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Chapter 3

Manifolds, Impossibility, and

Separation

Theoretical distributed computing is primarily concerned with classifying
which tasks can, and which cannot be solved using given primitives. In this
chapter, we present a simple impossibility result, showing that one cannot
construct a protocol for the set agreement in the round-by-round immediate
snapshot model of computation. We also show that set agreement is strictly
stronger than the weak symmetry-breaking task: we can construct a protocol
for weak symmetry-breaking from a “black box” that solves set agreement,
but not vice-versa. We investigate these particular questions here because
they can be addressed with a minimum of mathematical machinery. In later
chapters, we generalize the techniques introduced here to address broader
questions.

3.1 Manifold Complexes

We say, that a pure abstract simplicial complex of dimension n is strongly
connected if any two n-simplices can be joined by a “chain” of n-simplices in
which each pair of neighboring simplices has a common (n− 1)-dimensional
face.

Definition 3.1.1. A pure abstract simplicial complex M of dimension n is
called a pseudo-manifold with boundary if it is strongly connected, and each
(n − 1)-simplex in M is contained in precisely one or two n-simplices.

An (n−1) simplex in M is an interior simplex if it is contained in exactly
two n-simplices, and a boundary simplex if it is contained in exactly one.

25
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26 CHAPTER 3. MANIFOLDS, IMPOSSIBILITY, AND SEPARATION

The boundary subcomplex of M, denoted ∂ M, is the subcomplex consisting
of all the simplices contained in its boundary (n− 1)-simplices. For brevity,
we will use “pseudomanifold” as an abbreviation for “pseudomanifold with
boundary”.maurice: Do we want ∂ or

Bd for boundary complex?
If we do homology in later
chapters would ∂ be con-
fusing here?

The conditions in Definition 3.1.1 can be strengthened as follows.

Definition 3.1.2. Assume M is a pure abstract simplicial complex M of
dimension n.

(1) M is called a simplicial manifold if the geometric realization of the
link of every simplex σ is homeomorphic to a sphere of dimension
n − 1 − dimσ;

(2) M is called a simplicial manifold with boundary if the geometric re-
alization of the link of every simplex σ is either homeomorphic to
a sphere or to a closed ball, in each case of dimension n − 1 − dim σ.

Note that in the special case when dim σ = n−1 we have n−1−dim σ = 0.
The 0-dimensional sphere consists of two points, whereas the 0-dimensional
ball consists of one point, so conditions of (1) and (2) of Definition 3.1.2
specialize precisely to the conditions of Definition 3.1.1. For brevity, we shall
frequently omit the word “simplicial” and just write manifold, or manifold
with boundary.

There is also the following standard topological notion.

Definition 3.1.3. Assume X is an arbitrary Hausdorff1 topological space.

(1) X is called a topological manifold of dimension n, if every point of X

has a neighborhood homeomorphic to an open ball of dimension n;

(2) X is called a topological manifold with boundary of dimension n, if
every point of X has a neighborhood homeomorphic to an open subset
of Euclidean half-space:

R
n
+ = {(x1, . . . , xn) ∈ R

n : xn ≥ 0}.

The interior of X, denoted Int X, is the set of points in X which have
neighborhoods homeomorphic to an open ball of dimension n. The boundary
of X, denoted ∂ X, is the complement of Int X in X. The boundary points
can be characterized as those points which land on the boundary hyperplane

1This is a technical condition from point-set topology, meaning every two points can be

separated by disjoint open neighborhoods; it is needed to avoid all sorts perverse examples,

and is always satisfied in the context of this book.
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3.1. MANIFOLD COMPLEXES 27

Every (n-1)-simplex a

face of 2 n-simplexesface of 2 n simplexes

Figure 3.1: A simplicial manifold

xn = 0 of R
n
+ in their respective neighborhoods. If X is a manifold of

dimension n with boundary, then IntX is a manifold of dimension n, and
IntX is a manifold of dimension n − 1.

