Chennai Mathematical Institute

MSc/PhD Entrance Examination, 2013

$15\mathrm{th}$ May 2013

Problems in Part A will be used for screening purposes. Your solutions to the questions in Part B will be marked only if your score in Part A places you over the cut-off. However, the scores in both the sections will be taken into account to decide whether you qualify for the interview.

Notation: \mathbb{Z} , \mathbb{R} , and \mathbb{C} stand, respectively, for the sets of integers, of the real numbers, and of the complex numbers.

Part A

This section consists of <u>fifteen</u> (15) multiple-choice questions, each with one or more correct answers. Record your answers on the attached bubble-sheet by filling in the appropriate circles. Every question is worth <u>four</u> (4) marks. A solution receives credit if and only if <u>all the correct answers</u> are chosen, and <u>no incorrect answer</u> is chosen.

- 1. Pick the correct statement(s) below.
 - (a) There exists a group of order 44 with a subgroup isomorphic to $\mathbb{Z}/2 \oplus \mathbb{Z}/2$.
 - (b) There exists a group of order 44 with a subgroup isomorphic to $\mathbb{Z}/4$.
 - (c) There exists a group of order 44 with a subgroup isomorphic to $\mathbb{Z}/2 \oplus \mathbb{Z}/2$ and a subgroup isomorphic to $\mathbb{Z}/4$.
 - (d) There exists a group of order 44 without any subgroup isomorphic to $\mathbb{Z}/2 \oplus \mathbb{Z}/2$ or to $\mathbb{Z}/4$.
- 2. Let G be group. The following statements hold.
 - (a) If G has nontrivial centre C, then G/C has trivial centre.
 - (b) If $G \neq 1$, there exists a nontrivial homomorphism $h : \mathbb{Z} \to G$.
 - (c) If $|G| = p^3$, for p a prime, then G is abelian.
 - (d) If G is nonabelian, then it has a nontrivial automorphism.
- 3. Let C[0,1] be the space of continuous real-valued functions on the interval [0,1]. This is a ring under point-wise addition and multiplication. The following are true.
 - (a) For any $x \in [0, 1]$, the ideal $M(x) = \{f \in C[0, 1] \mid f(x) = 0\}$ is maximal.
 - (b) C[0,1] is an integral domain.
 - (c) The group of units of C[0, 1] is cyclic.
 - (d) The linear functions form a vector-space basis of C[0,1] over \mathbb{R} .

- 4. Let $A : \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation with eigenvalues $\frac{2}{3}$ and $\frac{9}{5}$. Then, there exists a non-zero vector $v \in \mathbb{R}^2$ such that
 - (a) ||Av|| > 2||v||;
 - (b) $||Av|| < \frac{1}{2} ||v||;$
 - (c) ||Av|| = ||v||;
 - (d) Av = 0;
- 5. Let F be a field with 256 elements, and $f \in F[x]$ a polynomial with all its roots in F. Then,
 - (a) $f \neq x^{15} 1;$
 - (b) $f \neq x^{63} 1;$
 - (c) $f \neq x^2 + x + 1;$
 - (d) if f has no multiple roots, then f is a factor of $x^{256} x$.
- 6. Let $h: \mathbb{C} \to \mathbb{C}$ be an analytic function such that h(0) = 0; $h(\frac{1}{2}) = 5$, and |h(z)| < 10 for |z| < 1. Then,
 - (a) the set $\{z : |h(z)| = 5\}$ is unbounded by the Maximum Principle;
 - (b) the set $\{z : |h'(z)| = 5\}$ is a circle of strictly positive radius;
 - (c) h(1) = 10;
 - (d) regardless of what h' is, $h'' \equiv 0$.
- 7. Suppose that f(z) is analytic, and satisfies the condition $|f(z)^2 1| = |f(z) 1| \cdot |f(z) + 1| < 1$ on a non-empty connected open set U. Then,
 - (a) f is constant.
 - (b) The imaginary part of f, Im(f), is positive on U.
 - (c) The real part of f, Re(f), is non-zero on U.
 - (d) Re(f) is of fixed sign on U.
- 8. Consider the following subsets of \mathbb{R}^2 : $X_1 = \{(x, \sin \frac{1}{x}) | 0 < x < 1\}, X_2 = [0, 1] \times \{0\}$, and $X_3 = \{(0, 1)\}$. Then,
 - (a) $X_1 \cup X_2 \cup X_3$ is a connected set;
 - (b) $X_1 \cup X_2 \cup X_3$ is a path-connected set;
 - (c) $X_1 \cup X_2 \cup X_3$ is not path-connected, but $X_1 \cup X_2$ is path-connected;
 - (d) $X_1 \cup X_2$ is not path-connected, but every open neighbourhood of a point in this set contains a smaller open neighbourhood which is path-connected.
- 9. For a set $A \subset \mathbb{R}$, denote by Cl(A) the *closure* of A, and by Int(A) the *interior* of A. There is a set $A \subset \mathbb{R}$ such that
 - (a) A, Cl(A), and Int(A) are pairwise distinct;
 - (b) A, Cl(A), Int(A), and Cl(Int(A)) are pairwise distinct;
 - (c) A, Cl(A), Int(A), and Int(Cl(A)) are pairwise distinct;
 - (d) A, Cl(A), Int(A), Int(Cl(A)), and Cl(Int(A)) are pairwise distinct.

