
Combinatorial Topology and Distributed

Computing
Copyright 2010 Herlihy, Kozlov, and Rajsbaum All rights reserved

Maurice Herlihy Dmitry Kozlov Sergio Rajsbaum

February 22, 2011

DRAFT

2

DRAFT

Contents

1 Introduction 9

1.1 Decision Tasks . 10

1.2 Communication . 11

1.3 Failures . 11

1.4 Timing . 12

1.4.1 Processes and Protocols 12

1.5 Chapter Notes . 14

2 Elements of Combinatorial Topology 15

2.1 The objects and the maps . 15

2.1.1 The Combinatorial View 15

2.1.2 The Geometric View 17

2.1.3 The Topological View 18

2.2 Standard constructions . 18

2.3 Chromatic complexes . 21

2.4 Simplicial models in Distributed Computing 22

2.5 Chapter Notes . 23

2.6 Exercises . 23

3 Manifolds, Impossibility, and Separation 25

3.1 Manifold Complexes . 25

3.2 Immediate Snapshots . 28

3.3 Manifold Protocols . 34

3.4 Set Agreement . 34

3.5 Anonymous Protocols . 38

3.6 Weak Symmetry-Breaking . 39

3.7 Anonymous Set Agreement versus Weak Symmetry Breaking 40

3.8 Chapter Notes . 44

3.9 Exercises . 44

3

DRAFT

4 CONTENTS

4 Connectivity 47

4.1 Consensus and Path-Connectivity 47

4.2 Consensus in Asynchronous Read-Write Memory 49

4.3 Set Agreement and Connectivity in Higher Dimensions 53

4.4 Set Agreement and Read-Write memory 59

4.4.1 Critical States . 63

4.5 Chapter Notes . 64

4.6 Exercises . 64

5 Colorless Tasks 67

5.1 Pseudospheres . 68

5.2 Colorless Tasks . 72

5.3 Wait-Free Read-Write Memory 73

5.3.1 Read-Write Protocols and Pseudospheres 73

5.3.2 Necessary and Sufficient Conditions 75

5.4 Read-Write Memory with k-Set Agreement 77

5.5 Decidability . 79

5.5.1 Loop Agreement . 80

5.5.2 Read-Write Memory 81

5.5.3 Augmented Read-Write Memory 81

5.6 Chapter Notes . 82

5.7 Exercises . 83

6 Adversaries and Colorless Tasks 85

6.1 Adversaries . 85

6.2 Round-Based Models . 86

6.3 Shellability . 87

6.4 Examples of Shellable Complexes 88

6.5 Carrier Maps and Shellable Complexes 89

6.6 Applications . 91

6.6.1 Asynchronous Message-Passing 91

6.6.2 Synchronous Message-Passing 93

6.6.3 Asynchronous Read-Write Memory 94

6.6.4 Semi-Synchronous Message-Passing 97

6.7 Chapter Notes . 103

6.8 Exercises . 104

7 Colored Tasks 105

7.1 Theorem . 108

7.2 Algorithm Implies Map . 111

DRAFT

CONTENTS 5

7.2.1 Immediate Snapshot 111
7.2.2 Iterated Immediate Snapshot 112

7.3 Map Implies Algorithm . 113
7.3.1 Geometric Standard Chromatic Subdivision 114
7.3.2 Simplicial Approximation 115
7.3.3 Chromatic Simplicial Approximation 116

8 Renaming 127

8.1 Introduction . 127
8.2 An Upper Bound: Renaming with 2n Names 128
8.3 Weak Symmetry-Breaking . 130
8.4 The Index Lemma . 131
8.5 Binary Colorings . 136
8.6 A Lower Bound . 138
8.7 Chapter Notes . 140
8.8 Exercises . 140

DRAFT

6 CONTENTS

DRAFT

Part I: Undergraduate

Course

7

DRAFT

46 CONTENTS

DRAFT

Chapter 4

Connectivity

In Chapter 3, we used Sperner’s Lemma to show that k-set agreement has no
protocol in any model of computation where protocol complexes are mani-
folds. We saw one specific model, the round-by-round immediate snapshot
model, whose protocol complexes are manifolds. Unfortunately, however,
protocol complexes in naturally-arising models of computation are typically
not manifolds. In this chapter, we show how to use more powerful mathe-
matical techniques to establish when a model permits a protocol for k-set
agreement and related tasks.

4.1 Consensus and Path-Connectivity

We start with a simple, model-independent topological condition that en-
sures that a particular model of computation cannot solve consensus.

Recall that in the consensus task, each process starts with a private input
value and halts with an output value such that (1) all processes choose the
same output value, and (2) the output value chosen was some process’s
input. For lower bounds, it is enough to consider a fixed-input form of the
task. The task is given by (σ, skel0 σ, skel0(·)), where σ = {~s0, . . . , ~sn} is an
n-simplex and skel0 σ is the set of vertices of σ. Each process Pi has ~si as its
only possible input. Consider an execution where exactly m ≤ n processes
participate. If τ is the face of σ defined by their inputs, then all processes
halt with the same vertex of σm. It is easy to see that any lower bounds for
the fixed-input form apply to the general case as well.

Informally, consensus requires that all participating processes “commit”
to a single value. Expressed as a protocol complex, executions in which they
commit to one value must be separate, in some sense, from executions in

47

DRAFT

48 CHAPTER 4. CONNECTIVITY

which they commit to another value. We will now make this notion more
precise.

Let K be a complex.

Definition 4.1.1. An edge path (or simply a path) between vertices ~u and ~v

in K is a sequence of vertices ~u = ~v0, . . . , ~vℓ = ~v such that K contains an
edge between each ~vi and ~vi+1, 0 ≤ i < ℓ.

Definition 4.1.2. A complex K is path-connected if there is a path between
every two vertices in K.

In the next theorem, we consider a protocol in an arbitrary model that
admits at least one process failure. If all processes participate, the protocol
complex must be path-connected. If one process does not participate, then
the protocol complex need only be non-empty. (We do not need to say
anything about how the protocol behaves for fewer participants.)

