
MSC/PHD MATHEMATICS 2014 SOLUTIONS

Part A

1. B, D.

2. A, B.

3. B.

4. B, C.

5. C, D.

6. B, C.

7. A.

8. A, B, D.

9. 2.

10. 2.
Part B

(11) The set of rank 2 matrices in M2×3(R) is open: Consider the map f : M2×3(R) → R3

given by sending a matrix to the triple of its 2× 2 minors. This is a continuous map.
The set of rank 2 matrices is the inverse image of the set {(x1, x2, x3) ∈ R3 | xi 6=
0 for some 1 ≤ i ≤ 3}. This set is open in R3, hence the set of rank 2 matrices is open
in M2×3(R).

(12) (A) The kernel of φ is a proper ideal in F . Hence it is zero, as there are no nonzero
proper ideals in a field. Since φ(1) = 1, using properties of a field homomorphism
we conclude that φ(r) = r for every r ∈ Q. Now if r ∈ Q and x ∈ F , then
φ(rx) = φ(r)φ(x) = rφ(x). Thus φ is a homomorphism of vector spaces over Q.
Since φ is injective and dimension of F over Q is finite, it follows that φ is also
surjective. Thus φ is a field isomorphism.
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(B) Consider the map φ : F× → F× defined by φ(x) = x2. Then φ is a group
homomorphism and the set of squares in F× is the image of φ. The kernel of φ
is the set of all x ∈ F× such that x2 = 1. Since F is a field this equation has at
most 2 solutions. Further since the characteristic of F is different from 2, it has
exactly two solutions. Hence the kernel of φ contains two elements and we have
an isomorphism F×/ker(φ) ∼= im(φ). Hence the cardinality of im(φ) is half of the
cardinality of F×.

(13) (a) For A ∈ Mn(C), det(A) is a polynomial in the entires of A, so all the multiple
partial derivatives exist and are continuous.

(b) Let Aij ∈Mn−1(C) be the matrix with ith row and jth column removed from A.
Then the total derivative d(det) is the matrix in Mn(C) whose (i, j)-th entry is
(−1)i+jdet(Aij).

(c) d(det)=0 if and only if det(Aij) = 0 for all i, j. This is equivalent to rank(Aij) ≤
n− 2 for all i, j. We prove that this is equivalent to rank(A) ≤ n− 2.

Suppose rank(A) ≤ n− 2. This means the rows (or columns) of A have at most
n − 2 linearly independent vectors. After removing a row and column there will
be at most n − 2 linearly independent vectors. Hence rank(Aij) ≤ n − 2 for all
i, j. Conversely if rank(A) > n − 2, the rows of A have at least n − 1 linearly
independent vectors. Choose n − 1 linearly independent row vectors and form
a matrix of size (n − 1) × n. Then n − 1 columns of this matrix are linearly
independent. So we can remove one column and the remaining (n− 1)× (n− 1)
matrix will still have (n − 1) linearly independent vectors. So there exits a pair
(i, j) such that rank(Aij) = n− 1.

Hence d(det)(A)=0 if and only if rank(A) ≤ n− 2.

(14) Let F0 = {i | ai 6= 0} then F0 = ∪∞n=1Fn. Each Fn is a finite set, otherwise

sup{
∑
i∈F

ai : F ⊆ R finite subset} ≥ sup{
∑
i∈F

ai : F ⊆ Fn finite subset} ≥ N

n
∀N ∈ N.

We can not replace countability by finiteness, since any convergent series with infinitely
many non-zero entries will satisfy the condition. Take for example ai = 1

i2
for i ∈ N

and ai = 0 for i ∈ R \ N.

(15) Since the order of G is divisible by 2, G has an element x of order 2, by Cauchy’s
theorem. Since x 6= 1 and φ(x) = 1, φ is not injective. As φ is a function from a finite
set to itself, it can not be surjective as well.

(16) Let zn = 2πin. Then |zn| → ∞ and ezn → 1. Suppose g(z) = f(ez) is a non-constant
polynomial. We have g(2πni) = f(1) for all n ∈ N. So g − f(1) has infinitely many
zeros and hence g = f(1). Thus f is equal to the constant f(1) on C \ {0}, which is
the range of the function ez. It follows by continuity that f is constant on all of C.
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(17*) (A) On(R) is compact : Consider the map f : Mn×n(R)→Mn×n(R) given by f(A) =
AA

t − In. This map is continuous and On(R) is closed since it is equal to f
−1

(0).

On(R) ⊂Mn×n(R) is bounded: the condition AA
t

= In expressed in terms of the

entries of A gives (for example when n = 2) the following: let A =

(
a b
c d

)
.

The we get a
2

+ b
2

= 1 = c
2

+ d
2
, and ac+ bd = 0. This implies |a|, |b|, |c|, |d| ≤ 1.

(B) Consider det : On(R) → {1,−1}. This is continuous and surjective. This shows
that On(R) is disconnected.

(C) On(C) is not compact, since it is not bounded as a subset of Mn×n(C). The
conditions expressed above for a, b, c, d when the entries are complex numbers
show this. For example, fixing a, |a| � 0, there are solutions for b such that
a

2
+ b

2
= 1. Similarly for c, d.

(18*) f is given entire. Expand it as a power series in a neighbourhood of 0. f =
∑∞

n=0 rn.z
n
.

We are given: f(aj) =
∑∞

n=0 rn.a
n
j = bj for all j. Taking limits as j → ∞ on either

side and using uniform convergence, we see that f(0) = lim
j→∞

bj. But we are given

lim
j→∞

bj
akj

= 0 for all k ≥ 0. Taking k = 0, we get lim
j→∞

b
j

= 0, hence r0 = f(0) = 0.

Now write f(z) =
∑∞

n=1 rn.z
n
. Proceeding as before and using lim

j→∞

bj
ak
j

= 0 for k = 1,

we get r1 = 0. Similarly rj = 0 for all j and hence f = 0 in a neighbourhood of 0.
Since f is entire, we get f = 0 everywhere and bn = 0 for all n.

(19*) Following Cayley’s theorem, use the action of G on the set of left cosets G/H. This
gives a homomorphism f : G→ S

N
, where N = n

m
= |G/H|.

Since |S
N
| = N ! < 2n, it implies that

|S
N
|

2
< n = |G|. If f is injective, then by the

above inequality, f is actually an isomorphism. In this case, G is not simple because
SN is not, as it has the alternating group AN as a normal subgroup. On the other
hand, if f is not injective, it has a non-trivial kernel K ⊂ G. K is a proper nonzero
normal subgroup of G, hence again G is not simple.

(20*) Let φ : R → R be a continuous function such that |φ(x)| → ∞ as |x| → ∞. Then by
the formula for the limit of composition of two maps, one gets f ◦ φ ∈ C0(R) for every
f ∈ C0(R).

Suppose that f ◦ φ is infinitely differentiable for every f in C∞0 (R). Let a ∈ R. The
image φ[a − 1, a + 1] is a compact interval. Choose f ∈ C∞0 (R) such that f = 1 on
φ[a − 1, a + 1]. Then f ◦ φ = φ on (a − 1, a + 1). Thus φ agrees with the infinitely
differentiable function f ◦ φ on the neighbourhood (a − 1, a + 1) of a. Hence φ is
infinitely differentiable in a neighbourhood of a. As a is an arbitrary point of R, φ is
differentiable.
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