NCM IST, Mathematics for Computer Science
Problems on bipartite graphs, matchings, BES/DFS

22 June, 2018

. Consider the set cover problem defined as follows. Let U be a set of elements and F be a
collection of subsets of U such that the union of the sets in F is U. The goal is to select a
minimum sized sub-collection of F whose union is U. Show that the vertex cover problem
transforms (reduces) to the set cover problem. Does it prove that the set cover problem is
NP-Complete?

. Consider the following greedy algorithm for computing a matching in a graph G = (V, E).
Let M = (). For every edge e € E, if M U {e} is a matching, then M = M U {e}. Show
that M is a maximal matching. Construct an example where M is not a maximum sized
matching. Argue that |M] is at least 3 the size of a maximum matching.

. Consider the following algorithm for the vertex cover problem in a graph G = (V. E).
Construct the DFS tree T" of G. Let S denote the non-leaf vertices of T. Show that S is
a vertex cover of G. Show that |S| is at most two times the mininum sized vertex cover.
Hint: Argue that G has a matching of size |S|/2.

. Consider the problem of checking if a number n is prime. i.e. the language we are interested
is the set of all numbers n such that n is prime. What is the size of the input to an algorithm
which is deciding this language? Think of your favourite algorithm to check if a number is
prime and analyze its running time. Is your algorithm a polynomial time algorithm?

. Suppose you have an polynomial time algorithm to decide the following language £ = {<
G,k,m > |G is a graph with exactly m distinct vertex covers of size exactly k}. How
can you use this to solve the decision version of the vertex cover problem, for a given graph
is there a vertex cover of size less than or equal to d? Is £ in NP?

. In the parallel-machine-scheduling problem, we are given n jobs, Ji, Jo, - , J, , where each
job Ji has an associated nonnegative processing time of pr. We are also given m identical
machines, My, Mo, --- , M,,. Any job can run on any machine. A schedule specifies, for each
job J, the machine on which it runs and the time period during which it runs. Each job J
must run on some machine M; for p; consecutive time units, and during that time period no
other job may run on M;. Let C} denote the completion time of job Ji , that is, the time at
which job Jj, completes processing. Given a schedule, we define Clax = maxi<;<, C; to be
the makespan of the schedule. The goal is to find a schedule whose makespan is minimum.

Given a parallel-machine-scheduling problem, we let C} .. denote the makespan, of an

max
optimal schedule.

In class, we have seen 2 lower bounds for C}, ...
e The optimal makespan is at least as large as the greatest processing time, that is,

C* > max
max: = 1§k§npk

e The optimal makespan is at least as large as the average machine load, that is,

N 1
Cmax 2 % Z pk

1<k<n

Suppose that we use the following greedy algorithm for parallel machine scheduling:
whenever a machine is idle, schedule any job that has not yet been scheduled.

For the schedule returned by the greedy algorithm, show that

1
C < — E + max
max > m Pk 1§k§npk
1<k<n

Conclude that this algorithm is a polynomial-time 2-approximation algorithm.

Page 2