Theorem 4.1.3. If the protocol complex P(σ) is path-connected for every
input n-simplex, and non-empty for every input (n − 1)-simplex, then P(·)
cannot solve consensus.

Proof. Recall that Face0 σ is the input simplex that excludes ~s0. The sub-
complex P(Face0 σ) represents all executions in which P0 does not partici-
pate. By hypothesis, this complex is non-empty, so we can pick an arbitrary
vertex ~p in P(Face0 σ). (The vertex ~p represents the final state of a process
after some protocol execution in which P0 does not participate.) The deci-
sion map δ : P(σ) → skel0 σ sends ~p to a vertex ~si of σ, where i 6= 0.
Informally, Pi is the “winner” of the execution that led to ~p. P0 cannot be
the winner because it did not participate in this execution.

In the same way, pick a vertex ~q in P(Facei σ), where Pi is the winning
process in ~p. The decision map δ : P(σ) → skel0 σ sends ~q to a vertex ~sj

of σ, where Pi and Pj are distinct. (The process Pi cannot be the “winner”
of the execution leading to ~q because it did not participate.)

Because P(σ) is path-connected, there is a path ~p = ~p0, . . . , ~pℓ = ~q

such that each successive pair {~pk, ~pk+1} forms an edge of the complex.
Because the decision map δ is a simplicial map, it carries each edge to an
edge in the output complex. For consensus, however, each output simplex
consists of a single vertex of σ, so δ maps both ~pk and ~pk+1 to the same
vertex. By construction, the decision map δ carries ~p0 to ~si. By a simple
inductive argument, it sends every vertex in the path to ~si, contradicting
our hypothesis that δ(~q) = ~sj, where i 6= j.

DRAFT

4.2. CONSENSUS IN ASYNCHRONOUS READ-WRITE MEMORY 49

This impossibility result is model-independent: it requires only that the
model of computation permit at least one failure, so the protocol complex
is defined on an (n − 1)-simplex. We can use this theorem to derive three
kinds of lower bounds.

• In asynchronous models, the adversary can typically enforce these con-
ditions for every protocol complex. For these models, we can prove
impossibility : consensus cannot be solved by any protocol.

• In synchronous models, the adversary can typically enforce these con-
ditions for every r-round protocol, where r is a parameter of the model.
For these models, we can prove communication lower bounds: consen-
sus cannot be solved by any protocol that runs in r or fewer rounds.

• In semi-synchronous models, the adversary can typically enforce these
conditions for every protocol that runs in less than a particular time
T , where T is a parameter of the model. For these models, we can
prove time lower bounds: consensus cannot be solved by any protocol
that runs in time less than T .

In the next section, we apply this theorem to prove the impossibility of
consensus in any asynchronous read-write model that permits at least one
failure.

4.2 Consensus in Asynchronous Read-Write Mem-

ory

In this section, we show how to apply the general claim of Theorem 4.1.3 to
a specific model of computation. We consider the asynchronous read-write
model, in which processes share an array M of single-writer, multi-reader
variables. Each process Pi has a dedicated array entry, M [i], that it alone
can write. Any process can read any other’s array entry.

This model seems to be much less structured than the immediate snap-
shot model considered in earlier chapters. Indeed, the protocol complexes
for this model are not manifolds. (Later on, we will prove the surprising fact
that the wait-free read-write model is, in fact, equivalent to the immediate
snapshot model.)

This section introduces a style of proof that we will use several times,
called a critical state argument. This argument is useful in asynchronous
models, where processes can take steps independently. As noted earlier, we
can think of the system as a whole as a state machine, where each local

DRAFT

50 CHAPTER 4. CONNECTIVITY

process state is a component of the global state. Each input n-simplex σ

encodes a possible initial system state, the protocol complex P(σ) encodes all
possible protocol executions starting from σ, and each facet of P(σ) encodes
one possible final state. In the beginning, all interleavings are possible,
and the entire protocol complex is reachable. At the end, an execution has
been chosen, and only a single simplex remains reachable. In between, as
the execution unfolds, we can think of the reachable part of the protocol
complex as “shrinking” over time, as each step renders certain final states
inaccessible.

We want to show that a particular property, such as having a path-
connected reachable protocol complex, that holds in each final protocol state,
also holds in the initial state. We argue by contradiction. We assume the
property does not hold at the start, and manoevre the protocol into a critical
state where the property still does not hold, but where any further step
by any process will make it hold from that point on (“henceforth”). We
then do a case analysis of each of the process’s possible next steps, and use
a combination of model-specific reasoning and basic topological results to
show that the desired property must already have held in the critical state,
a contradiction.

Let σ be an input m-simplex, 0 ≤ m ≤ n, and let s be a global state
reached by running P from the initial state given by σ. A simplex τ of P(σ)
is reachable from s if there is an execution starting from s in which each
process in id(τ) completes the protocol with the local state specified in τ .
The reachable complex from s, written P(s), is the union of the reachable
simplices from s.

Notice that any input simplex σ defines an initial state, from which the
reachable complex is just P(σ). For brevity, we say a state is reachable from
input simplex σ if it is reachable from the initial state whose process IDs
and inputs are given by σ.

Definition 4.2.1. Formally, a property is a predicate on isomorphism classes
of simplicial complexes. A property is eventual if it holds for any complex
consisting of a single n-simplex and its faces.

For brevity, we say that a property ℘ holds in global state s if ℘ holds
for P(s), the reachable complex from s.

Definition 4.2.2. A global state s is critical for an eventual property ℘ if ℘

does not hold in s, but holds for every state reachable from s.

Informally, a critical state is the last state in an execution where ℘ fails
to hold.

DRAFT

4.2. CONSENSUS IN ASYNCHRONOUS READ-WRITE MEMORY 51

Lemma 4.2.3. Every eventual property either holds in every state, or it has
a critical state.