We note that if M is a simplicial manifold with boundary, then its
geometric realization is a topological manifold with boundary of the same
dimension; moreover, the geometric realization of the boundary of M is pre-
cisely the boundary of |M|. Figure 3.1 shows a 2-dimensional manifold (with
an empty boundary complex). As you can see, a 2-dimensional manifold is
a kind of a discrete approximation to a surface.

On the other hand, the geometric realization of the pseudomanifold does
not have to be a manifold. Perhaps the simplest example is obtained if we
take a simplicial 2-dimensional sphere, and then glue together the north and
south poles,2 see Figure ??. This is also called the pinched torus. Clearly,

2We assume that the poles are vertices of the simplicial complex, and that the mesh is

fine enough, so that even after that gluing we still have a simplicial complex.
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28 CHAPTER 3. MANIFOLDS, IMPOSSIBILITY, AND SEPARATION

the condition of being a manifold fails at the glued poles, but the condition
of being a pseudomanifold is still satisfied, since it is a condition for edges
and triangles, and is untouched by vertices being glued together.

Few of the abstract simplicial complexes that arise naturally in the study
of distributed computing are simplicial manifolds with boundary. We study
them anyway primarily because they provide an excellent way to approach
more complicated models. Manifolds have nice combinatorial properties not
shared with more general classes of complexes. Later, we will see how to
generalize the techniques developed here to other, more natural models of
computation.

3.2 Immediate Snapshots

The immediate snapshot model is a simplified model of computation whose
protocol complexes are manifolds with boundary. These executions are con-
strained, in the sense that they encompass only a subset of the interleavings
possible in an asynchronous model. Nevertheless, any impossibility results
that we prove for a restricted set of interleavings are valid for the less re-
stricted model. It is easy to see why: solving a task in a distributed system
means that the outputs should be valid in every execution. So if we can show
a subset of executions where no valid decision is possible, then no valid de-
cision is possible in general. Another way to formulate this observation is to
imagine that executions are chosen by an “adversary” who always chooses
the worst set of executions.

Consider an asynchronous system where n+1 processes share an (n+1)-
element array m. When process Pi is scheduled to run, it writes its state
to m[i], and then atomically reads the entire array. We call such an atomic
read a snapshot, and its result a view. For simplicity, we restrict how these
steps can be interleaved. Each execution is divided into a sequence of phases.
In each phase, select a set of processes that have not yet taken a step. All
processes in that set simultaneously write, and then they simultaneously take
a memory snapshot. Phases proceed until every process has been scheduled
exactly once. Because each snapshot is scheduled immediately after the
preceding write, we call this the immediate snapshot model.

Fig. 3.2 shows three examples of immediate snapshot executions. In
each execution, there are three processes, P , Q, and R, where time runs
from top to bottom. The bottom line of each table shows the result of
each process’s snapshot. For example, “PQ?” means the snapshot observed
values written by P and Q, but not R. In the first execution, the processes
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3.2. IMMEDIATE SNAPSHOTS 29

P Q R

it

P Q R

itwrite

snap

write

write

snap

write write

snap

write

snap

snap snap

snap

P?? PQ? PQR P?? PQR PQR

P Q R

write write write

snap snap snap

P?? PQR PQR

Figure 3.2: Immediate snapshot executions

are scheduled in distinct phases: first P , then Q, then R. In the second
execution, as indicated by the curved arrow, we merge R and Q’s phases. dmitry: there is no curved

arrow in the pictureThis perturbation changes the view of only process: Q’s view changes, but
P and R’s views do not. In the third execution, we move both Q and R’s
phases to be simultaneous with P ’s. This perturbation, too, changes the
view of only process: P ’s view changes, but Q and R’s views do not.

Now let us shift our attention from the operational model of schedules to
the combinatorial model of vertices, simplices, and complexes. Combinato-
rially, the observation that we can repeatedly perturb schedules so that only
one process’s view changes each time strongly suggests that the complex
generated by all immediate snapshot schedules may be a manifold.

