent over \Bbbk , which is not possible, so F/\Bbbk is algebraic. Hence $F \simeq \Bbbk$.
- (20*) Let R > 0 be given and B(0, R) be the open unit ball of radius R. By the mean value inequality, $|\sin(\frac{z}{n}) \sin(0)| \le \sup_{w \in B(0,R)} |\cos(w)| |\frac{z}{n} 0|$ for every $z \in B(0, R)$. Hence $\sum_{n=1}^{\infty} \frac{\sin \frac{z}{n}}{n}$ is dominated by the series $\sum_{n=1}^{\infty} |z|/n^2$ as $\cos(w)$ is bounded on B(0, R). Therefore the series converges uniformly on compact sets. Hence the series $\sum_{n=1}^{\infty} \sin(\frac{z}{n})/n$ defines a holomorphic function. It is a standard fact that if a sequence of holomorphic function.