Proof. A process is non-critical if its next step will not make an eventual
℘ henceforth hold. Starting from state s, repeatedly pick a non-critical
pending process and run it until it is no longer non-critical. Because the
protocol must eventually terminate in a state where ℘ holds, advancing non-
critical processes in this way will eventually leave the protocol in a state
where ℘ does not hold, but all processes are either decided or about to make
℘ henceforth hold. This state is the desired critical state.

We need a way to reason about the path-connectivity of a complex from
the path-connectivity of its components. The lemma that follows is a special
case of the more powerful Nerve Lemma used later on to reason about higher-
dimensional notions of connectivity.

Let K be a complex that can be expressed as the union of components
over some finite index set I:

K =
⋃

i∈I

Ki.

Lemma 4.2.4. If each Ki is path-connected, and each pair-wise intersection
Ki ∩ Kj is non-empty, then K itself is path-connected.

Proof. Left as an exercise.

We now show that every wait-free read-write protocol satisfies the con-
ditions of Theorem 4.1.3. We will prove a stronger property than necessary:
for any n, if σ is an input n-simplex, then P(σ) is path-connected. (This
condition implies that P(σ) is non-empty if dimσ = n − 1.)

Lemma 4.2.5. If σ is an input n-simplex, then P(σ) is path-connected.

Proof. We argue by induction on n. When n = 0, the protocol is determin-
istic, and P(σ) is a single vertex.

For the induction hypothesis, assume that P(σ′) is path-connected for
every input m-simplex σ′, for m < n. By way of contradiction, assume that
P(σ) is not path-connected for some n-simplex σ. Path-connectivity is an
eventual property, so by Lemma 4.2.3 it has a critical state c, such that P(c)
is not path-connected, but each P(ci) is path-connected, where ci is the new
state if Pi takes the next step.

P(c) =
⋃

i∈Π

P(ci).

DRAFT

52 CHAPTER 4. CONNECTIVITY

Because c is a critical state for path-connectivity, each P(ci) is path-connected.
We will show that for any distinct Pi and Pj , the complex P(ci) ∩ P(cj)
is non-empty. By Lemma 4.2.4, it follows that P(c) was already path-
connected, contradicting the assumption c is a critical state.

The rest is a case analysis considering which combinations of operations
Pi and Pj could be about to do in c.

1. Suppose Pj is about to read. Consider the execution in which Pi

runs to completion before Pj takes a step. Because Pi moved first,
this execution leads to a simplex in P(ci). Next, consider the same
execution except that Pj reads, then Pi runs to completion before Pj

takes another step. Because Pj moved first, this execution leads to a
simplex in P(cj). These two executions are indistinguishable to Pi, so
both produce the same vertex for Pi, which lies in P(ci) ∩ P(cj).

2. Suppose Pi and Pj are about to write to distinct variables. Consider
the execution in which Pi writes, Pj writes, and Pi runs to completion
before Pj takes another step. Next, consider the execution in which Pi

writes, Pj writes, and Pi runs to completion before Pj takes another
step. These two executions are indistinguishable to Pi, so both produce
the same vertex for Pi, which lies in P(ci) ∩ P(cj).

dmitry: something is
wrong with 2 and 3 here

3. Suppose Pi and Pj are about to write to distinct variables. Consider
the execution in which Pi runs to completion before Pj takes a step.
Because Pi moved first, this execution leads to a simplex in P(ci).
Consider the execution in which Pj writes, and Pi runs to comple-
tion before Pj takes another step. These two executions are indistin-
guishable to Pi, so both produce the same vertex for Pi, which lies in
P(ci) ∩ P(cj).

We have just shown the following.

Theorem 4.2.6. Let P(·) be a wait-free read-write protocol complex. For
every input simplex σ, P(σ) is path-connected.

Corollary 4.2.7. It is impossible to solve consensus using wait-free read-write
memory.

DRAFT

4.3. SET AGREEMENT AND CONNECTIVITY IN HIGHER DIMENSIONS53

4.3 Set Agreement and Connectivity in Higher Di-

mensions

In the previous section, we drew a connection between a topological prop-
erty, path-connectivity, and the impossibility of solving a particular coor-
dination problem, consensus. In this section, we draw a similar connection
between a family of topological properties, called k-connectivity, and the
impossibility of solving a family of coordination problems, k-set agreement.

We can rephrase notions of connectivity in terms of spheres and disks. If
a complex is path-connected, then there is a path between any two vertices.
Think of these two vertices as the image, under a continuous map, of a 0-
dimensional sphere (the points ±1 on the real line). The existence of the
path means that this map from the 0-sphere can be extended to a continuous
map of the 1-disk (the closed interval [−1, 1]). We say that a path-connected
complex is 0-connected.

This notion generalizes to higher dimensions in a natural way. A loop
in a complex K is a path whose starting and end vertices are the same.
A loop can be considered a continuous map f : S1 → |K|, carrying the
1-sphere S1 to the polyhedron of K. A complex is 1-connected (or simply-
connected) if any such map can be extended to the 2-disk: F : D2 → |K|.
In general, a complex is k-connected if any continuous map f : Sk → |K|
can be extended to F : Dk+1 → |K|. One way to think about this property
is that that any map f that cannot be filled in represents an n-dimensional
“hole” in the complex. We will prove that the wait-free read-write protocol
complex has no “holes” in dimension n or lower.

We have already seen that there is no protocol for k-set agreement in
any model of computation where every protocol complex is a k-manifold.
We now prove a stronger result: there is no protocol for k-set agreement
in any model of computation where certain protocol complexes are (k − 1)-
connected. First, we must introduce a few new mathematical concepts. maurice: Some of this ma-

terial is duplicated in the
“geometric view” part of
the topology chapter

Although we have defined vertices, simplices, and complexes as abstract
sets, it is sometimes convenient to treat them as point sets in Euclidean
space. Let K be a complex. Each vertex ~v of K corresponds to a point
|~v|. For each simplex σ = {~s0, . . . , ~st}, the vertices correspond to affinely-
independent points1 {|~s0|, . . . , |~st|}, the geometric simplex |σ| is their convex
hull. The geometric complex |K| corresponds to a set of geometric simplices
arranged so that that every two simplices intersect either in a common face,

1Points x0, . . . , xn are affinely independent if x1 −x0, . . . , xn −x0 are linearly indepen-

dent.