Each process’s view at the end of an immediate snapshot execution is
a face of the input simplex determined by which processes participated in
the same or earlier phases. For input n-simplex σ, the set of immediate
snapshot executions defines a subdivision of σ, called the standard chromatic
subdivision, denoted Ch σ. Each vertex in this subdivision is a pair 〈Pi, σi〉, dmitry: when is the subdi-

vision part proved?

maurice: we should
prove subdivision in an
appendix. I think there’s
a proof in the literature,
but I need to check
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30 CHAPTER 3. MANIFOLDS, IMPOSSIBILITY, AND SEPARATION

P Q R

write

snap

write
P Q R

write

snap

write

write write write

snap snap snap

snap

P Q R

?Q?
write

snap

write write

snap snap

Figure 3.3: Three-process immediate snapshot complex

where Pi is the process taking the steps, and σi, the result of its snapshot, is
a face of the input simplex σ. Each simplex in the protocol complex satisfies
the following properties.

Property 3.2.1. Each process’s write appears in its own view: Pi ∈ id(σi).
dmitry: include argument
showing the equivalence
with the original def

Property 3.2.2. Snapshots are ordered: for 0 ≤ i, j ≤ n, either σi ⊆ σj or
vice-versa.

Property 3.2.3. Each snapshot is ordered immediately after its write: for
0 ≤ i, j ≤ n, if Pi ∈ id(σj), then σi ⊆ σj .

Fig. 3.3 shows the standard chromatic subdivision of an input simplex
for three processes, highlighting the simplices corresponding to the schedules
shown in Fig. 3.2. Informally, we can see that this complex is a manifold,
although such a claim requires proof.maurice: Fig 3.2 should be

redrawn Recall, that whenever σ = {~s0, . . . , ~sn} is an input simplex, where id(~si) =
Pi, we used Facei σ = σ \ {~si} to denote the face of σ not labeled with Pi.
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3.2. IMMEDIATE SNAPSHOTS 31

IS(I)

 n-1 

 
n-1

Figure 3.4: Proof of Theorem 3.2.4: Case 1

Furthermore, we let Ch I denote the simplicial complex obtained from I by
replacing every simplex by its chromatic subdivision.

Theorem 3.2.4. If the input complex I is a manifold, so is the immediate
snapshot protocol complex ChI.

dmitry: include the proof
of strong connectedness
and check other links,
though this is still not
enough for the subdivision
part

Proof. Let σn−1 be an (n − 1)-simplex of Ch σ. For ease of presentation,
reindex the process IDs so that

σn−1 = {〈P0, σ0〉, . . . , 〈Pn−1, σn−1〉} where σi ⊆ σi+1 for 0 ≤ i < n.

(3.2.1)
We must show that σn−1 is a face of exactly one or two n-simplices.

The simplex σn−1 has dimension either n − 1 or n. If it has dimension
exactly n − 1, then σn−1 is either an internal (n − 1)-simplex of I or it is
a boundary simplex of I. There are three cases to consider.

• If σn−1 is a boundary (n−1)-simplex of I, then because I is a manifold,
there is exactly one n-simplex σ that contains σn−1. There is exactly
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32 CHAPTER 3. MANIFOLDS, IMPOSSIBILITY, AND SEPARATION

IS(I)

 n-1

 
n-1

Figure 3.5: Proof of Theorem 3.2.4: Case 2

one n-simplex of ChI, {〈Pn, σ〉} ∪ σn−1, that contains σn−1. (See
Fig. 3.2.)

• If σn−1 is an internal (n−1)-simplex of I, then because I is a manifold,
then there are exactly two n-simplices σ and σ′ of I that contain
σn−1. There are exactly two n-simplices of ChI, {〈Pn, σ〉} ∪ σn−1,
and {〈Pn, σ′〉} ∪ σn−1, that contain σn−1. (See Fig. 3.2.)

