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Abstract. Let n be an integer ≥ 2 and let X1, . . . , Xn be de-
numerable sets, not necessarily disjoint, each Xi being endowed
with a probability µi given by its discrete density pi. Let Y =
X1 × · · · ×Xn, endowed with the product probability µY , and let
Y∗ be the subset of Y consisting of n-tuples of pairwise distinct ele-
ments. In the special case where all Xi equal the same set X, with
discrete density p, it is well-known to combinatorists that µY (Y∗)
can be expressed as a certain polynomial in the Newton sums Sk =∑

x∈X p(x)k, for k = 2, . . . , n, and this formula also belongs to the
folklore of statistical mechanics, in particular to the combinatorics
of cluster expansions, although it seems hard to find in the litera-
ture in probability theory. In our slightly more general setting, we
give a simple proof of a similar formula, which expresses µY (Y∗)
as a certain polynomial in the sums SI =

∑
x∈

⋂
i∈I Xi

∏
i∈I pi(x),

for I varying in the set of subsets of {1, . . . , n} of cardinality ≥ 2.
This gives a simple, probabilistic proof of the special case which
is worthwile, we believe, to be better known. In the course of
our proof, we obtain that the sum of the terms (−1)kck(n), where
ck(n) denotes the number of connected graphs with n vertices and
k edges, equals (−1)n−1(n− 1)!. We also include a purely combi-
natorial proof of this identity, communicated to us by Jean-Yves
Thibon.

Introduction

During an exercise session for a second year undergraduate course
of probability theory, the author was set to explain that if (X,µ) is a
denumerable probability space and n an integer ≥ 2, then the experi-
ment consisting of drawing n elements of X with replacement leads to
the product space Xn, whereas the drawings without replacement lead
to the subset Xn

∗ consisting of n-tuples of pairwise distinct elements.
But he stopped in the middle of it, realising that Xn

∗ is usually consid-
ered only in the case where X is a finite set endowed with the uniform
probability, in which case Xn

∗ is the set of arrangements of n elements
of X, endowed with the uniform probability. However it is natural to
consider the general case, endowing Xn

∗ with the probability induced
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from the product probability µXn on Xn, which leads one to compute
the value of µXn(Xn

∗ ).
As, according to the probabilists consulted by the author, this value

was not well-known, this led us to write a first version of this Note,
requiring no prerequisites beyond a first course in discrete probabili-
ties. A first board of editors kindly replied that the observation and its
proof belong to the folklore of statistical mechanics, in particular to the
combinatorics of cluster expansions, although they are hard to find in
the literature in such a simple form. A second referee, for another gen-
eralist journal, kindly replied that the computation is nice but belongs
better to a textbook in basic probability and combinatorics. A third
referee, for a journal in probability theory, rejected the original Note
without adressing the novelty or not of the formula, but commenting
on its lack of applications. Finally, Jean-Yves Thibon, acting as an
editor of Séminaire Lotharingien de Combinatoire, kindly replied that
the formula was well-known to combinatorists as formula (7.23) in [2]
(as well as [1], formula (2.14′) p. 25).

This suggested that a short, pedagogical Note could be useful to
make a bridge between the probabilistic and combinatorial viewpoints,
and this is the aim of the present, expanded Note, where we consider
the slightly more general setting of n denumerable probability spaces
(Xi, µi).

Besides, we obtain in the course of our proof that the sum of the
terms (−1)kck(n), where ck(n) denotes the number of connected graphs
with n vertices and k edges, equals (−1)n−1(n− 1)!. A self-contained,
purely combinatorial proof of this was communicated to us by Jean-
Yves Thibon and appears in Section 2. We thank him heartily.

1. Probabilistic viewpoint

1.1. The partial diagonals in the product Y = X1 × · · · × Xn.
Let n be an integer ≥ 2 and let X1, . . . , Xn be denumerable sets, not
necessarily disjoint, each Xi being endowed with a probability µi de-
fined by its discrete density pi(x) = µi({x}) for all x ∈ Xi. We endow
Y = X1 × · · · ×Xn with the product probability, denoted by µY .

