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Part A
(1) A,D.
(2) A.
(3) A,C.
(4) B, C.
(5) A.
(6) B.
(7) A, B, C, D.
(8) A, C, D.
(9) 1.

(10) 1.

Part B
(11) In polar coordinates, the region U is given by U ′ := (1, 2)× [0, 2π). Write p′ and q′ for

the points in U ′ corresponding to p and q respectively. Let γ′ : [0, 1] −→ U ′ be given by
t 7→ t · p′+ (1− t) · q′. This is continuous, and is such that γ′(0) = p′ and γ′(1) = q′ and
such that γ′ is differentiable on (0, 1). Let f be the map (converting polar coordinates
to Cartesian coordinates),

R× [0, 2π) −→ R2, (r, θ) 7→ (r cos θ, r sin θ).

Let γ = f ◦ γ′. Since f is differentiable, γ has the desired properties.
(12) By way of contradiction, suppose that IJ is a prime ideal. In an integral domain, a

product of two non-zero ideals is non-zero, so IJ is a non-zero prime ideal. In a PID,
every non-zero prime ideal is maximal, so IJ is maximal. Since IJ ⊆ I ∩J , we conclude
that I = IJ = J . Let a be a generator for I and J ; hence IJ is generated by a2.
Therefore we see that a ∈ (a2). Write a = ba2, so a(1 − ba) = 0. Since a 6= 0, ba = 1,
i.e., a is a unit, so I is not a proper ideal, a contradiction.

(13) Write z = x + ıy with x, y ∈ R and f(z) = u(x, y) + ıv(x, y), where u and v are maps
from R2 to R. Then v(0, t) = 0 = v(t, 0) for every t ∈ R. Therefore

∂v

∂x
(0, 0) = 0 =

∂v

∂y
(0, 0).

Since f is entire,
∂u

∂x
(0, 0) = 0 =

∂u

∂y
(0, 0).

Therefore f ′(0) = 0.
(14) Let ε > δ, and consider the closed ball

B := {y ∈ Rn|d(x, y) ≤ ε}.

There exists y ∈ A such that d(x, y) ≤ ε so

δ = inf{d(x, y) | y ∈ A ∩B}.

Since A∩B is closed and bounded, it is compact. Consider the function f : A∩B −→ R,
y 7→ d(x, y). It is continuous, so it attains its infimum and supremum, i.e., there exists
y ∈ A ∩B ⊆ A such that δ = d(x, y).



(15) (A): Fix a basis v1, . . . , vn of V . Let n1, . . . , nd be such that Tnivi = vi. Let n = lcm{ni |
1 ≤ i ≤ d}. Then Tn(v) = v for every v ∈ V , so, over C, the minimal polynomial of T

has distinct roots. For (B), take T =

[
1 1
0 1

]
over F2.

(16) [Q(ω) : Q] = 2, since the minimal polynomial of ω is X2 + X + 1. A basis of Q(ω)
over Q is {1, ω}. The minimal polynomial of 3

√
2 over Q is X3 − 2, so {1, 3

√
2, 3
√

4} is a
basis of Q( 3

√
2) over Q. Therefore {1, 3

√
2, 3
√

4, ω, ω 3
√

2, ω 3
√

4} span F as Q-vector-space.
Since X3− 2 is irreducible over Q(ω), [F : Q(ω)] = 3, and, therefore [F : Q] = 6. Hence
{1, 3
√

2, 3
√

4, ω, ω 3
√

2, ω 3
√

4} is a Q-basis for F . Since ω2 = −(1 + ω) and ω3 = 1, we see
that the matrix of µ with respect to the above basis (in the given order) is

−1 0 0 1 0 0
0 −1 0 0 1 0
0 0 −1 0 0 1
−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0

 .
(17∗) Suppose that G is not dense. Let l := inf{x ∈ G | x > 0}. We first show that l > 0

and that l ∈ G. If l = 0, then there exists a small open neighbourhood U of l = 0 that
contains non-zero elements of G; Now, for every g ∈ G, {g + u | u ∈ U} is an open
neighbourhood of g that contains elements of G other than g, so G is dense; hence l > 0.
Now, if l 6∈ G, then there exists ε > 0 such that (l, l+ ε) ⊆ G. We may assume, without
loss of generality, that ε < l. Let x, y ∈ (l, l + ε), with x < y. Then y − x ∈ G and
0 < y − x < ε. This contradicts the choice of l, so l ∈ G.