• If σn−1 is an n-simplex of I, suppose that Pn is in id(σℓ) but not
id(σℓ−1), for ℓ, where we understand σ−1 to be the empty set. Note
that σℓ−1 ⊂ σℓ, implying that Pℓ 6∈ id(σℓ−1). For what values of σn is
{〈Pn, σn〉} ∪ σn−1 an n-simplex of Chσ? Pn ∈ id(σn), hence ~sn ∈ σn.
By Property 3.2.1,

σℓ−1 ∪ {~sn} ⊆ σn ⊆ σℓ.

If

σℓ−1 ∪ {~sn} ⊂ σn,
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3.2. IMMEDIATE SNAPSHOTS 33

 n-1

 
n-1

Figure 3.6: Proof of Theorem 3.2.4: Case 3

there is a process id Pi in id(σn) \ id(σℓ−1) ∪ {~sn}). By hypothesis,
σi is a subset of σℓ but not σℓ−1. Because these simplices are ordered
by inclusion, it follows that σi = σℓ, and therefore σn = σℓ. It follows
that σn can assume exactly two distinct values: σℓ−1 ∪ {~sn} or σℓ,
implying that σn−1 is contained in exactly two n-simplices.

The proof of Theorem 3.2.4 uncovered an interesting fact about the
immediate snapshot complex: the boundary (n − 1)-simplices are precisely
those simplices where one process does not appear in any of the others’
views.

Corollary 3.2.5.

∂ Ch I = Ch∂ I.
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34 CHAPTER 3. MANIFOLDS, IMPOSSIBILITY, AND SEPARATION

3.3 Manifold Protocols
dmitry: here we need to
decide whether we go with
manifold or with pseudo-
manifold

The immediate snapshot protocol is an example of a manifold protocol. A
protocol M(·) is a manifold protocol if it satisfies the following properties.

Property 3.3.1. If I is a manifold, so is M(I).

Property 3.3.2. M(∂ I) = ∂ M(I).

Manifold protocols are closed under composition.
Many of the protocols we consider are the result of composing multi-

ple instances of simpler protocol executions, which we call round-by-round
composition. A round operator is the carrier map that represents one com-
putational “step” by each process. Here, an immediate snapshot protocol
is a round operator, and a round-by-round immediate snapshot protocol, is
the result of composing multiple immediate snapshot protocols, each using
a separate shared array.

3.4 Set Agreement

Recall that in the k-Set Agreement task, each process starts with a private
input value, communicates with the others, and then halts after choosing
a private output value. Each process is required to choose some process’s
input, and at most k distinct values may be chosen. For brevity we use
set agreement as shorthand for (n + 1)-process n-set agreement. We now
demonstrate that no manifold protocol can solve set agreement.

First, we need some simple combinatorial lemmas. Recall that a graph
is a 1-dimensional complex given by a set of vertices V and a set of edges E.
The degree of a vertex, deg(~v), is the number of edges adjacent to ~v.

Lemma 3.4.1. In any graph G = (V,E), the sum of the degrees of the vertices
is twice the number of edges:

2|E| =
∑

~v∈V

deg(~v).

Proof. Each edge e = {~v0, ~v1} adds one to the degree of ~v0 and one to the
degree of ~v1, contributing two to the sum of the degrees.

Corollary 3.4.2. Any graph has an even number of vertices of odd degree.

As noted earlier, an (n+1)-coloring of a complex C is a map χ : C → ∆n,
where ∆n is an n-simplex. We say that χ sends a simplex σ onto ∆ if every
vertex in ∆n is the image of a vertex in σ.
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3.4. SET AGREEMENT 35

Suppose we color an n-simplex σ = (~s0, . . . , ~sn) with n+1 distinct colors,
and then color a subdivision Div σ so that each vertex is colored with a color
from its carrier. It turns out that at least one simplex in the subdivision
must have n + 1 distinct colors.

Lemma 3.4.3 (Sperner’s Lemma).

Let Div ∆n be a subdivision of ∆, and let χ : Div ∆n → ∆ be a simplicial
map such that χ(~v) ∈ Car(~v,∆n). The map χ maps an odd number of
simplices of Div ∆n onto ∆n.

