
Combinatorial Topology and Distributed

Computing
Copyright 2010 Herlihy, Kozlov, and Rajsbaum All rights reserved

Maurice Herlihy Dmitry Kozlov Sergio Rajsbaum

February 22, 2011

DRAFT

2

DRAFT

Contents

1 Introduction 9

1.1 Decision Tasks . 10

1.2 Communication . 11

1.3 Failures . 11

1.4 Timing . 12

1.4.1 Processes and Protocols 12

1.5 Chapter Notes . 14

2 Elements of Combinatorial Topology 15

2.1 The objects and the maps . 15

2.1.1 The Combinatorial View 15

2.1.2 The Geometric View 17

2.1.3 The Topological View 18

2.2 Standard constructions . 18

2.3 Chromatic complexes . 21

2.4 Simplicial models in Distributed Computing 22

2.5 Chapter Notes . 23

2.6 Exercises . 23

3 Manifolds, Impossibility, and Separation 25

3.1 Manifold Complexes . 25

3.2 Immediate Snapshots . 28

3.3 Manifold Protocols . 34

3.4 Set Agreement . 34

3.5 Anonymous Protocols . 38

3.6 Weak Symmetry-Breaking . 39

3.7 Anonymous Set Agreement versus Weak Symmetry Breaking 40

3.8 Chapter Notes . 44

3.9 Exercises . 44

3

DRAFT

4 CONTENTS

4 Connectivity 47

4.1 Consensus and Path-Connectivity 47

4.2 Consensus in Asynchronous Read-Write Memory 49

4.3 Set Agreement and Connectivity in Higher Dimensions 53

4.4 Set Agreement and Read-Write memory 59

4.4.1 Critical States . 63

4.5 Chapter Notes . 64

4.6 Exercises . 64

5 Colorless Tasks 67

5.1 Pseudospheres . 68

5.2 Colorless Tasks . 72

5.3 Wait-Free Read-Write Memory 73

5.3.1 Read-Write Protocols and Pseudospheres 73

5.3.2 Necessary and Sufficient Conditions 75

5.4 Read-Write Memory with k-Set Agreement 77

5.5 Decidability . 79

5.5.1 Loop Agreement . 80

5.5.2 Read-Write Memory 81

5.5.3 Augmented Read-Write Memory 81

5.6 Chapter Notes . 82

5.7 Exercises . 83

6 Adversaries and Colorless Tasks 85

6.1 Adversaries . 85

6.2 Round-Based Models . 86

6.3 Shellability . 87

6.4 Examples of Shellable Complexes 88

6.5 Carrier Maps and Shellable Complexes 89

6.6 Applications . 91

6.6.1 Asynchronous Message-Passing 91

6.6.2 Synchronous Message-Passing 93

6.6.3 Asynchronous Read-Write Memory 94

6.6.4 Semi-Synchronous Message-Passing 97

6.7 Chapter Notes . 103

6.8 Exercises . 104

7 Colored Tasks 105

7.1 Theorem . 108

7.2 Algorithm Implies Map . 111

DRAFT

CONTENTS 5

7.2.1 Immediate Snapshot 111
7.2.2 Iterated Immediate Snapshot 112

7.3 Map Implies Algorithm . 113
7.3.1 Geometric Standard Chromatic Subdivision 114
7.3.2 Simplicial Approximation 115
7.3.3 Chromatic Simplicial Approximation 116

8 Renaming 127

8.1 Introduction . 127
8.2 An Upper Bound: Renaming with 2n Names 128
8.3 Weak Symmetry-Breaking . 130
8.4 The Index Lemma . 131
8.5 Binary Colorings . 136
8.6 A Lower Bound . 138
8.7 Chapter Notes . 140
8.8 Exercises . 140

DRAFT

6 CONTENTS

DRAFT

Part I: Undergraduate

Course

7

DRAFT

8 CONTENTS

DRAFT

Chapter 1

Introduction

The problem of coordinating concurrent processes remains one of the cen-
tral problems of distributed computing. Coordination problems arise at all
scales in distributed and concurrent systems, ranging from synchronizing
data access in tightly-coupled multiprocessors, to allocating data paths in
networks. Coordination is difficult because modern concurrent and distri-
buted systems are inherently subject to failures and delays: processes may
be delayed without warning for a variety of reasons, including interruptions,
pre-emption, cache misses, communication delays, or processor crashes. De-
lays can vary enormously in scale: a cache miss might delay a process for
fewer than ten instructions, a page fault for a few million instructions, and
operating system pre-emption for hundreds of millions of instructions. At
the limit, delays may be indistinguishable from crashes.