10. Let $f, g: [0, 1] \to \mathbb{R}$ be given by

$$f(x) := \begin{cases} x^2 & \text{if } x \text{ is rational,} \\ 0 & \text{if } x \text{ is irrational;} \end{cases}$$
$$g(x) := \begin{cases} 1/q & \text{if } x = \frac{p}{q} \text{ is rational, with } gcd(p,q) = \\ 0 & \text{if } x \text{ is irrational.} \end{cases}$$

1,

Then,

- (a) g is Riemann integrable, but not f;
- (b) both f and g are Riemann integrable;
- (c) the Riemann integral $\int_0^1 f(x) dx = 0$;
- (d) the Riemann integral $\int_0^1 g(x) dx = 0$.

11. Let C be the ellipse $24x^2 + xy + 5y^2 + 3x + 2y + 1 = 0$. Then, the line integral $\oint (x^2ydy + xy^2dx)$

- (a) lies in (0, 1);
- (b) is 1;
- (c) is either 1 or -1 depending on whether C is traversed clockwise or counterclockwise;
- (d) is 0.

12. The series
$$\sum_{n=1}^{\infty} a_n$$
 where $a_n = (-1)^{n+1} n^4 e^{-n^2}$

- (a) has unbounded partial sums;
- (b) is absolutely convergent;
- (c) is convergent but not absolutely convergent;
- (d) is not convergent, but partial sums oscillate between -1 and +1.

13. Let f be continuously differentiable on \mathbb{R} . Let $f_n(x) = n\left(f(x+\frac{1}{n}) - f(x)\right)$. Then,

- (a) f_n converges uniformly on \mathbb{R} ;
- (b) f_n converges on \mathbb{R} , but not necessarily uniformly;
- (c) f_n converges to the derivative of f uniformly on [0, 1];
- (d) there is no guarantee that f_n converges on any open interval.
- 14. Let $f: X \to Y$ be a nonconstant continuous map of topological spaces. Which of the following statements are true?
 - (a) If $Y = \mathbb{R}$ and X is connected then X is uncountable.
 - (b) If X is Hausdorff then f(X) is Hausdorff.
 - (c) If X is compact then f(X) is compact.
 - (d) If X is connected then f(X) is connected.

15. Let X be a set with the property that for any two metrics d_1 , and d_2 on X, the identity map

$$id: (X, d_1) \to (X, d_2)$$

is continuous. Which of the following are true?

- (a) X must be a singleton.
- (b) X can be any finite set.
- (c) X cannot be infinite.
- (d) X may be infinite but not uncountable.

Part B

Solve six (6) problems from below, **clearly indicating** which problems you would like us to mark. Every problem is worth ten (10) marks. Justify all your arguments to receive credit.

- 1. Let G be a finite group, p the smallest prime divisor of |G|, and $x \in G$ an element of order p. Suppose $h \in G$ is such that $hxh^{-1} = x^{10}$. Show that p = 3.
- 2. (a) Show that there exists a 3×3 invertible matrix $M \neq I_3$ with entries in the field \mathbb{F}_2 such that $M^7 = I_3$.
 - (b) Let A be an $m \times n$ matrix, and **b** an $m \times 1$ vector, both with integer entries.
 - 1. Suppose that there exists a prime number p such that the equation $A\mathbf{x} = \mathbf{b}$ seen as an equation over the finite field \mathbb{F}_p has a solution. Then does there exist a solution to $A\mathbf{x} = \mathbf{b}$ over the real numbers?
 - 2. If $A\mathbf{x} = \mathbf{b}$ has a solution over \mathbb{F}_p for every prime p, is a real solution guaranteed?
- 3. Let $M_n(\mathbb{C})$ denote the set of $n \times n$ matrices over \mathbb{C} . Think of $M_n(\mathbb{C})$ as the $2n^2$ -dimensional Euclidean space \mathbb{R}^{2n^2} . Show that the set of all diagonalizable $n \times n$ matrices is dense in $M_n(\mathbb{C})$.
- 4. Compute the integral

$$\int_{-\infty}^{\infty} \frac{x}{(x^2 + 2x + 2)(x^2 + 4)} dx.$$

- 5. Show that there does not exists an analytic function f defined in open unit disk for which $f(\frac{1}{n})$ is 2^{-n} .
- 6. Let f be a real valued continuous function on [0, 2] which is differentiable at every point except possibly at x = 1. Suppose that $\lim_{x\to 1} f'(x) = 2013$. Show that f is differentiable at x.
- 7. (a) Show that there exists no bijective map $f : \mathbb{R}^2 \to \mathbb{R}^3$ such that f and f^{-1} are differentiable.
 - (b) Let $f : \mathbb{R}^m \to \mathbb{R}^n$ be a differentiable map such that the derivative Df(x) is surjective for all x. Is f surjective?
- 8. (a) Let $f \in \mathbb{Z}[x]$ be a non-constant polynomial with integer coefficients. Show that as a varies over the integers, the set of divisors of f(a) includes infinitely many different primes.
 - (b) Assume known the following result: If G is a finite group of order n such that for integer d > 0, d|n, there is no more than one subgroup of G of order d, then G is cyclic. Using this (or otherwise) prove that the multiplicative group of units in any finite field is cyclic.
- 9. Let $K_1 \supset K_2 \supset \ldots$ be a sequence of connected compact subsets of \mathbb{R}^2 . Is it true that their intersection $K = \bigcap_{i=1}^{\infty} K_i$ is connected also? Provide either a proof or a counterexample.
- 10. Let A be a subset of \mathbb{R}^2 with the property that every continuous function $f : A \to \mathbb{R}$ has a maximum in A. Prove that A is compact.