Proof. We argue by induction on the dimension n. When n is zero, the
complexes ∆0 and Div ∆0 are the same, χ is the identity map, and the
claim is trivial.

Assume the result for n − 1. By the induction hypothesis,

χ : Div Facei ∆n → Facei ∆
n

sends an odd number of (n − 1)-simplices to Facen ∆n. The subdivison
Div ∆n is a manifold, so by Lemma 3.4.4, χ sends an odd number of n-
simplices of Div ∆n onto ∆n.

dmitry: I am confused why
the graph edges on Figure
3.8 go over two boundary
edges of the triangle

Lemma 3.4.4 (Sperner’s Lemma for Pseudomanifolds).

dmitry: What if we go over
the n-1 skeleton instead

Let ∆n =
{

~d0, . . . , ~dn

}

be an n-simplex, and Facei ∆
n the (n−1)-face of ∆n

that contains every vertex except ~di. Let M be an n-dimensional manifold,
B its boundary complex, and χ : M → ∆n an (n + 1)-coloring. If χ sends
an odd number of (n−1)-simplices of B onto Facen ∆n, then χ sends an odd
number of n-simplices of M onto ∆n.

Proof. Define G to be the graph whose vertices are indexed by the n-
simplices of M, with the addition of one more “external” vertex ~e. There is
an edge between two vertices if their corresponding simplices share a com-
mon (n − 1)-face such that χ sends that face onto Facen ∆n. There is also
an edge from the external vertex ~e to every n-simplex σ such that σ has an
(n − 1)-face in B, and χ sends that face onto {0, . . . , n − 1}. (See Figs. 3.7
and 3.8.)

Let ~vσ be the vertex corresponding to the n-simplex σ. We claim that
~vσ has an even degree if and only if χ maps σ onto {0, . . . , n − 1}. There
are three cases to consider. First, if χ does not map any (n − 1)-face of σ

onto {0, . . . , n − 1}, then ~vσ has degree 0. Suppose χ does map a (n − 1)-
face of σ onto {0, . . . , n − 1}. Second, if χ maps the remaining vertex to
a value in {0, . . . , n − 1}, then χ maps exactly two (n − 1)-faces of σ onto
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36 CHAPTER 3. MANIFOLDS, IMPOSSIBILITY, AND SEPARATION

Figure 3.7: Dual Graph

{0, . . . , n − 1}. Each such face corresponds to an edge linking ~vσ either
to a neighboring n-simplex (for internal faces) or to the external vertex ~e

(for boundary faces). It follows that ~vσ has degree 2. Finally, if χ maps
the remaining vertex to n, then χ maps exactly one (n − 1)-face of σ onto
{0, . . . , n − 1}, implying that ~vσ has degree 1.

Moreover, ~e has odd degree. By hypothesis, χ sends an odd number of
boundary (n − 1)-simplices onto {0, . . . , n − 1}, producing an odd number
of edges at ~e.

By Lemma 3.4.1 G has an even number of vertices of odd degree. Since
the external node ~e has odd degree, there must be an odd number of other
vertices ~vσ with odd degree. Each of these vertices corresponds to an n-
simplex that χ maps onto ∆n.

Theorem 3.4.5. Any manifold protocol M where each process halts with an
input value has an odd number of executions in which the processes choose
n + 1 distinct inputs.
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3.4. SET AGREEMENT 37

Figure 3.8: Dual Graph of Subdivision with “external” node

Proof. The input complex consists of a single simplex σ = {~s0, . . . , ~sn},
where ~si is labeled with process ID Pi: id(~di) = Pi. The protocol M solves
set agreement if and only if there is a simplicial map δ : M(σ) → σ

sending each vertex of the protocol complex to the input vertex labeled
with the value chosen. To solve set agreement, the coloring δ cannot map
any n-simplex onto σ. By way of contradiction, we will show that δ must
map an odd number of n-simplices onto σ.

We argue by induction. When n is zero, there is only one process, one
possible execution, and one possible value to choose.