Let A = P2([n]) denote the set of 2-element subsets of [n] =
{1, . . . , n}, considered as the set of edges of the complete graph with n
vertices Gn. For each a ∈ A consider the partial diagonal

Ya = {(x1, . . . , xn) ∈ Y | xi = xj if i, j ∈ a}.

Definition 1. For each subset I of [n] of cardinality ≥ 2, set XI =⋂
i∈I Xi and SI =

∑
x∈XI

∏
i∈I pi(x). We also set set SI = 1 if |I| = 1.

Then µY (Ya) = Sa for all a ∈ A .

Denote by Y∗ the complement of the union of the Ya’s.
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1.2. Connected graphs. For each non-empty subset A of A , set
YA =

⋂
a∈A Ya. Set also Y∅ = Y . By the inclusion-exclusion formula,

one has

(1) µY (Y∗) =
∑

A∈P(A )

(−1)|A| µY (YA).

For each subgraph Γ of Gn, denote by conn(Γ) the set of connected
components of Γ. Then, denoting by ΓA the subgraph of Gn with set
of edges A and recalling Definition 1, one has:

µY (YA) =
∏

C∈conn(ΓA)

SC .

Next, denoting by α(C) the number of edges of each element C of
conn(ΓA), the sum of the α(C)’s equals |A| and hence (1) can be rewrit-
ten as:

(2) µY (Y∗) =
∑

A∈P(A )

∏
C∈conn(ΓA)

(−1)α(C)SC .

Each A ∈P(A ) gives a partition of the set [n] into the set of con-
nected components of ΓA, and conversely each partition (C1, . . . , Cr)
of [n] comes from all the A ∈ P(A ) which are union of subsets
Ai ∈ P2(Ci) such that (Ci, Ai) is a connected graph. Denote by
Part([n]) the set of partitions of the set [n]. Then (2) can be rewritten:

(3) µY (Y∗) =
∑

(C1,...,Cr)
∈Part([n])

r∏
i=1

σ(|Ci|)SCi ,

where for each m ∈ N∗ one denotes by σ(m) the sum of the (−1)α(Γ)’s,
for Γ running through all connected graphs on the set of vertices [m] =
{1, . . . ,m}. Thus, denoting by ck(m) the number of connected graphs
with set of vertices [m] and k edges, one has

(?) σ(m) =

m(m−1)/2∑
k=m−1

(−1)kck(m).

1.3. A special case and the value of σ(n). Let us consider here the
case where all Xi contain a common subset X, the Xi−X are pairwise
disjoint, and pi(x) does not depend on i for x ∈ X. In this case, for
each k ∈ N∗, set

Sk =
∑
x∈X

p1(x)k.

Then, for each subset I of [n] with |I| ≥ 2, one has XI = X and
SI = S|I|.



4 PATRICK POLO

Further, for each partition λ = 1d12d2 · · ·ndn of the integer n (that
is, dk is the number of parts equal to k), the number of partitions of
the set [n] of type λ is

1

d1! · · · dn!

n!∏n
k=1(k!)dk

and (3) can be rewritten as:

(4) µY (Y∗) =
∑

d1+2d2+···+ndn=n

1

d1! · · · dn!

n!∏n
k=1(k!)dk

n∏
k=1

(σ(k)Sk)
dk .

Next, one has the following:

Lemma 1. One has σ(n) = (−1)n−1(n− 1)!.

Proof. We derive this from our previous discussion.1 Fix an arbitrary
integer N ≥ 2 and consider the special case where all Xi are equal
to a set X of cardinality N endowed with the uniform probability;
then Y = Xn and Sk = 1/Nk−1 for each k ∈ N∗. Further, each term∏n

k=1 S
dk
k in (4) is a monomial in 1/N of degree n−(d1+· · ·+dn) ≤ n−1,

with equality only in the case where dn = 1. Therefore, µY (Y∗) is a
polynomial in 1/N whose leading term is σ(n).

