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Chapter 2

Elements of Combinatorial

Topology

This chapter defines the basic notions of combinatorial algebraic topology
needed to start reading this book. These definitions provide the basic lan-
guage for describing distributed and concurrent computation. We will in-
troduce more advanced concepts as they are needed.

We use [m : n], where n ≥ m, as shorthand for {m, . . . , n}, and we write
[n], as shorthand for [0 : n].

2.1 The objects and the maps

Since simplicial complexes and maps between them are the very central
objects of this book, we take a little bit of time first to elaborate on this
concept. Fundamentally, there are 3 aspects, and accordingly 3 viewpoints
on simplicial complexes: combinatorial, topological, and geometric. We shall
now outline each one and connections between them.

2.1.1 The Combinatorial View

We start with the combinatorial notion.

Definition 2.1.1. Given a set S, and a family A of finite subsets of S. We say
that A is an abstract simplicial complex on S, if the following are satisfied:

(1) if X ∈ A, and Y ⊆ X, then also Y ∈ A;

(2) {v} ∈ A, for all v ∈ S.

15
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16 CHAPTER 2. ELEMENTS OF COMBINATORIAL TOPOLOGY

0-simplex 1-simplex

2-simplex
3-simplex

Figure 2.1: Simplices of various dimensions.

Individual elements of S are called vertices of A. The set of all vertices
of A is denoted by V (A). More generally, individual elements of A are
called simplices of A. A simplex σ ∈ A is said to have dimension |σ| − 1.
In particular, vertices are 0-dimensional simplices. We sometimes mark a
simplex’s dimension with a superscript: σn. A simplex of dimension n is
sometimes called an n-simplex.

We usually use vector notation for vertexes (~x, ~y, ~z, . . .), Greek letters for
simplices (σ, τ, . . .), and calligraphic font for complexes (A,B, . . .).

A simplex τ is a face of σ if τ ⊆ σ, and a proper face if τ ⊂ σ. If τ
has dimension k, the τ is a k-face of σ. Let σ = (~s0, . . . ~sn) Define Facei σ

n,
the ith face of σn, to be the (n − 1)-simplex (~s0, . . . , ŝi, . . . , ~sn), where the
circumflex denotes omission. If U is a set of processes, define FaceU σ

n =
∩i∈U Facei σ

n.maurice: Added FaceU

definition. Must check
that we use it

A simplex σ in a complex C is a facet if it is maximal in C: σ is not
a proper face of any other simplex. The dimension of a complex C is the
maximum dimension of any of its facets. A complex is pure if all facets have
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2.1. THE OBJECTS AND THE MAPS 17

the same dimension. A complex D is a subcomplex of C if every simplex of D
is also a simplex of C. If C is a pure complex, the codimension of σ ∈ C is
dimC − dimσ, in particular, any facet has codimension 0. When C is clear
from context, we denote the codimension by codimσ.

2.1.2 The Geometric View

We next switch to geometry. We let R
d denote the d-dimensional Euclidean

space. The standard n-simplex is the convex hull of the n + 1 points in
R

n+1 with coordinates (1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1). More
generally, a geometric n-simplex, or a geometric simplex of dimension n, is
the convex hull of any set of n + 1 affinely independent points in R

d, in
particular, we must have d ≥ n. As illustrated in Fig. 2.1, a 0-dimensional
simplex is a point, a 1-simplex is an edge linking two points, a 2-simplex is
a solid triangle, a 3-simplex a solid tetrahedron, and so on.

In direct analogy with the combinatorial framework we have the following
terminology. When v0, . . . , vn ∈ R

d are affinely independent, we call them
vertices of the n-simplex σ = conv {v0, . . . , vn}. In this case, for any S ⊆ [n],
the (|S|−1)-simplex τ = conv {vs | s ∈ S} is called a face, or an (|S|−1)-face
of σ; it is called a proper face if, in addition, S 6= [n]. We set Facei σ

n :=
conv {v0, . . . , v̂i, . . . , vn}. Gluing geometric simplices together, along their
faces, yields the geometric analog of Definition 2.1.1.

Definition 2.1.2. A geometric simplicial complex K in R
d is a collection of

of geometric simplices, such that

(1) any face of a σ ∈ K is again in K;

(2) for all σ, τ ∈ K, their intersection σ ∩ τ is a face of each of them.

Other notions, such as codimension and subcomplex are the same as in the
combinatorial case.