DRAFT

54 CHAPTER 4. CONNECTIVITY

Figure 4.1: The complexes Bary σ and Bary2 σ.

or not at all. The point set |K| occupied by a geometric complex K is called
its polyhedron. For ease of presentation, we sometimes omit the distinc-
tion between abstract and geometric complexes when there is no danger of
ambiguity.

Any point x of |K| has a unique expression in terms of barycentric co-
ordinates:

x =

t
∑

i=0

ti · |~si|

where the ~si are the vertices of a t-simplex σt of K, and for 0 ≤ i ≤ t,
∑

i ti = 1, 0 < ti ≤ 1.maurice: We mention sub-
divisions earlier, although
we don’t use them. Do
we want to define them in
Chapter 2?

A geometric complex is subdivided by partitioning each of its simplices
into smaller simplices without changing the complex’s polyhedron. More
formally, a complex B is a subdivision of A if

• For each simplex β of B, there is a simplex α of A such that |β| ⊆ |α|.

DRAFT

4.3. SET AGREEMENT AND CONNECTIVITY IN HIGHER DIMENSIONS55

• For each simplex α of A, |α| is the union of a finite set of polyhedrons
of simplices of B.

We would like to go back and forth between simplicial maps of complexes
and continuous maps of polyhedrons. One direction is easy. Any simplicial
map φ : A → B can be turned into a piece-wise linear map |φ| : |A| → |B|
by extending over barycentric coordinates:

|φ|(x) =
∑

i

ti · φ(~si).

Going from a continuous map to a simplicial map is more involved. We would
like to “approximate” a continuous map from one polyhedron to another
with a simplicial map on related complexes. Let A and B be complexes,

φ :A → B

f :|A| → |B|

where φ is a simplicial map of complexes and f a continuous map of their
polyhedrons. We say that φ is a simplicial approximation to f if

f(St~v) ⊆ Stφ(~v)

for every vertex ~v of A.
The diameter diam σ of a geometric simplex |σ| is the length of its longest

edge. The diameter diamK of a geometric complex |K| is the maximum
diameter of any of its simplices. A subdivision is diameter-shrinking if

diam DivK < c · diamK

for some constant 0 < c < 1 (which may depend on K).
Not every continuous map f : |A| → |B| has a simplicial approximation

mapping A to B. The following theorem, however, states we can always find
a simplicial approximation defined over a sufficiently refined subdivision
of A.

Fact 4.3.1 (Simplicial Approximation Theorem). Let A and B be complexes,
and Div a diameter-shrinking subdivision. Given a continuous map f :
|A| → |B|, there is an N such that f has a simplicial approximation
φ : DivN A → B.

It is often convenient to use the following specific subdivision.

Definition 4.3.2. The barycentric subdivision of a simplex σ, written Bary σ,
is the complex whose vertices are indexed by faces of σ. A set of vertices
σ0, . . . , σk forms a simplex if σ0 ⊂ · · · ⊂ σk.

DRAFT

56 CHAPTER 4. CONNECTIVITY

Discard vertexes for faces

of dimension < n-k

Discard vertexes for faces

of dimension < n-k

1

Figure 4.2: Truncated Barycentric Subdivision Bary1 σ2

Sometimes it is useful to apply repeated subdivisions: BaryN K is the
complex constructed by taking N repeated barycentric subdivisions. Fig-
ure 4.1 shows two complexes: Bary σ2 and Bary2 σ2, where σ2 is a complex
consisting of a single 2-simplex. The vertex corresponding to τ ⊆ σ is usually
placed at the barycenter (centroid) of τ .maurice: redraw Fig fig-

ure:connect:truncated Just as for consensus, it is convenient to recast k-set agreement in the
following fixed-input form. The task is (σ, skelk−1 σ, skelk−1(·)), where the
input complex consists of a single simplex σ = {~s0, . . . , ~sn}, where process
Pi has ~si as its only possible input. Consider an execution of the task where
exactly m ≤ n processes participate. If τ is the face of σ defined by their
inputs, then each process halts with a vertex of τ , and together the pro-
cesses choose at most k − 1 distinct vertices. Collectively, the processes
choose vertices on a simplex in skelk−1(τ). Using essentially the same re-
ductions as for consensus, we can show this fixed-input formulation of k-set
agreement is equivalent to the usual multi-input definition. Later, we will
extend k-set agreement to an arbitrary colored input complex as the task

DRAFT

4.3. SET AGREEMENT AND CONNECTIVITY IN HIGHER DIMENSIONS57

(I, skelk−1(I), skelk−1(·)).

Definition 4.3.3. The truncated barycentric subdivision of a simplex σ, Baryk σ,
is the barycentric subdivision omitting vertices corresponding to faces of di-
mension less than n − k.

For example, Baryn σ is just Bary σ, while Bary0 σ is a single vertex, the
barycenter of σ. (See Fig. 4.2.) Because every n-simplex of Bary σ loses
exactly n − k vertices, this complex is a pure k-dimensional complex. We
are interested in arbitrary subdivisions of this complex, written Div Baryk σ.
The carrier of a simplex τ in Div Baryk σ is the carrier it inherits from
Div Bary σ. maurice: Do we want

to use “carrier” or “sup-
port”? Is carrier confusing
with carier map?

When k = n, the following technical lemma is the same as Sperner’s
Lemma.

Lemma 4.3.4. If γ : Div Baryk σ → σ is a simplicial map that sends each
vertex to a vertex in its carrier, then γ sends some k-simplex onto a k-face
of σ.

Proof. We “put back” the vertices discarded by Baryk σ to construct a new
subdivision of σ. Take Bary σ, and apply the subdivision Div to the sub-
complex Baryk σ ⊆ Bary σ.