Assume the claim for dimension n − 1. Because M is a manifold task,

∂ M(σ) =
⋃

Pi∈id(σ)

M(Facei σ)

Process Pi can choose Pj’s input only in executions where Pj takes a step,
so χ sends no (n−1)-simplices of M(Facei σ) onto Facen σ for i 6= n. By the
induction hypothesis, χ : M(Facen σ) → Facen σ sends an odd number of

DRAFT



38 CHAPTER 3. MANIFOLDS, IMPOSSIBILITY, AND SEPARATION

(n − 1)-simplices onto Facen σ. In total, χ sends an odd number of (n− 1)-
simplices of ∂ M(σ) onto Facen σ. By Lemma 3.4.4, χ sends an odd number
of n-simplices of M(σ) onto σ.

Theorem 3.4.5 implies that for any manifold protocol, any possible deci-
sion map has an odd, in particular non-zero, number of executions in which
n + 1 processes choose n + 1 distinct values, contradicting the specification
of the set agreement task.

Corollary 3.4.6. There is no protocol for set agreement in the round-by-
round immediate snapshot model.

3.5 Anonymous Protocols

So far, we have assumed that there are n+1 processes with given unique IDs
in the range 0, . . . , n. In practice, it is reasonable to assume that processes
have unique IDs, but not that their IDs are taken from such a small name
space. Instead, IDs are typically taken from a much larger name space,
such as Unix process identifiers or Internet addresses, both 32-bit numbers.
For impossibility results, the size of the name space is unimportant: any
task that cannot be solved if IDs are taken from a small name space also
cannot be solved if IDs are taken from a larger name space. For algorithms,
however, it may be possible to abuse the small name space assumption to
derive trivial protocols.

To rule out such spurious solutions, we say a protocol is anonymous
if each process’s decision value depends only on its inputs and on how its
steps are interleaved with the others’, but not on that process’s ID. Consider
a task (I,O,∆). Formally, a protocol complex P(I) is symmetric if any
permutation π of the process IDs induces a simplicial map π : P(I) → P(I),
sending 〈Pi, v〉 7→ 〈π(Pi), v〉. All complexes considered in this section are
symmetric. Recall that the protocol has a decision function δ : P(I) → O,
carried by ∆. The protocol is anonymous if relabeling process IDs, but
leaving inputs or interleavings unchanged does not affect the processes’ same
output values. We can represent this relation by the following commutative
diagram:dmitry: add the condition

that Sn acts on O as well
P(I)

δ
−−−−→ O

π





y





y

π

P(I)
δ

−−−−→ O
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Figure 3.9: Output complex for Weak Symmetry-Breaking

Starting with a vertex in the upper left-hand corner, applying maps along
both directed paths yields the same result in the lower right-hand corner.

3.6 Weak Symmetry-Breaking
maurice: Add process IDs
to Fig 3.9The Weak Symmetry-Breaking task ensures that if all processes participate,

they can be divided into two non-empty groups. Specifically, in every exe-
cution in which all n + 1 processes participate, at least one process decides
true and at least one decides false. Figure 3.9 shows the output complex
for 3-process weak symmetry-breaking: this complex is an annulus, which
is a topological disk with a hole in the center. maurice: define crosspoly-

tope?In general, the output complex for weak symmetry-breaking task with
n+1 processes is an n-dimensional simplicial manifold with boundary. It can
be constructed by taking the boundary of the (n+1)-dimensional crosspoly-
tope and then removing a pair of opposite n-simplices. In particular, the
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boundary of the output complex always consists of two simplicial (n − 1)-
spheres. Weak symmetry-breaking will turn out to be a useful building-block
for constructing other protocols.

Formally, the weak symmetry-breaking task takes as input complex a sin-
gle n-simplex and its faces, and the following output complex:

• each vertex 〈Pi, b〉 is labeled with a process ID and a Boolean value,
and

• a set of vertices forms a simplex if (1) their process IDs are distinct,
and (2) fewer than n + 1 vertices have the same Boolean value.