Given a geometric simplicial complex K, we can define the underlying
abstract simplicial complex C(K) as follows: take the union of all the sets of
vertices of the simplices of K as the vertices of C(K), then for each simplex
σ = conv {v0, . . . , vn} of K take the set {v0, . . . , vn} to be the simplex of
C(K). In the opposite direction: given an abstract simplicial complex A
with finitely many vertices, there exist many geometric simplicial complexes
K, such that C(K) = A. The simplest construction is as follows: assume A
has d vertices, take the standard simplex σ in R

d, and take the subcomplex
of σ consisting of the geometric simplices which correspond to the sets in
the set family A. Usually, one can find K of a much lower dimension than
d, but then the construction could be quite a bit more complicated.
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18 CHAPTER 2. ELEMENTS OF COMBINATORIAL TOPOLOGY

2.1.3 The Topological View

Finally, we proceed to the topological framework. Given a geometric sim-
plicial complex K in R

d, we let |K| denote the union of its simplices. This
space has the “usual” topology as the subspace of R

d (in point-set topo-
logical language one would say that the topology on |K| is induced by the
standard topology on R

d). Somewhat confusingly the space |K| is called
the geometric realization of K. If A is an abstract simplicial complex, we
can first construct K, such that C(K) = A, and then let |A| = |K|. This
will not depend on the particular geometric simplicial complex K, only on
the abstract simplicial complex A. One can also construct |A| by starting
with a set of disjoint simplices, and then gluing them together along their
boundaries, using the combinatorial data as the gluing schema.dmitry: Do we want more

details here? quotient
spaces?

Let us now look at the maps between the objects which we just described.
Let A and B be abstract simplicial complexes. A vertex map µ : A → B
maps each vertex of A to a vertex of B. The vertex map µ is a simplicial
map if it also carries simplices to simplices. A vertex map µ : A → B does
not have to induce a continuous map between the geometric realizations |A|
and |B|. For example, if both A and B have the vertex set {1, 2}, and the set
{1, 2} is a simplex of A, but not of B, then the identity map id : {1, 2} →
{1, 2} is a vertex map, but there does not exist a continuous map from
an interval to the set of its endpoints, which is identity on the endpoints.
However, any simplicial map µ will automatically induce a continuous map
|µ| between geometric resolution. The easiest way to describe |µ| is by using
barycentric coordinates.dmitry: do we want more

details on that? Before proceeding with constructions, we would like to mention that in
standard use in algebraic topology the word simplex is overloaded. It is used
to denote the abstract simplicial complex consisting of all subsets of a certain
finite set, but it is also used to refer to individual elements of the family of
sets constituting and abstract simplicial complex. There is a relation here:
to a simplex in the second sense one can associate a subcomplex of the
considered abstract simplicial complex which is a simplex in the first sense.
We will use simplex in both of these meanings. In some texts, simplex is also
used to denote the geometric realization of that abstract simplicial complex;
here we shall say geometric simplex instead.

2.2 Standard constructions
maurice: Should we define
subdivisions here? Carri-
ers?

Let C be an abstract simplicial complex or a geometric complex. Let ℓ be
a nonnegative integer. The set of simplices of C of dimension at most ℓ is

DRAFT

DRAFT



2.2. STANDARD CONSTRUCTIONS 19

a subcomplex of C, called the ℓ-skeleton, and denoted skelℓ C. In particular,
the 0th skeleton of a simplicial complex is simply its set of vertices. If σ is an
n-simplex, then skeln−1 σ is called the boundary complex of σ, it is obtained
from σ by deleting the single facet.

Assime now σ is some simplex of a simplicial complex C. There are three
standard constructions, each yielding a subcomplex of C: the star, the link
and the deletion. We describe this in the abstract simplicial case, the case
of geometric simplicial complexes is completely analogous.
Star. The star of a simplex σ ∈ C, written St(σ, C) (or Stσ when C is clear
from context), is the subcomplex of C whose facets are the simplices of C
that contain σ. The complex St(σ, C) consists of all the simplices τ which
contain σ, and furthermore, all the simplices contained in such a simplex τ .
The geometric realization of St(σ, C) is also called the star of σ.