In this book, we use techniques adapted from modern Combinatorial
Algebraic Topology to investigate the circumstances under which various dmitry: I inserted alge-

braic, ok?

maurice: I’m unclear
about the boundary
between algebraic and
combinatorial

coordination task can be solved. We show that both the coordination prob-
lem to be solved, as well as any concurrent algorithm that might solve the
problem, can be modeled as combinatorial structures called chromatic sim-
plicial complexes . Simplifying somewhat, a particular concurrent algorithm

dmitry: is “chromatic”
apropriate here?

maurice: we should em-
pahsize that these con-
structs are commonplace
in topology, but connec-
tion to computation is new
and maybe surprising

solves a particular coordination problem if and only if there exists a map
from one chromatic simplicial complex to the other satisfying certain regu-

dmitry: same question

larity properties.

The appeal of this approach is that it reduces the problem of reasoning
about computations that unfold in time to the more familiar problem of
reasoning about static combinatorial structures. Equally important, we can
call upon a vast literature of results in combinatorial and algebraic topology.

This approach is particularly well-suited for impossibility results. Clas-

9

DRAFT

10 CHAPTER 1. INTRODUCTION

sical combinatorial algebraic topology excels at using topological invariants
to prove that for certain pairs (X,Y) of topological spaces equipped with
additional structure, no continuous map from X to Y will preserve that
additional structure. The same techniques can be adapted to show that
no concurrent algorithm, in a particular model of computation, can solve
a particular coordination problem.

1.1 Decision Tasks

To distill the notion of a distributed computation to its simplest interesting
form, we focus on a simple but important class of problems called deci-
sion tasks. We are given a set of n + 1 sequential processes P0, . . . , Pn.dmitry: sequential: efm

- explain for mathemati-
cians

Each process starts out with a private input value, typically subject to task-
specific constraints. The processes communicate for a while, then each pro-
cess chooses a private output value, also subject to task-specific constraints,
and then halts.

Decision tasks are intended to model reactive systems such as databases,dmitry: reactive: efm

file systems, or flight control systems. An input value represents information
entering the system from the outside world, such as a character typed at
a keyboard, a message from another computer, or a signal from a sensor.
An output value models an effect on the outside world, such as an irrevocable
decision to commit a transaction, to dispense cash, or to launch a missile.

Perhaps the simplest example of a decision task is consensus. Each pro-
cess starts with an input value and chooses an output value. All output
values must agree, and each output value must have been some process’s
input value. If the input values are Boolean, the task is called binary con-
sensus. The consensus task was originally studied as an idealization of the
transaction commitment problem, in which a number of database sites must
agree on whether to commit or abort a distributed transaction. For short,
we call the consensus task for n processes n-consensus.

A natural generalization of consensus is k-set agreement. Like consensus,dmitry: maybe one should
present all these examples
in a more structures way,
not just inline

each process’s output value must be some process’s input value. Unlike
consensus, which requires that all processes agree, k-set agreement requires
that no more than k distinct output values be chosen. Consensus is 1-set
agreement.

In the renaming task, processes are issued unique input names from
a large name space, and must choose unique output names taken from
a smaller name space. To rule out trivial solutions, protocols must be anony-
mous, meaning that the value any process chooses depends only on its inputdmitry: I do not un-

derstand anonymous even
with the explanation -
same as saying the process-
id does not matter?
maurice: maybe want to
say all processes run the
same protocol that cannot
use process ID as input

DRAFT

1.2. COMMUNICATION 11

value and how its steps are interleaved with the steps of the other processes.

In the weak symmetry-breaking task, processes are required to sort them-
selves into two groups, A and B. If all n+1 processes participate, then each
group must have at least one member. If fewer participate, then any distri-
bution is correct. Like renaming, weak symmetry-breaking is required to be
anonymous.