Now let g ∈ G, and let n be the largest integer such that nl ≤ g < (n + 1)l. Hence
0 ≤ g − nl < l, so by the minimality of l, g = nl, i.e., G = Z · l.

(18∗) Let φ : X −→ C be the constant function taking the value 1. Then for every g ∈ G,
(g · φ)(x) = φ(g−1(x)) = 1 = φ(x) for every x ∈ X, so g · φ = φ for every g ∈ G. Let

F ′ := {f ∈ F |
∑
x∈X

f(x) = 0}.

It is a subspace of F . To show that F = F ′⊕C〈φ〉, we need to show that F ′ ∩C〈φ〉 = 0
and that F = F ′ + C〈φ〉. If αφ ∈ F ′ for some α ∈ C, then 0 =

∑
x∈X(αφ)(x) = α|X|,

so α = 0, i.e., F ′ ∩ C〈φ〉 = 0. Let f ∈ F . Set α = 1
|X|
∑

x∈X f(x). Then f − αφ ∈ F ′,
so F = F ′ + C〈φ〉.

(19∗) (A) Write A = (aij) and B = (bij). If aij > 1 then for every k, bjk = 0, for otherwise,
the (ik)th entry of AB would be greater than 1. However, if there exists j such
that for every k bjk = 0, then B is not invertible. Hence aij ∈ {0, 1} for every i, j.
Similarly bij ∈ {0, 1} for every i, j. Now suppose that aij = aik = 1 with j < k.
Then exactly one of bji, bki is 1 and for l 6= i, bjl = bkl = 0. Therefore either the
jth row or the kth row of B is zero, a contradiction. Hence, for every i, there is a
unique ki such that aiki = 1. Therefore A is a permutation matrix. Since B = A−1,
B is a permutation matrix.

(B) Let T : Cn −→ Cn be the linear transformation given by ei 7→ Aei, where the ei are
the standard basis of Cn. Let v ∈ Cn be a non-zero vector that is not an eigenvector
of A (and of T ). (Such a vector exists by the hypothesis on A.) Then v and Av are
linearly independent. Extend it to a basis v,Av, v3, . . . , vn of Cn. In this basis, T
is given by a matrix B that satisfies B1,1 = 0. Since A and B represent the same
linear transformation (in two different bases), they are similar to each other.

(20∗) Define f : S1 ×{1,−1} −→ S1 by setting f(w, 1) = Sqrt(w) and f(w,−1) = −Sqrt(w).
It is continuous. Surjectivity: Let w ∈ S1. If Sqrt(w2) = w, then f(w, 1) = w; otherwise,
Sqrt(w2) = −w, and hence f(w,−1) = w. Injectivity: If f(w1, 1) = f(w2,−1), then
w1 = (f(w1, 1))2 = (f(w2,−1))2 = w2; however f(w, 1) 6= f(w,−1) for any w. Therefore

2



there do not exist w1, w2 such that f(w1, 1) = f(w2,−1). If f(w1, 1) = f(w2, 1) then
w1 = (f(w1, 1))2 = (f(w2, 1))2 = w2; similarly if f(w1,−1) = f(w2,−1) then w1 =
w2. Since S1 × {1,−1} and S1 are Hausdorff and compact, f is a homeomorphism, a
contradiction, since S1 × {1,−1} is not connected, while S1 is.
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