Every n-simplex τ of Bary σ can be written as α ∪ β, where β is a
k-simplex of Baryk σ. The subdivision Div induces a subdivision of τ by
subdividing β and taking the join with α: α · Div β. Define the subdivision
Div∗

k σ by applying this subdivision to each simplex of Bary σ. Note that
Div Baryk σ ⊂ Div∗

k σ, and every n-simplex in Div∗
k σ can be expressed as

α ∪ γ, where γ is an k-simplex in Div Baryk σ.
Next, extend φ to φ∗ : Div∗

k σ → σ to send every vertex to a vertex in
its carrier. Sperner’s Lemma implies that φ∗ sends some n-simplex τ onto
σ. Because τ = α ∪ γ, where γ is an k-simplex in Div Baryk σ, φ sends a
k-simplex γ of Div Baryk σ onto an k-face of σ.

We can reformulate Theorem 4.1 as follows: a protocol cannot solve 1-set
agreement (consensus) if the image of each n-simplex is 0-connected (path-
connected), and each (n − 1)-simplex is (−1)-connected (non-empty). This
formulation suggest the following generalization: a protocol cannot solve
k-set agreement if the image of each n-simplex is (k − 1)-connected, each
(n − 1)-simplex is (k − 2)-connected, and so on down to dimension n − k.

Theorem 4.3.5. Let P(·) be an (n + 1)-process protocol complex. If P(σ) is
(k− (n− dim σ)− 1)-connected for every input simplex σ, then P(·) cannot
solve k-set agreement.

DRAFT

58 CHAPTER 4. CONNECTIVITY

Proof. We exploit the connectivity of the protocol complex to construct a
continuous map from the truncated barycentric subdivision to the protocol
complex,

f : |Baryk σ| → |P(σ)|.

This map is carrier-preserving : for each simplex β ∈ Baryk σ, f(β) ⊆
|P(Car(β, σ))|. We construct this map inductively on the skeleton. Recall
that each vertex ~v of Baryk σ is indexed by a face σ~v of σ of dimension at
least n−k. For each vertex ~v of Baryk σ, P(σ~v) is non-empty by hypothesis,
so we can define f0(~v) to be any vertex in P(σ~v).maurice: too many sub-

scripts? Maybe σi instead
of σ~bi

?
For the induction step, assume we have a carrier-preserving continuous

map,

fℓ−1 : | skelℓ−1 Baryk σ| → |P(σ)|.

Let β =
{

~b0, . . . ,~bℓ

}

be an ℓ-simplex of Baryk σ with carrier κ. We can

reindex the vertices of β so that σ~b0
⊂ · · · ⊂ σ~bℓ

. Since dimσ~b0
= n − k,

dim σ~bℓ

≥ n − k + ℓ, so dim κ ≥ n − k + ℓ. By hypothesis, P(κ) is (ℓ − 1)-

connected, so we can extend fℓ−1 on skelℓ−1 β to

fℓ : |β| → |P(κ)|.

In the same way, we can extend fℓ−1 over each ℓ-simplex of Baryk σ. Each
of these extensions agree on the (ℓ − 1)-skeleton, so together they define a
continuous map,

fℓ : | skelℓ Baryk σ| → |P(σ)|,

sending the image of each simplex to its carrier. Note that skelk Baryk σ =
Baryk σ, so the desired map f is just fk.

The map f has a carrier-preserving simplicial approximation

φ : Chn Baryk σ → P(σ).

Composing φ with the decision map δ yields a map

γ : Chn Baryk σ
φ

−−−−→ P(σ)
δ

−−−−→ σ.

The map γ, the composition of φ and δ, is carrier-preserving, so by Lemma 4.3.4,
it sends some k-simplex τ of Chn Baryk σ onto a k-face of σ. It follows that
the decision map δ sends the simplex φ(τ) onto a k-face of σ, implying that
there is some execution in which k+1 processes choose k+1 distinct values,
contradicting the specification for k-set agreement.

DRAFT

4.4. SET AGREEMENT AND READ-WRITE MEMORY 59

4.4 Set Agreement and Read-Write memory

In this section, we use Theorem 4.3.5 to show that there is no (n + 1)-
process n-set agreement protocol for wait-free read-write memory. This
result implies Theorem 4.2.6. Our arguments in this section are higher-
dimensional analogs of the critical-state arguments used in Section 4.2.

To satisfy the conditions of Theorem 4.3.5, and to show that n-set agree-
ment is impossible in wait-free read-write memory, it is enough to show that
for any wait-free read-write protocol P(·) and any input simplex σ, P(σ) is
(dim σ)-connected.

The Nerve Lemma

To compute the connectivity of a complex, we would like to break it down
into simpler components, compute the connectivity of each of the compo-
nents, and then “glue” those components back together in a way that permits
us to to deduce the connectivity of the original complex from the connec-
tivity of the components.

To this end, we use the Nerve Lemma, a basic theorem of combinatorial
topology,

Definition 4.4.1. The nerve of a family of sets {A0, . . . , An} captures how its
members intersect. It is the simplicial complex whose vertex set is {0, . . . , n}
with simplices given by:

N (A0, . . . , An) =

{

σ ⊆ {0, . . . , n} :
⋂

i∈σ

Ai 6= ∅

}

.

For example, {0, 1, 2} is a simplex in N (A0, . . . , An) if A0 ∩A1 ∩A2 is non-
empty.

Definition 4.4.2. Let I be a finite index set. A set of complexes {Ki|i ∈ I}
is a cover for K if K = ∪i∈IKi.

Informally, the nerve of a covering describes how the elements of the
covering “fit together” to form the original complex. Note that the nerve is
determined by the covering, not just the complex.

Lemma 4.4.3 (Nerve Lemma). Let {Ki|i ∈ I} be a cover for a complex K.
For any index set J ⊂ I, define KJ = ∩j∈JKj . If each KU is either (k−|U |+
1)-connected or empty, then K is k-connected if and only if N (Ki|i ∈ I) is
k-connected.