In the topological context there is also the notion of an open star, denoted
Ost(~v), which is the union of the interiors of all the simplices which contain
σ, (see Fig. 2.2). Note, that the open star is not an abstract or geometric
simplicial complex, but just a topological space. To distinguish the two
notions, the star is also sometimes called the closed star.
Link. The link of σ ∈ C, written Lk(σ, C) (or Lkσ), is the subcomplex
of C consisting of all simplices in St(σ, C) that do not have common vertices
with σ (see Fig. 2.2. Again, the geometric realization of Lk(σ, C) is also
called the link of σ.

v v v

Figure 2.2: The open star Ost(~v), star St(~v), and link Lk(~v) of the vertex v.

dmitry: I could make
a picture with examples
where σ has higher dimen-
sion

Deletion. The deletion of σ ∈ C, written dl(σ, C), is the subcomplex of C
consisting of all simplices of C that do not have common vertices with σ.
Clearly, we have the relations:

Lk(σ, C) = dl(σ, C) ∩ St(σ, C),

and
C = dl(σ, C) ∩ St(σ, C),
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20 CHAPTER 2. ELEMENTS OF COMBINATORIAL TOPOLOGY

for all σ ∈ C.

Given two abstract simplicial complexes A and B with disjoint sets of
vertices SA and SB, their join, or simplicial join, A ∗ B is the abstract
simplicial complex with the set of vertices SA ∪ SB, whose simplices are all
the unions α ∪ β, where α ∈ A, and β ∈ B. Note that it is allowed to take
α or β to be empty sets. In particular, both A and B are subcomplexes of
A ∗ B.

Assume furthermore, that K is a geometric simplicial complex in R
m,

such that C(K) = A, and L is a geometric simplicial complex in R
n, such

that C(L) = B. Then there is a standard way to construct a geometric
simplicial complex in R

m+n+1 whose underlying abstract simplicial complex
is A ∗ B. Consider the following embeddings: ϕ : R

m → R
m+n+1, given by

ϕ(x1, . . . , xm) = (x1, . . . , xm, 0, . . . , 0),

and ψ : R
n → R

m+n+1 given by

ψ(y1, . . . , yn) = (0, . . . , 0, y1, . . . , yn, 1).

The images under these embeddings of K and L are geometric simplicial
complexes whose geometric realizations are disjoint. We can define a new
geometric simplicial complex K ∗ L by taking all convex hulls conv (σ, τ),
where σ is a simplex of K, and τ is a simplex of L. It is a matter of
simple linear algebra to show that the open intervals (x, y), where x ∈ Imϕ

and y ∈ Imψ, never intersect, and so K ∗ L satisfies the conditions for the
geometric simplicial complex. It is easy to see that the topological spaces
|A ∗ B| and |K ∗ L| are homeomorphic.dmitry: a picture of the

join of two intervals giving
a tetrahedron would make
sense here

As an example, taking join of K with a single vertex amounts to building
a cone over K for any complex K. Another example is taking join of an m-
simplex with an n-simplex, the result of that is an (m+n+1)-simplex. One
can also show that the join operation is commutative and associative.

There is a purely topological definition of the join of two topological
spaces. We refer to [21] for the precise definition. Here we just mention that
the simplicial and topological joins commute with the geometric realization,
that is for any two abstract simplicial complexes A and B, the spaces |A∗B|
and |A| ∗ |B| are homeomorphic.dmitry: I am guessing this

is enough Given two abstract simplicial complexes A and B, a carrier map M from
A to B maps each simplex σ ∈ A to a subcomplex M(σ) of B, so that

M(σ) ∩M(τ) = M(σ ∩ τ), (2.2.1)
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2.3. CHROMATIC COMPLEXES 21

for all σ, τ ∈ A. In other words, carrier maps preserve intersections. Con-
sider the special case when σ is a face of τ , then σ ∩ τ = σ, so (2.2.1) yields
M(σ) ⊆ M(τ). This means that in particular M is order preserving, i.e.,
the inclusion pattern of the subcomplexes M(σ) should be the same as the
inclusion pattern of the simplices of A.

Since the carrier map takes simplices of A to the subcomplexes of B we
adopt the “power notation” for writing it, i.e., we write M : A → 2B. maurice: propagate power

notion to later chapters

2.3 Chromatic complexes

An m-labeling, or just a labeling, of an abstract simplicial, or a geometric
simplicial complex A is a map carrying each vertex of A to an element of
some domain of cardinality m. In other words, it is a set map ϕ : V (A) → D,
where |D| = m.

An m-coloring, or just a coloring, of a n-dimensional complex A is an m-
labeling χ : V (A) → Π, such that restricted to the vertices of any simplex
of A, the map χ is injective. A simplicial complex A together with a coloring
χ is called a chromatic complex. We shall write it as a pair (A, χ).

maurice: Do we/should we
use “rigid” in later chap-
ters?