1.2 Communication

Perhaps the oldest communication model is message-passing. Each proces-
sor sends messages to other processes, receives messages sent to it by the
other processes in that round, performs some internal computation, and
changes state. We assume that processes are following a full-information
protocol, which means that each processor sends its entire local state to
every processor in every round.

In shared-memory models, processes communicate by applying opera-
tions to objects in shared memory. The simplest kind of shared-memory
object is read-write memory, where the processes share an array of memory
locations. There are many models for read-write memory. Memory variables
may encompass a single bit, or an arbitrary number of bits, and variables
can be single-writer or multi-writer. Fortunately, all such models all equiv-
alent in the sense that any one can be implemented in a wait-free manner
from any other. From these variables, in turn, one can implement an atomic dmitry: it would be good

to include that formal
derivation, perhaps in the
appendix

snapshot memory : an array where each process writes its own variables and
can atomically reads (“snapshot”) the entire memory.

In models that more accurately reflect today’s multiprocessors, we can
augment read-write memory with shared objects such as stacks, queues, test-
and-set variables, or objects of arbitrary abstract type. In particular, it is
instructive to augment read-write memory with synchronization primitives
that cannot be implemented in read-write memory itself.

1.3 Failures

The theory of concurrent computing is largely the theory of what can be
accomplished in the presence of timing uncertainty and failures. In the most
basic model, the goal is to provide wait-free algorithms that solve particular
tasks when any number of processes may fail. In some timing models, such dmitry: would perceive as

helpful if one distinguished
that from other failure
models, such as bysantine
failure

failures can eventually be detected, while in other models, a failed process
is indistinguishable from a slow process.

DRAFT

12 CHAPTER 1. INTRODUCTION

The wait-free failure model is very demanding, and sometimes we are
willing to settle for less. A t-resilient algorithm is one that works correctly
when the number of faulty processes does not exceed a value t. A wait-free
algorithm for n + 1 processes is n-resilient.

A limitation of these classical models is that they implicitly assume that
processes fail independently. In a distributed system, however, failures may
be correlated for processes running on the same node, in the same network
partition, or managed by the same provider. In a multiprocessor, failures
may be correlated for processes running on the same core, the same proces-
sor, or the same card. To model these situations, it is natural to introduce
the notion of an adversary scheduler that can cause certain subsets of pro-
cesses to fail.maurice: discussion of sur-

vivor sets and cores too
technical for here
maurice: citations belong
in chapter notes only

There are several ways to characterize adversaries. The most straight-
forward is to enumerate the faulty sets: all sets of processes that can fail
in some execution. We find it more convenient to use the dual notions of
cores and survivor sets, as proposed by Junqueira and Marzullo [19, 20].
A core is a minimal set of processes that will not all fail in any execution,
while a survivor set is a minimal set of processes that might not fail in some
execution. For the wait-free adversary, the entire set of processes is the only
core, and for the t-faulty adversary, any set of t + 1 processes is a core. For
the adversary given by faulty sets {∅, P,QR}, the cores are PQ and PR,
and the survivor sets are P and QR.

1.4 Timing

In synchronous timing models, all non-faulty processes take steps at the
same time. In synchronous models, it is usually possible to detect process
failures. In asynchronous models, there is no bound on process step time.
A failed process cannot be distinguished from a slow process. In semi-
synchronous models, there is an upper bound on how long it takes for a
non-faulty process to communicate with another. In this model, a failed
process can be detected following a (usually lengthy) timeout.

1.4.1 Processes and Protocols

A system is a collection of state machines called processes, together with
an environment such as shared read-write memory, other shared objects, or
message queues. Each process executes a finite protocol. It starts in an ini-
tial state, and takes steps until it either fails, meaning it halts and takes no
additional steps, or it halts, usually because it has completed the protocol.

DRAFT

1.4. TIMING 13

1 // code for process i
2 shared state m[2] // shared memory
3 private value state ; // my state
4 void protocol (input v) {
5 state = (v);
6 int j = i + 1 (mod 2) // other process ID
7 m[i] = v;
8 state = append(state, m[j]);
9 }

Processes that have failed are said to be faulty. Each step typically in-
volves communicating with other process’s either through shared objects or
message-passing. Processes are deterministic: each transition is determined
by the process’s current state and the state of the environment.

