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Part A
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Part B

(11). After changing coordinates, we may assume that f vanishes in an open neighbourhood
of the origin. Hence (

∂n

∂xi∂yn−i
f

)
(0, 0) = 0

for every n ≥ 0 and 0 ≤ i ≤ n. Therefore all the coefficients of f are zero, so f = 0.
(12). (a). Let v 6= 0 ∈ kerA, so (In + A)v = v; hence 1 is an eigenvalue of (In + A).

Conversely, suppose that (In +A)v = λv for some nonzero v. If Av = 0, then v = λv, so λ = 1.
Otherwise, multiplying on the left by A, we see that Av = λ(Av); hence, again, λ = 1.

(b). A2 + 1 = 0, so the minimal polynomial of A divides t2 + 1 which has distinct roots.
Hence the minimal polynomial of A has distinct roots, so A is diagonalizable.

(13). For r ∈ R, r > 0, let Cr := {z ∈ C : |z| = r}, Ur := {z ∈ C : |z| < r} and
εr = min{|f(z)| : z ∈ Cr}. As f it nonconstant, the origin is an isolated zero of f . Choose r > 0
such that the origin is the only zero in Cr ∪ Ur. As the set {z : |f(z)| < εr} intersects Ur but
not Cr, it must be in Ur, by the second condition on f . Hence the origin is the only zero of f .
Now letting r −→∞, we see that for all z 6∈ Ur, |f(z)| ≥ εr. Hence f has a pole at infinity, i.e.,
there exists a non-negative integer m such that zmf(z−1) is analytic at z = 0. Suppose that f
is a power-series expression

∑∞
i=n aiz

i. Since zmf(z−1) is analytic at z = 0, we see that ai = 0
for all i ≥ m. Hence f is a polynomial that vanishes exactly at z = 0. Thus f = czn for some
positive interger n and non-zero c ∈ C.

(14). For each positive integer k, using a), choose Nk such that

|bk − am,k| <
ε

2
∀m ≥ Nk.

Let mk = N1 + · · · + Nk. Then mk is increasing. Now, using b), choose a positive integer K,
such that

|amk,k − 1| < ε

2
∀k ≥ K.

By triangle inequality

|bk − 1| < ε ∀k ≥ K.
(15). May assume that f is homogeneous of degree d. Induct on d. If xd appears in f ,

then so does yd (with the same coefficient. Hence we may write f = α(xd + yd) + xyf1(x, y),
where α could be zero. Note that f1(x, y) = f1(y, x), so by induction, there exists g1 such
that f1(x, y) = g1(x + y, xy). Write xd + yd = (x + y)d − xyf2(x, y); f2(x, y) = f2(y, x), so by
induction, there exists g2 such that f2(x, y) = g2(x+ y, xy).

(16). Note that for every a ∈ [0, 1] and for every open subset U of X containing f−1(a),
there is an open neighbourhood W (for example, take W = [0, 1] \ f(X \ U)) of a such that
f−1(W ) ⊆ U . Now let Ui, i ∈ I be an open covering of X. For every a ∈ [0, 1], there exists a
finite subset Ia of I such that f−1(a) ⊆

⋃
i∈Ia Ui. Let Wa be an open neighbourhood of a such
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that f−1(Wa) ⊆
⋃

i∈Ia Ui. There exist finitely many a1, . . . , an such that [0, 1] =
⋃n

j=1Waj .

Then X =
⋃n

j=1 f
−1(Waj ) =

⋃n
j=1

⋃
i∈Iaj

Ui. This is a finite subcovering of the given open

covering.
(17∗). For each such P , let RP be the smallest subring of Q that contains {1p |p ∈ P}. If

P 6= Q, then RP 6= RQ. The set of all the primes is countably infinite, and the power-set of a
countably infinite set is uncountable. Hence Q has uncountably many subrings.

(18∗). Let |x| ≤M . Since sinx ≤ x,

f(x) =
∑
n≥1

sin x
n

n
≤M

∑
n≥1

1

n2
<∞,

and hence f is well-defined.

Also the same argument shows, if we set fN =
∑

N≥n≥1
sin x

n
n , then fN converges uniformly

to f as N 7→ ∞ in the interval (−M,M), and hence f is continuous. Since M is arbitrary f is
continuous everywhere.

Again let |x| ≤ M and we set g =
∑

n≥1
cos x

n
n2 Since cos x

n ≤ 1, g is well-defined, and

f ′N =
∑

N≥n≥1
cos x

n
n2 uniformly converges to g, by the same arguments. Since fN converges

uniformly to f and since f ′N converges uniformly to g in the interval (−M,M), f ′ = g. Since
M is arbitrary, f is differentiable everywhere.

(19∗). By the usual computation, pm(m−1)/2 is the largest power of p dividing the order
of GLm(Fp). Also, one may check directly that U is a subgroup of GLm(Fp) and its order is

pm(m−1)/2. Therefore, U is a Sylow p-subgroup of GLm(Fp). Now, by Sylow’s Theorem 2 and
its Corollary, there exists A ∈ GLn(Fp) such that AGA−1 ⊂ U .

(20∗).
Let A ∈ Mm×n(C) be the matrix that consists of 1s on the diagonal on rows and columns

1, . . . , k and 0s elsewhere. Then the space of all matrices of rank k inside Mm×n(C) is

X := {B1AB2 : B1 ∈ GLm(C);B2 ∈ GLn(C)} ;

we need to show that this space is connected. Fix B2 ∈ GLn(C). Then the space

XB2 := {B1AB2 : B1 ∈ GLm(C)}
is connected since it is a continuous image of the connected space GLm(C). Similarly, the space

Y := {AB2 : B2 ∈ GLn(C)}
is connected. Since

X = Y ∪
⋃

B2∈GLn(C)

XB2

and each XB2 intersects Y , we see that X is connected.
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