Definition 2.3.1. Given two abstract simplicial complexes A and B. A sim-
plicial map ϕ : A → B is called rigid, if the image of each simplex σ has the
same dimension as σ, i.e., |ϕ(σ)| = |σ|.

Rigid maps are much more rare than simplicial maps. For example,
for any pair of abstract simplicial complexes A and B, there will be many
simplicial maps from A to B; at the very least we could simply map every-
thing to a single vertex of B. This is not allowed for the rigid maps, and
there are situations where there are no rigid simplicial maps between given
abstract simplicial complexes at all. For example, this is the case when
A is the boundary of a triangle, and B is a single interval. We note that
a composition of rigid simplicial maps is again a rigid simplicial map.

We see that requiring that a labeling χ of an abstract simplicial complex
A is injective on the simplices is the same as asking that |χ(σ)| = |σ|, for all
σ ∈ A. In other words, m-colorings are precisely the rigid simplicial maps
into an (m− 1)-simplex χ : A → ∆m−1.

From the point of view of graph theory, we remark that a coloring χ :
A → ∆m−1 exists if and only if the 1-skeleton of A, viewed as a graph, is
m-colorable in the sense of graph colorings (more precisely vertex-colorings
of graphs).

Definition 2.3.2. Given two m-chromatic simplicial complexes (A, χA) and
(B, χB), a simplicial map f : A → B is called color-preserving if the
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22 CHAPTER 2. ELEMENTS OF COMBINATORIAL TOPOLOGY

following diagram commutes: In other words, for every vertex ~v ∈ A, we

Figure 2.3: Definition of color-preserving simplicial maps.

have χA(~v) = χB(f(~v)).
maurice: We will need to
be consistent about “rigid”
versus “color-preserving”
versus “chromatic” maps

We define two further rigid notions.

Definition 2.3.3. Given two abstract simplicial complexes A and B, and
a carrier map µ : A → 2B. We call µ a rigid carrier map if for every n, and
for any n-simplex σ ∈ A, the subcomplex µ(σ) is pure and n-dimensional.

Definition 2.3.4. A chromatic abstract simplicial complex (A, χ) is called
rigid chromatic A is pure of dimension n, and χ is an (n+ 1)-coloring.

2.4 Simplicial models in Distributed Computing

In recent breakthrough developments in distributed computing, it was dis-
covered that protocols and tasks can be modeled using the language of com-
binatorial topology.

In this language, a task will consist of an input complex I, an output
complex O, and a task specification map µ. Mathematically, both the input
complex and the output complex are pure rigid chromatic abstract simplicial
complexes of dimension N − 1, where N is the number of processors. We
denote both their coloring functions with id. A task specification map is
a rigid carrier map µ : I → 2O.

The connection with the distributed computing is as follows. The target
set of the coloring function id is the set of process ID’s. Vertices of the
complexes I and O are pairs consisting of a process ID and a process state,
and each k-dimensional simplex σ is a set of k + 1 vertexes labeled with
distinct process IDs.

Input complex. Each possible initial state of the system is given by a max-
imal input simplex, assigning an input value to each process. Together, all
possible input simplices make up the task’s input complex.

Output complex. An output simplex and the task’s output complex are
defined similarly.

Task specification map. A rigid carrier map µ takes each input simplex
σ to the pure subcomplex µ(σ), whose maximal simplices are precisely all
global legal final states for the input σ.
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2.5. CHAPTER NOTES 23

Protocol complex. Any protocol has an associated protocol complex P,
in which each vertex is labeled with a process id and that process’s final
state (called its view). Each simplex thus corresponds to an equivalence
class of executions that “look the same” to the processes at its vertexes.
For 0 ≤ m ≤ n, for a given input m-simplex σ, we understand P(σ) to
be the complex generated by all executions starting in σ, in which only
the processes in id(σ) take part, while the rest fail before taking any steps.
Formally, the protocol complex is a pure rigid chromatic abstract simplicial
complex of dimension N − 1.

It is important to note that while input and output complexes, as well
as the task specification carrier map, depend on the task only, the protocol
complex crucially depends on the choice of the model of computation.

2.5 Chapter Notes

Most of these definitions are adapted from Munkres [24] and Kozlov [21].
The use of simplicial complexes to model distributed computing model is
due to Herlihy and Shavit [18].

2.6 Exercises

[[[[no exercises yet]]]]
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