Steps of different processes may be interleaved. This interleaving is typ-
ically non-deterministic, although the timing properties of the model can
restrict the set of possible interleavings.

The protocol state is given by the set of states of non-faulty processes
and the state of the environment. An execution is a sequence of process
state transitions. An execution e carries the system from one state s to
another state s′. Two executions are equivalent if (1) they leave the system
in the same final system state, and (2) every non-faulty process executes
the same steps in both. Observe, that equivalent executions do not need to
start from the same state, nor do faulty processes need to execute the same
steps before they fail.

Here is a very high-level description of a generic protocol. We omit de-
tails for now because we want a description that applies to many different
models of computation. We consider full-information protocols, where a
process’s local state consists of its input value, and a record of all commu-
nications with other processes. Each process repeatedly (1) communicates
its current local state to the others, (2) collects local states from the others,
and (3) updates its local state to reflect the information collect in Step (2).
The protocol terminates in a final state, where it chooses an output value
based on the current local state.

For example, consider a one-round, two-process protocol, in which pro-
cesses share a two-element memory m. Process A writes m[0] and reads m[1],
while B writes m[1] and reads m[0]. In a one-round protocol (Fig. 1.4.1),
each process writes its input to its memory element, then reads the other’s,

DRAFT

14 CHAPTER 1. INTRODUCTION

and appends that value to its state.

1.5 Chapter Notes

The foundation paper in this area is by Fischer, Lynch, and Paterson [cite],
who showed there is a simple coordination problem that cannot be solved
in a message-passing system if even one process may fail, either by halting,
or by being arbitrary slow.

A first step toward a systematic characterization of asynchronous com-
putability was taken in 1988 by Biran, Moran, and Zaks [5] who gave
a graph-theoretic characterization of the tasks that could be solved by a
message-passing system in the presence of a single failure.

DRAFT

Bibliography

[1] Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt,
and Nir Shavit. Atomic snapshots of shared memory. Journal of the
ACM, 40(4):873–890, 1993.

[2] Hagit Attiya, Amotz Bar-Noy, Danny Dolev, David Peleg, and Rudiger
Reischuk. Renaming in an Asynchronous Environment. Journal of the
ACM, July 1990.

[3] Hagit Attiya, Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer.
Bounds on the time to reach agreement in the presence of timing un-
certainty. J. ACM, 41:122–152, January 1994.

[4] Hagit Attiya and Jennifer Welch. Distributed Computing Fundamentals,
Simulations, and Advanced Topics Second Edition.

[5] Ofer Biran, Shlomo Moran, and Shmuel Zaks. A combinatorial char-
acterization of the distributed tasks which are solvable in the presence
of one faulty processor. In PODC ’88: Proceedings of the seventh an-
nual ACM Symposium on Principles of distributed computing, pages
263–275, New York, NY, USA, 1988. ACM.

[6] Elizabeth Borowsky and Eli Gafni. Generalized FLP impossibility re-
sult for t-resilient asynchronous computations. In STOC ’93: Pro-
ceedings of the twenty-fifth annual ACM symposium on Theory of com-
puting, pages 91–100, New York, NY, USA, 1993. ACM.

[7] Elizabeth Borowsky and Eli Gafni. A Simple Algorithmically Reasoned
Characterization of Wait-Free Computations (Extended Abstract). In
PODC ’97: Proceedings of the sixteenth annual ACM symposium on
Principles of distributed computing, pages 189–198, New York, NY,
USA, 1997. ACM.

141

DRAFT

142 BIBLIOGRAPHY

[8] S. Chaudhuri. Agreement Is Harder Than Consensus: Set Consensus
Problems in totally asynchronous systems. In Proceedings Of The Ninth
Annual ACM Symosium On Principles of Distributed Computing, pages
311–234, August 1990.

[9] Soma Chaudhuri, Maurice Herlihy, Nancy A. Lynch, and Mark R. Tut-
tle. A Tight Lower Bound for k-Set Agreement. In In Proceedings of
the 34th IEEE Symposium on Foundations of Computer Science, pages
206–215, 1993.