On the other hand, the product probability µY on Y = Xn is the
uniform probability and therefore the probability of the subset Y∗ of
n-tuples of distinct elements is:

µY (Y∗) =
|Y∗|
Nn

=
n−1∏
k=1

(
1− k

N

)
and hence the leading term σ(n) equals (−1)n−1(n− 1)!. �

1.4. The probability µY (Y∗). Let us come back to the general case.
Thanks to Lemma 1, one deduces from (3) and (4) the following propo-
sition.

Proposition 1. One has

(5) µY (Y∗) =
∑

(C1,...,Cr)
∈Part([n])

(−1)n−r
r∏
i=1

(|Ci| − 1)!SCi .

Further, if X1, . . . , Xn all contain a common subset X, the Xi−X are
pairwise disjoint, and pi(x) does not depend on i for x ∈ X, then

(6) µY (Y∗) =
∑

d1+2d2+···+ndn=n

n!

d1! · · · dn!

n∏
k=1

(
(−1)k−1Sk

k

)dk
.

1A direct proof, using the exponential formula for generating series, was pointed
out by Jean-Yves Thibon and is given in Section 2.
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Remark 1. Denote by Qn the right hand side of (5); it is a polynomial
with integral coefficients in the indeterminates SI , for I a subset of
[n] of cardinality ≥ 2. For example, one has has Q2 = 1 − S12 and
Q3 = 1 − S12 − S23 − S13 + 2S123, then Q4 = 1 −

∑
1≤i<j≤4 Sij +

2
∑

1≤i<j<k≤4 Sijk − 6S1234, and

Q5 = 1−
∑

1≤i<j≤5

Sij +
∑

1≤i<j<k≤5

2Sijk −
∑

1≤i<j<k<`≤5

6Sijk` + 24S5

+
∑

1≤i<j<k<`≤5

(SijSk` + SikSj` + Si`Sjk)−
∑

1≤i<j≤5

2SijSabc

where in the last sum one has [5]− {i, j} = {a, b, c}.

Remark 2. For each partition λ = 1d12d2 · · ·ndn of n, with r =∑n
k=1 dk parts, set zλ =

∏n
k=1 k

dkdk! and ελ = (−1)n−r, and also

Pλ =
∏n

k=1 S
dk
k (recalling that S1 = 1). Then formula (6) can be

rewritten as

(6′) µY (Y∗) = n!
∑

λ∈Part(n)

ελ
zλ
Pλ.

When all Xi are equal to the same set X, so that Y = Xn, this for-
mula is well-known to combinatorists (see [1], formula (14′) p. 25 or [2],
formula (7.23); see also Section 2 for more details) and also belongs to
the folklore of statistical mechanics.

2. Combinatorial viewpoint

2.1. A direct proof of Lemma 1. We thank heartily Jean-Yves Thi-
bon for communicating to us the following self-contained, purely combi-
natorial proof of Lemma 1, which is an application of the �exponential
formula� in generatingfunctionology, see [2], Cor. 5.1.6 and Example
5.2.1.

We keep the previous notation and, for each r ∈ N∗, denote by
CG([r]) the set of connected graphs with set of vertices [r]. Consider
the exponential generating series

F (x) =
∑
r≥1

σ(r)
xr

r!
=
∑
r≥1

∑
Γ∈CG([r])

(−1)α(Γ)x
r

r!
.

For each integer m ≥ 2,
F (x)m

m!
equals

∑
n≥m

xn

n!

 1

m!

∑
r1,...,rm≥1
r1+···+rm=n

n!

r1! · · · rm!

∑
Γ1∈CG([r1])

···
Γm∈CG([rm])

(−1)α(Γ1)+···+α(Γm)

 .
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One sees that the expression between parentheses equals the sum of the
(−1)α(Γ) taken over all subgraphs Γ of Gn with exactly m connected
components. It follows that

expF (x) = 1 + x+
∑
n≥2

( ∑
Γ⊂Gn

(−1)α(Γ)
)xn
n!
.

