
NCM IST, Mathematics for Computer Science

Problems on bipartite graphs, matchings, BFS/DFS

22 June, 2018

1. Consider the set cover problem defined as follows. Let U be a set of elements and F be a
collection of subsets of U such that the union of the sets in F is U . The goal is to select a
minimum sized sub-collection of F whose union is U . Show that the vertex cover problem
transforms (reduces) to the set cover problem. Does it prove that the set cover problem is
NP-Complete?

2. Consider the following greedy algorithm for computing a matching in a graph G = (V,E).
Let M = ∅. For every edge e ∈ E, if M ∪ {e} is a matching, then M = M ∪ {e}. Show
that M is a maximal matching. Construct an example where M is not a maximum sized
matching. Argue that |M | is at least 1

2 the size of a maximum matching.

3. Consider the following algorithm for the vertex cover problem in a graph G = (V,E).
Construct the DFS tree T of G. Let S denote the non-leaf vertices of T . Show that S is
a vertex cover of G. Show that |S| is at most two times the mininum sized vertex cover.
Hint: Argue that G has a matching of size |S|/2.

4. Consider the problem of checking if a number n is prime. i.e. the language we are interested
is the set of all numbers n such that n is prime. What is the size of the input to an algorithm
which is deciding this language? Think of your favourite algorithm to check if a number is
prime and analyze its running time. Is your algorithm a polynomial time algorithm?

5. Suppose you have an polynomial time algorithm to decide the following language L = {<
G, k,m > |G is a graph with exactly m distinct vertex covers of size exactly k}. How
can you use this to solve the decision version of the vertex cover problem, for a given graph
is there a vertex cover of size less than or equal to d? Is L in NP?

6. In the parallel-machine-scheduling problem, we are given n jobs, J1, J2, · · · , Jn , where each
job Jk has an associated nonnegative processing time of pk. We are also given m identical
machines, M1,M2, · · · ,Mm. Any job can run on any machine. A schedule specifies, for each
job Jk, the machine on which it runs and the time period during which it runs. Each job Jk
must run on some machine Mi for pk consecutive time units, and during that time period no
other job may run on Mi. Let Ck denote the completion time of job Jk , that is, the time at
which job Jk completes processing. Given a schedule, we define Cmax = max1≤j≤nCj to be
the makespan of the schedule. The goal is to find a schedule whose makespan is minimum.

Given a parallel-machine-scheduling problem, we let C∗
max denote the makespan, of an

optimal schedule.

In class, we have seen 2 lower bounds for C∗
max.

• The optimal makespan is at least as large as the greatest processing time, that is,

C∗
max ≥ max

1≤k≤n
pk

• The optimal makespan is at least as large as the average machine load, that is,

C∗
max ≥

1

m

∑
1≤k≤n

pk

Suppose that we use the following greedy algorithm for parallel machine scheduling:

whenever a machine is idle, schedule any job that has not yet been scheduled.

For the schedule returned by the greedy algorithm, show that

Cmax ≤
1

m

∑
1≤k≤n

pk + max
1≤k≤n

pk

Conclude that this algorithm is a polynomial-time 2-approximation algorithm.

Page 2