[10] Carole Delporte-Gallet, Hugues Fauconnier, Rachid Guerraoui, and An-
dreas Tielmann. The Disagreement Power of an Adversary. In Idit
Keidar, editor, Distributed Computing, volume 5805 of Lecture Notes
in Computer Science, chapter 6, pages 8–21. Springer Berlin / Heidel-
berg, Berlin, Heidelberg, 2009.

[11] M. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility Of Distri-
buted Commit With One Faulty Process. Journal of the ACM, 32(2),
April 1985.

[12] Eli Gafni and Elias Koutsoupias. Three-Processor Tasks Are Undecid-
able. SIAM J. Comput., 28(3):970–983, 1999.

[13] Eli Gafni, Sergio Rajsbaum, and Maurice Herlihy. Subconsensus Tasks:
Renaming Is Weaker Than Set Agreement. In Distributed Computing,
20th International Symposium, Stockholm, Sweden, September 18-20,
2006, Proceedings(DISC), volume 4167 of Lecture Notes in Computer
Science, pages 329–338. Springer, 2006.

[14] Maurice Herlihy and Sergio Rajsbaum. The decidability of distributed
decision tasks (extended abstract). In STOC ’97: Proceedings of the
twenty-ninth annual ACM symposium on Theory of computing, pages
589–598, New York, NY, USA, 1997. ACM.

[15] Maurice Herlihy and Sergio Rajsbaum. The topology of shared-memory
adversaries. In Proceeding of the 29th ACM SIGACT-SIGOPS sympo-
sium on Principles of distributed computing, PODC ’10, pages 105–113,
New York, NY, USA, 2010. ACM.

[16] Maurice Herlihy, Sergio Rajsbaum, and Mark Tuttle. An Axiomatic
Approach to Computing the Connectivity of Synchronous and Asyn-
chronous Systems. Electron. Notes Theor. Comput. Sci., 230:79–102,
2009.

DRAFT

BIBLIOGRAPHY 143

[17] Maurice Herlihy, Sergio Rajsbaum, and Mark R. Tuttle. Unifying syn-
chronous and asynchronous message-passing models. In PODC ’98:
Proceedings of the seventeenth annual ACM symposium on Principles
of distributed computing, pages 133–142, New York, NY, USA, 1998.
ACM.

[18] Maurice Herlihy and Nir Shavit. The topological structure of asyn-
chronous computability. J. ACM, 46(6):858–923, 1999.

[19] Flavio Junqueira and Keith Marzullo. A framework for the design of
dependent-failure algorithms: Research Articles. Concurr. Comput. :
Pract. Exper., 19(17):2255–2269, 2007.

[20] Flavio P. Junqueira and Keith Marzullo. Designing Algorithms for
Dependent Process Failures. Technical report, 2003.

[21] Dimitry Kozlov. Combinatorial Algebraic Topology, volume 21 of Algo-
rithms and Computation in Mathematics. Springer, 1 edition, October
2007.

[22] M. C. Loui and H. H. Abu-Amara. Memory requirements for agreement
among unreliable asynchronous processes, volume 4, pages 163–183. JAI
press, 1987.

[23] Yoram Moses and Sergio Rajsbaum. A Layered Analysis of Consensus.
SIAM J. Comput., 31:989–1021, April 2002.

[24] James Munkres. Elements of Algebraic Topology. Prentice Hall, 2 edi-
tion, January 1984.

[25] Michael Saks and Fotios Zaharoglou. Wait-Free k-Set Agreement is
Impossible: The Topology of Public Knowledge. SIAM Journal on
Computing, 29(5):1449–1483, 2000.

[26] Michael Saks and Fotios Zaharoglou. Wait-Free k-Set Agreement is
Impossible: The Topology of Public Knowledge. SIAM J. Comput.,
29(5):1449–1483, 2000.

[27] Francis Sergeraert. The Computability Problem In Algebraic Topology.
Adv. Math, 104:1–29, 1994.

[28] Edwin H. Spanier. Algebraic topology. Springer-Verlag, New York, 1981.

[29] John Stillwell. Classical Topology and Combinatorial Group Theory.
Springer, 2nd edition, March 1993.

DRAFT

	Introduction
	Decision Tasks
	Communication
	Failures
	Timing
	Processes and Protocols

	Chapter Notes