For each n ≥ 2, the previous sum equals
∑N

k=0(−1)k
(
N
k

)
= 0, where

N =
(
n
2

)
. Thus expF (x) = 1 + x and hence F (x) = log(1 + x) =∑

n≥1(−1)n−1x

n
and therefore σ(n) = (−1)n−1(n− 1)! for all n ≥ 1. �

2.2. Symmetric functions. Let Λ =
⊕

n∈N Λn be the graded ring of
symmetric functions in countably many independent variables x1, x2, . . .
(see [1], §I.2 or [2], §7.1). For each k ∈ N∗, consider the elementary
symmetric function

ek =
∑

i1<i2<···<ik

xi1 · · ·xik

(with e0 = 1) and the power sum Pk =
∑

i∈N∗ xki . (It is usually denoted
by pk, but we use here uppercase Pk since we are using lowercase p’s to
denote probabilities.) More generally, for each partition λ with r parts
λ1 ≥ · · · ≥ λr ≥ 1, consider the power sum

Pλ = Pλ1 · · ·Pλr ;
it belongs to Λn, where n = |λ| = λ1+· · ·+λr. Then, using the notation
zλ and ελ of Remark 2 of Section 1, recall the following identity (see
[2], (7.23) or [1], (14′), p. 25).

Proposition 2. For each n ∈ N∗, one has

(9) en =
∑

λ∈Part(n)

ελ
zλ
Pλ.

Proof. For the convenience of the reader, we give the following proof,
taken from [1], pp. 23–25. Let t be another indeterminate and consider
the generating series

(7) E(t) =
∑
r≥0

ert
r =

∏
i≥1

(1 + txi)

and

P (t) =
∑
r≥1

Pr(−t)r−1 =
∑
i≥1

∑
r≥1

xri (−t)r−1 =
∑
i≥1

xi
1 + txi

=
d

dt
logE(t).

Since logE(t) is a power series in Λ[[t]] with constant term 0, one
obtains by formal primitivation that

logE(t) =
∑
r≥1

Pr(−1)r−1 t
r

r
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and hence

(8) E(t) =
∏
r≥1

exp
(
Pr(−1)r−1 t

r

r

)
=
∏
r≥1

∑
dr≥0

((−1)r−1Pr
r

)dr trdr
dr!

.

The proposition follows, by comparing the coefficients of tn in (7) and
(8) for each n ∈ N∗. �

2.3. Relating Propositions 1 and 2. Proposition 2 implies formula
(6), or equivalently (6′), in the special case where X1, . . . , Xn all equal
the same probability space X, with discrete density p. Indeed, choosing
a numbering {z1, z2, . . . } of X and denoting by xi the probability p(zi),
one obtains that for each n-tuple of positive integers i1 < · · · < in and
each permutation σ ∈ Sn, one has

µXn(ziσ(1) , . . . , ziσ(n)) = xi1 · · ·xin
and hence µXn(Xn

∗ ) = n! en. This observation was pointed out to me
first by Thierry Levy, then again by Jean-Yves Thibon. I thank them
both for their comments.

Conversely our formula (6) implies Proposition 2. Indeed, Λn is the
inverse limit, as r →∞, of the degree n part of the ring of symmetric
functions in the finitely many variables x1, . . . , xr (see [1], pp. 18–19).
But, for fixed r ∈ N∗, both sides of (9) are homogeneous polynomials
of degree n in the variables x1, . . . , xr, and the special case of formula
(6) where X1, . . . , Xn are all equal to an arbitrary probability space
X of cardinality r tells that these two polynomials agree on the set
{(x1, . . . , xr) ∈ Rr

+ | x1 + · · · + xr = 1} hence, by homogeneity, on the
set {(x1, . . . , xr) ∈ Rr

+ | x1 + · · ·+ xr > 0}, hence they are equal.
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