DRAFT

60 CHAPTER 4. CONNECTIVITY

Reachable Complexes

To apply the Nerve Lemma to wait-free shared-memory computation, we
need some additional concepts. If s is a protocol state, then for each process
Pi, si denotes the state if Pi takes the next step from s. (If Pi has decided,
define si to be s.) Let P(s) be the reachable complex from s, and P(si) =
Pi(s) the reachable complex from si. The Pi(s) form a cover for P(s).

For U ⊆ Π, define

PU (s) =
⋂

i∈U

Pi(s).

By convention, P∅ = P(s).

For brevity, we often write Pi and PU when the state s is clear from
context. Informally, each simplex in PU corresponds to an execution from
s in which some process in U went first, but no process can tell which. For
ease of exposition, when we say that U contains an operation, (or that the
operation is in U) we mean that for some i ∈ U , Pi has that operation
pending in s. We also say that an execution e is in P(s) if the simplex
defined by the decision values of the processes in e is a simplex in P(s).

Here is a simple example. Let n = 2, and suppose s has three pending
operations: P0 and P1 are about to read from M [2], which currently holds
value u, and P2 is about to write value v to M [2]. Let s0 be the state reached
from s by letting P0 take the first step, and so on.

First, let us focus on read operations alone. Let U = {0, 1}, so

PU = P0 ∩ P1.

In every execution in P0, P0 reads the old value u, and similarly for P1 and
P1, so in every execution in PU , both P0 and P1 read value u. There is no
execution in PU where P0 or P1 reads the new value v. Let s′ be the state
reached from s by letting P0 and P1 take the next steps (in either order).
Any execution starting in s where it is ambiguous whether P0 or P1 went
first is equivalent to an execution starting from s′, i.e., PU = P(s′).

Next, let us focus on the interaction between a read and a write. Let
V = {0, 2}, so

PV = P0 ∩ P2.

We have seen that in every execution in P0, P0 reads the old value u. In
every execution in P2, however, P2 writes v before P0 reads, so P0 reads v.
Of course, P0 cannot read both values in a single execution. It follows that
in every execution in PV (s), P0 takes no further steps after reading. Let

DRAFT

4.4. SET AGREEMENT AND READ-WRITE MEMORY 61

P0
2 (·) be the protocol, starting from s2, identical to P except that P0 does

not participate. We conclude that PV (s) = P0
2 (s).

In both cases, we were able to identify the intersection of certain reach-
able complexes from s with the (simpler) reachable complex for a related
protocol, either with fewer pending operations, or fewer participating pro-
cesses.

We are now ready to turn these examples into lemmas. A pending read
(or write) operation in s by a process in U is conflicting if there is another
pending write (or read) operation to the same memory entry. Otherwise, it is
non-conflicting. Two operations commute if, whenever they are adjacent in
an execution, reversing their order does not change any operation’s results.

Lemma 4.4.4. If U contains a non-conflicting operation by Pi, then

PU = PU\{i}(si).

Proof. Let xi be Pi’s pending operation in s. Because every execution e in
PU is equivalent to an execution in which xi appears first, xi must commute
with every operation that precedes it in e

First, we show that PU (s) ⊆ PU\{i}(si). Let e be an execution in Pi(s)∩
Pj(s), where Pj ’s pending operation is xj. Because e is an execution in
Pj(s), it is equivalent to an execution xj · e

′. Because xi commutes with its
predecessors in xj · e′, this execution is equivalent to xj · xi · e′′, which is
equivalent to xj · xi · e

′′. It follows that e is in Pj(si).

Pi(s) ∩ Pj(s) ⊆ Pj(si)

Pi(s) ∩
⋂

j∈U\{i}

Pj(s) ⊆
⋂

j∈U\{i}

Pj(si)

PU (s) ⊆ PU\{i}(si)

For the reverse inclusion, let e be an execution in Pj(si), for j 6= i. This
execution is equivalent to an execution xj · e

′. It is also equivalent to ex-
ecutions xi · xj · e′ and xj · xi · e

′ starting from s. It follows that e′′ is in
Pi(s) ∩ Pj(s).

Pj(si) ⊆ Pi(s) ∩ Pj(s)
⋂

j∈U\{i}

Pj(si) ⊆ Pi(s) ∩
⋂

j∈U\{i}

Pj(s)

PU\{i}(si) ⊆ PU (s)

DRAFT

62 CHAPTER 4. CONNECTIVITY

A simple inductive argument on the number of operations yields:

Corollary 4.4.5. If U consists entirely of non-conflicting operations, then

PU = P(s′),

where s′ is a state reachable from s.

Let Pi(s) denote the reachable complex from state s through executions
in which Pi takes no steps. Note that Pi(·) is itself a wait-free read-write
protocol complex for n (instead of n + 1) processes.

Lemma 4.4.6. If ri is a conflicted read in U , then

PU (s) = Pi
U\{i}(s).

Proof. First, we show that PU (s) ⊆ Pi
U\{i}(s). Let e be an execution in

Pi(s)∩Pj(s), where Pj ’s pending operation is xj . Because e is an execution
in Pj(s), it is equivalent to an execution xj · e

′. Because wj overwrites the
value read by ri, Pi takes no steps in e′, so Pi(s) ∩ Pj(s) ⊆ Pi

j(s). Because
Pi takes no steps in Pi(s) ∩ Pj(s), it takes no steps in PU (s).

Pi(s) ∩ Pj(s) ⊆ Pi
j(s)

Pi(s) ∩
⋂

j∈U\{i}

Pj(s) ⊆
⋂

j∈U\{i}

Pi
j(s)

PU (s) ⊆ Pi
U\{i}(s)

For the reverse inclusion, let e be an execution in Pi
j(s). This execution is

equivalent to executions wj · e′ in Pj(s) and ri · wj · e′ in Pi(s), where Pi

takes no steps in e′. (It is permissible for Pi to have different views in the
two executions because it never decides, and these executions generate no
vertices for Pi.)