If each process has a unique ID in the range 0, . . . , 2n − 1, then weak
symmetry-breaking has a trivial protocol: each process decides the par-
ity of its ID. To rule out such uninteresting solutions, we require that any
protocol that implements weak symmetry-breaking be anonymous.

3.7 Anonymous Set Agreement versus Weak Sym-

metry Breaking
dmitry: number sides of
the triangles on Figure
3.10

We say a task T implements a task S in a particular model if one can
construct a protocol for S using read-write memory and a finite number of
“black boxes” solving T . If T implements S, but not vice-versa, then we
say that S is weaker than T . Otherwise, they are equivalent.

We consider two tasks, anonymous set agreement and weak symmetry-
breaking in a round-by-round model. We will show that anonymous set
agreement implements weak symmetry-breaking, but not vice-versa, so the
latter is weaker than the former. This is an example of a separation result.maurice: must define lin-

earizable Fig. 3.12 shows how set agreement implements weak symmetry-breaking.
The processes share a set, initially empty, of process IDs (Line 1). This set
provides a linearizable put(x) method that places x in the set, along with
the ability to iterate over IDs in the set. An iteration yields every ID put
in the set before the iteration started, and it may yield IDs put in the set
while the iteration is in progress. This set might be implemented as a simple
array. The processes also share an anonymous set agreement object (Line 2).
This object provides a single decide(x) method, that runs an anonymous set
agreement protocol with input x, and returns a decision value.

Each process calls the anonymous set agreement object’s decide() method,
using its own id as input (Line 4). It stores the result in the set (Line 5).
The process then iterates through the set (Line 6), returning true if it finds
its own ID in the set, and false otherwise.
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Figure 3.10: One-round Moebius task protocol complex for 3 processes.

Lemma 3.7.1. If all n + 1 processes participate, some process decides true.

Proof. The process whose id is first to be put in the set will observe its own
ID and return true.

Lemma 3.7.2. If all (n+1) processes participate, some process decides false.

Proof. If all n + 1 processes decide true, then n + 1 distinct inputs were
chosen as decision values, violating the Set Agreement specification.

Lemma 3.7.3. The protocol of Fig. 3.9 is anonymous.

Proof. No step of the protocol, including the anonymous set agreement sub-
routine, depends on any participants’ process ID.

Corollary 3.7.4. Anonymous set agreement implements weak symmetry-
breaking.
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Figure 3.11: Weak Symmetry-breaking from one-round Moebius task pro-
tocol

1 Set<ID> output; // set of IDs
2 anonSetAgree sa; // anonymous set agreement
3 boolean choose(ID me) {
4 ID choice = sa.decide(me);
5 output.put(choice );
6 foreach (ID id in output) {
7 if ( id == me) return true;
8 }
9 return true;

10 }

Figure 3.12: Implementing weak symmetry-breaking from set agreement
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For the other direction, we wish to show that weak symmetry-breaking
cannot implement set agreement. We will prove this claim indirectly, by con-
structing a manifold task that implements weak symmetry-breaking. If weak
symmetry-breaking could implement set agreement, then we could replace
the weak symmetry-breaking objects with their manifold task implementa-
tions, yielding a set agreement protocol, contradicting Theorem 3.4.5.

We introduce a new task M(·), called the Moebius task. First, we con-
struct the 2-dimensional Moebius task. As illustrated in Fig. 3.10, for each
input 2-simplex σ, take three “copies” ξ0, ξ1, ξ2 of Ch σ. We call Facei ξi the dmitry: mark these ξ’s on

the figureexternal face of ξi (even though it is technically a complex), and Facejξi, for
i 6= j, the internal faces. We then identify (that is, “glue together”) Face1 ξ1

and Face1 ξ2, Face2 ξ0 and Face2 ξ2, and Face3 ξ0 and Face3 ξ1. The resulting
complex is a manifold. It is easy to check that M(∂ σ) = ∂ M(σ) = Ch ∂ σ.