Pi
j(s) ⊆ Pi(s) ∩ Pj(s)

⋂

j∈U\{i}

Pi
j(s) ⊆ Pi(s) ∩

⋂

j∈U\{i}

Pj(s)

Pi
U\{i}(s) ⊆ PU (s)

A simple inductive argument on the number of conflicted operations
yields:

DRAFT

4.4. SET AGREEMENT AND READ-WRITE MEMORY 63

Corollary 4.4.7. If U includes conflicting operations, then

PU = P ′(s′),

where P ′(·) is a protocol for m + 1 processes, where n − |U | ≤ m < n.

Corollaries 4.4.5 and 4.4.7 imply that:

Corollary 4.4.8. In any state s and any U ⊆ Π, PU (s) is non-empty.

The subcomplexes Pi(s) form a cover of P(s). By Corollary 4.4.8, every
PU (s) is non-empty, implying that this covering has a simple nerve:

Corollary 4.4.9. The nerve complex N (P0, . . . ,Pn) is just the n-simplex ∆n.

Knowing that the nerve complex of the covering has a simple structure
does not by itself say anything about the connectivity of P(s). We will need
to compute the connectivity of each PU (s) before we can draw conclusions
about the connectivity of P(s).

4.4.1 Critical States

Theorem 4.4.10. For every wait-free read-write protocol, P(σ) is (dim σ−1)-
connected.

Proof. We will show a stronger property: for every state s reachable from
an initial state σ, where n = dimσ, P(s) is (n − 1)-connected.

We argue by induction on n = dim σ. For the base case, when n = 0,
P(σ) is a single vertex, which is (-1)-connected (non-empty).

For the induction hypothesis, assume P(s) is (m−1)-connected for (m+
1)-process protocols, where 0 ≤ m < n.

Being (n− 1)-connected is an eventual property, so it has a critical state
c such that P(c) is not (n− 1)-connected, but P(s) is (n− 1)-connected for
every state reachable from c. In particular, each Pi(c) is (n− 1)-connected,
where the Pi(c) are a covering of P(c).

Now consider each PU . If U contains only non-conflicting operations,
then by Corollary 4.4.5, it is equivalent to P(s), where s is a state reachable
from c. Because c is critical for (n−1)-connectivity, P(s) = PU (c) is (n−1)-
connected.

If U contains conflicting operations, then by Corollary 4.4.7, it is equiv-
alent to P ′(s′), where P ′(·) is an (m + 1)-process wait-free read-write pro-
tocol for n − |U | ≤ m < n processes. By the induction hypothesis for n,
P ′(s′) = PU (c) is (n − |U |)-connected.

Either way, each PU (c) is (n − |U |)-connected, so by the Nerve Lemma,
P(s) is (n − 1)-connected if and only if the Nerve N (P0(c), . . . ,Pn(c)) is

DRAFT

64 CHAPTER 4. CONNECTIVITY

(n − 1)-connected. By Corollary 4.4.9 N (P0(c), . . . ,Pn(c)) is just the n-
simplex ∆n, which is (n − 1)-connected. It follows that P(c) is (n − 1)-
connected, contradicting the assumption that c is a critical state for (n−1)-
connectivity.

Theorem 4.4.11. There is no protocol for n-set agreement in wait-free read-
write memory.

Proof. We have shown that for every protocol complex P(·), and every in-
put simplex σ, P(σ) is (dim σ − 1)-connected. The claim follows from The-
orem 4.3.5, setting k = n.

4.5 Chapter Notes

Michael Fischer, Nancy Lynch, and Michael Paterson [11] were the first to
prove that consensus is impossible in a message-passing system where a sin-
gle thread can halt. They introduced the critical state style of impossibility
argument. M. Loui and H. Abu-Amara [22] and Herlihy [?] extended this
result to shared memory. Biran, Moran, and Zaks [5] were the first to draw
the connection between path-connectivity and consensus.

Chaudhuri [8] was the first to study the k-set agreement task. The
connection between connectivity and k-set agreement appears in Chaudhuri,
Herlihy, Lynch and Tuttle [9], Saks and Zaharoglou [26], Borowsky and
Gafni [6], and Herlihy and Shavit [18].

4.6 Exercises

Exercise 4.1. Prove Lemma 4.2.4.

Exercise 4.2. Defend or refute the claim that “without loss of generality”, it
is enough to prove that k-set agreement is impossible when inputs are taken
only from a set of size k + 1.

Exercise 4.3. Use the Nerve lemma to prove that if A and B are n-connected,
and A ∩ B is (n − 1)-connected, then A ∪ B is n-connected.

Exercise 4.4. Let σ be an n-simplex. Recall that Sperner’s Lemma states
that any map φ : Div σ → σ that sends each vertex to a vertex in its carrier
must send an odd number of n-simplices onto σ. The proof of Lemma 4.3.4
uses Sperner’s Lemma to show that any simplicial γ : Div Baryk σ → σ

that sends each vertex to a vertex in its carrier must send some n-simplex

DRAFT

4.6. EXERCISES 65

onto σ. Explain why the proof of Theorem 4.3.4 does not imply that γ

sends an odd number of n-simplices onto σ.

Exercise 4.5. Extend the proof of Theorem 4.2.5 to a model in which pro-
cesses share multi-writer variables. Hint: the case analysis must consider
two pending writes to the same variable.

DRAFT

Bibliography

[1] Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt,
and Nir Shavit. Atomic snapshots of shared memory. Journal of the
ACM, 40(4):873–890, 1993.

[2] Hagit Attiya, Amotz Bar-Noy, Danny Dolev, David Peleg, and Rudiger
Reischuk. Renaming in an Asynchronous Environment. Journal of the
ACM, July 1990.

[3] Hagit Attiya, Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer.
Bounds on the time to reach agreement in the presence of timing un-
certainty. J. ACM, 41:122–152, January 1994.

[4] Hagit Attiya and Jennifer Welch. Distributed Computing Fundamentals,
Simulations, and Advanced Topics Second Edition.

[5] Ofer Biran, Shlomo Moran, and Shmuel Zaks. A combinatorial char-
acterization of the distributed tasks which are solvable in the presence
of one faulty processor. In PODC ’88: Proceedings of the seventh an-
nual ACM Symposium on Principles of distributed computing, pages
263–275, New York, NY, USA, 1988. ACM.

[6] Elizabeth Borowsky and Eli Gafni. Generalized FLP impossibility re-
sult for t-resilient asynchronous computations. In STOC ’93: Pro-
ceedings of the twenty-fifth annual ACM symposium on Theory of com-
puting, pages 91–100, New York, NY, USA, 1993. ACM.

[7] Elizabeth Borowsky and Eli Gafni. A Simple Algorithmically Reasoned
Characterization of Wait-Free Computations (Extended Abstract). In
PODC ’97: Proceedings of the sixteenth annual ACM symposium on
Principles of distributed computing, pages 189–198, New York, NY,
USA, 1997. ACM.

141

DRAFT

142 BIBLIOGRAPHY

[8] S. Chaudhuri. Agreement Is Harder Than Consensus: Set Consensus
Problems in totally asynchronous systems. In Proceedings Of The Ninth
Annual ACM Symosium On Principles of Distributed Computing, pages
311–234, August 1990.

[9] Soma Chaudhuri, Maurice Herlihy, Nancy A. Lynch, and Mark R. Tut-
tle. A Tight Lower Bound for k-Set Agreement. In In Proceedings of
the 34th IEEE Symposium on Foundations of Computer Science, pages
206–215, 1993.

[10] Carole Delporte-Gallet, Hugues Fauconnier, Rachid Guerraoui, and An-
dreas Tielmann. The Disagreement Power of an Adversary. In Idit
Keidar, editor, Distributed Computing, volume 5805 of Lecture Notes
in Computer Science, chapter 6, pages 8–21. Springer Berlin / Heidel-
berg, Berlin, Heidelberg, 2009.

[11] M. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility Of Distri-
buted Commit With One Faulty Process. Journal of the ACM, 32(2),
April 1985.

[12] Eli Gafni and Elias Koutsoupias. Three-Processor Tasks Are Undecid-
able. SIAM J. Comput., 28(3):970–983, 1999.

[13] Eli Gafni, Sergio Rajsbaum, and Maurice Herlihy. Subconsensus Tasks:
Renaming Is Weaker Than Set Agreement. In Distributed Computing,
20th International Symposium, Stockholm, Sweden, September 18-20,
2006, Proceedings(DISC), volume 4167 of Lecture Notes in Computer
Science, pages 329–338. Springer, 2006.

[14] Maurice Herlihy and Sergio Rajsbaum. The decidability of distributed
decision tasks (extended abstract). In STOC ’97: Proceedings of the
twenty-ninth annual ACM symposium on Theory of computing, pages
589–598, New York, NY, USA, 1997. ACM.

[15] Maurice Herlihy and Sergio Rajsbaum. The topology of shared-memory
adversaries. In Proceeding of the 29th ACM SIGACT-SIGOPS sympo-
sium on Principles of distributed computing, PODC ’10, pages 105–113,
New York, NY, USA, 2010. ACM.

[16] Maurice Herlihy, Sergio Rajsbaum, and Mark Tuttle. An Axiomatic
Approach to Computing the Connectivity of Synchronous and Asyn-
chronous Systems. Electron. Notes Theor. Comput. Sci., 230:79–102,
2009.

DRAFT

BIBLIOGRAPHY 143

[17] Maurice Herlihy, Sergio Rajsbaum, and Mark R. Tuttle. Unifying syn-
chronous and asynchronous message-passing models. In PODC ’98:
Proceedings of the seventeenth annual ACM symposium on Principles
of distributed computing, pages 133–142, New York, NY, USA, 1998.
ACM.

[18] Maurice Herlihy and Nir Shavit. The topological structure of asyn-
chronous computability. J. ACM, 46(6):858–923, 1999.

[19] Flavio Junqueira and Keith Marzullo. A framework for the design of
dependent-failure algorithms: Research Articles. Concurr. Comput. :
Pract. Exper., 19(17):2255–2269, 2007.

[20] Flavio P. Junqueira and Keith Marzullo. Designing Algorithms for
Dependent Process Failures. Technical report, 2003.

[21] Dimitry Kozlov. Combinatorial Algebraic Topology, volume 21 of Algo-
rithms and Computation in Mathematics. Springer, 1 edition, October
2007.

[22] M. C. Loui and H. H. Abu-Amara. Memory requirements for agreement
among unreliable asynchronous processes, volume 4, pages 163–183. JAI
press, 1987.

[23] Yoram Moses and Sergio Rajsbaum. A Layered Analysis of Consensus.
SIAM J. Comput., 31:989–1021, April 2002.

[24] James Munkres. Elements of Algebraic Topology. Prentice Hall, 2 edi-
tion, January 1984.

[25] Michael Saks and Fotios Zaharoglou. Wait-Free k-Set Agreement is
Impossible: The Topology of Public Knowledge. SIAM Journal on
Computing, 29(5):1449–1483, 2000.

[26] Michael Saks and Fotios Zaharoglou. Wait-Free k-Set Agreement is
Impossible: The Topology of Public Knowledge. SIAM J. Comput.,
29(5):1449–1483, 2000.

[27] Francis Sergeraert. The Computability Problem In Algebraic Topology.
Adv. Math, 104:1–29, 1994.

[28] Edwin H. Spanier. Algebraic topology. Springer-Verlag, New York, 1981.

[29] John Stillwell. Classical Topology and Combinatorial Group Theory.
Springer, 2nd edition, March 1993.

DRAFT

	Connectivity
	Consensus and Path-Connectivity
	Consensus in Asynchronous Read-Write Memory
	Set Agreement and Connectivity in Higher Dimensions
	Set Agreement and Read-Write memory
	Critical States

	Chapter Notes
	Exercises