Because this complex is a manifold, it cannot solve 2-set agreement.
As illustrated in Fig. 3.11, however, it can solve weak symmetry-breaking.
We color each vertex with black and white “pebbles” (that is, true or false
values) as follows. For each central simplex of ξi, color each node black
except for the one labeled with Pi. For the central simplex of each external
face Facei ξi, color the central (2N −2)-simplex black. The rest are white. It
is easy to check that (1) no 2-simplex is monochrome, and (2) the protocol
is anonymous because the coloring on the boundary is symmetric. It follows
that the 2-dimensional Moebius task separates weak symmetry-breaking and
anonymous set agreement, in the sense that it can implement one, but not
the other.

Now we generalize this construction to even dimensions. Let n = 2N .
For each input n-simplex σ, take n+1 “copies” ξ0, . . . , ξn of Chσ. As before,
we call the complex Facei ξi the external face of ξi and Facejξi, for i 6= j,
the internal faces.

If U is a set of process IDs, the rank of an ID Pi is the number of IDs in U

smaller than Pi. For each j, 0 ≤ j ≤ n, let πj : Π\{j} → Π\{j} be the map
sending the ID with rank r in Π \ {j} to the ID with rank r + N mod 2N .

For each i, and each j 6= i, πj(i), identify the internal face Facej ξi with
Facej ξπj(i). Because πj(i) 6= i, πj(i) 6= j, and πj(πj(i)) = i, each (2N − 1)-
simplex in each internal face lies in exactly two (2N)-simplices, so the result
is a manifold. (This why this construction works only in even dimensions.)

Let σ be an input n-simplex. The Moebius task’s carrier map carries
each proper face τ of σ to Ch τ . It carries σ itself to all n-simplices of
M(σ).

Theorem 3.7.5. The Moebius task cannot solve Set Agreement.
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Proof. The one-round Moebius task is a manifold protocol, so composing
the Moebius task with itself, with immediate snapshot, or with any other
manifold task yields a manifold task. The claim follows from Theorem 3.4.5.

To show this task solves weak symmetry breaking, we again color the
edges with black and white pebbles so that no simplex is monochrome, and
the coloring on the boundary is symmetric. For the central simplex of each
ξi, color each node black except for the one labeled with Pi. For the central
simplex of each external face ξii, color the central (2N − 2)-simplex black.
The rest are white.

Every (2N − 1)-simplex ξ in ξi intersects both a face, either internal or
external, and a central (2N−1)-simplex. If ξ intersects an internal face, then
the vertices on that face are white, and the vertices on the central simplex
are black. If ξ intersects the internal face, then it intersects the white node
of the central simplex of ξi, and a black node of the central simplex of ξii.

Corollary 3.7.6. Set agreement implements weak symmetry breaking but
not vice-versa.

The techniques studied here illustrate how combinatorial and algorith-
mic techniques complement one another: combinatorial techniques are often
effective to prove impossibility, while algorithmic techniques are convenient
to show that something is possible.

3.8 Chapter Notes

The immediate snapshot model is due to Borowsky and Gafni [6] and to
Saks and Zaharoughu [25], who called them block executions. Borowsky and
Gafni also showed that the round-by-round immediate snapshot model is
equivalent to the standard read-write memory model.

The separation between weak symmetry-breaking and anonymous set
agreement is adapted from Gafni, Rajsbaum, and Herlihy [13].

3.9 Exercises

Exercise 3.1. Count the number of simplices in Ch σ, for an n-simplex σ.

Exercise 3.2. Count the number of simplices in the output complex for
(n + 1)-process weak symmetry-breaking.

Exercise 3.3. Compute the Euler characteristic of Chσ, for an n-simplex σ.
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Exercise 3.4. Bridges of Königsberg problem. Hint: use reasoning similar
to the proof of Lemma 3.4.1.

Exercise 3.5. Using read-write memory, implement the Set<ID> object used
in Fig. 3.9. You may assume IDs are integers in the range 1, . . . ,N , for some
N > n + 1. Do not worry about efficiency.
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