
LECTURE 9

MT-groups over a complete noetherian ring

19. Projective limits of homomorphisms: the algebrisation theorem

Definition 19.1. Let I be an ideal in a ring A. One says that A is separated and complete
for the I-adic topology if the natural ring homomorphism A → lim←−

n

A/In is bijective. In other

words,
⋂
n∈N I

n = {0} and every sequence (an)n∈N of elements of A such that an+1 − an ∈ In+1

converges to an element a of A (equivalently, every series
∑

n≥0 bn with bn ∈ In converges to an
element b of A).

Theorem 19.2. Let A be a noetherian ring, with an ideal I such that A is separated and
complete for the I-adic topology. Set S = Spec(A) and Sn = Spec(A/In+1) for n ≥ 0.

Let G be an affine S-group scheme and H an isotrivial MT-group over S. For each n, we
denote by Gn, Hn their pullbacks to Sn.

(1) The canonical map θ : HomS-gr.(H,G) −→ lim←−
n

HomSn-gr.(Hn, Gn) is bijective.

(2) Suppose further that G is flat over S at each point of G0 and G0 is an isotrivial MT-group
over S0. Then the map HomS-gr.(H,G) −→ HomS0-gr.(H0, G0) is bijective.

Proof. (1) Suppose first the result proved when H is diagonalisable. In the general case,
there exists by hypothesis a surjective finite étale morphism A → A′ such that the pull-back
H ′ of H to S ′ = SpecA′ is diagonalisable. Then so are H ′′ and H ′n, H

′′
n, with obvious notation.

Moreover, since A′ and A′′ are finite over A, they are separated and complete for the topology
defined by the ideals IA′ and IA′′. Thus, assuming the result proved in the diagonalisable case,
the second and third vertical maps in the commutative diagram below are bijective:

HomS-gr(H,G)

u

��

// HomS′-gr(H
′, G′)

u′

��

//
// HomS′′-gr(H

′′, G′′)

u′′

��
lim←−
n

HomSn-gr(Hn, Gn) // lim←−
n

HomS′n-gr(H
′
n, G

′
n)

//
// lim←−
n

HomS′′n-gr(H
′′
n, G

′′
n).

Further, A → A′ is a morphism of descent (being faithfully flat and quasi-compact) hence the
first row is exact, as well as the analogous row for a given n. Since projective limits are left
exact, the bottom row is also exact. It follows that the first vertical map is bijective.

Thus, it suffices to prove the theorem when H is diagonalisable, say H = D(M)S. Set
B = A[M ] and let C be the A-Hopf algebra of the affine group scheme G. Denote by ∆B and
∆C their comultiplication maps. Denoting by (em)m∈M the canonical basis of A[M ], recall that
∆B(em) = em ⊗ em.

For n ∈ N, set An = A/In+1 and let Bn and Cn be obtained by base change. Note that
Bn = An[M ]. The morphisms of S-group schemes H → G, resp. Hn → Gn, correspond to the

morphisms of A-Hopf algebras ϕ : C → B, resp. ϕn : Cn → Bn. Set B̂ = lim←−
n

Bn and Ĉ = lim←−
n

Cn

and let τB : B → B̂ and τC : C → Ĉ be the canonical maps.

0version of Sept. 2, 2023, after the lecture.
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50 9. MT-GROUPS OVER A COMPLETE NOETHERIAN RING

Note first that one has InB =
⊕

m I
nem for each n, hence

⋂
n∈N I

nB = {0}. That is, τB is
injective.1 Since B ⊗A B = A[M ×M ], the same argument shows that τB⊗AB is injective too.
The injectivity of τB immediately gives that the map θ is injective. Indeed, for any morphism of
Hopf algebras ϕ : C → B, the projective system θ(ϕ) = (ϕn)n≥0 of morphisms of Hopf algebras

induces a morphism of algebras ϕ̂ : Ĉ → B̂ such that the diagram

C
ϕ //

τC
��

B

τB
��

Ĉ
ϕ̂ // B̂

is commutative. Since τB is injective, this shows that the map θ : ϕ 7→ (ϕn)n≥0 is injective.

Let us prove that θ is surjective. Let (ϕn)n≥0 be a projective system of Hopf algebra mor-

phisms Cn → Bn. It induces a morphism of algebras ϕ̂ : Ĉ → B̂.
What we want is a morphism of Hopf algebras C → B, but a difficulty is that taking the

projective limit of the comultiplication maps

∆Bn : Bn = An[M ]→ Bn ⊗Bn = An[M ×M ]

gives a map ∆̂B : B̂ → B̂ ⊗B. As noted in footnote (1) the latter algebra is the A-submodule
of the product AM×M consisting of families (am,m′) which tend to zero. Further, the projective

system of morphisms B̂ ⊗ B̂ → Bn ⊗ Bn gives a morphism of algebras η : B̂ ⊗ B̂ → B̂ ⊗B
but this morphism is not surjective in general. However, we have the following commutative
diagram:

Cn
ϕn //

∆Cn

��

Bn

∆Bn

��

C

gg

τC //

∆C

��

Ψ

**

Ĉ
ϕ̂ // B̂

∆̂B

��

77

C ⊗ C

ww

τC⊗τC // Ĉ ⊗ Ĉ ϕ̂⊗ϕ̂ // B̂ ⊗ B̂ η
// B̂ ⊗B

''
Cn ⊗ Cn

ϕn⊗ϕn // Bn ⊗Bn

Set Φ = ϕ̂ ◦ τC and let Ψ be the composed map indicated in the diagram:

C
∆C // C ⊗ C Φ⊗Φ // B̂ ⊗ B̂ η // B̂ ⊗B.

For each f ∈ C, Φ(f) is a family (am) of B̂ whose image by ∆̂B is a family (am,m′) of B̂ ⊗B
which satisfies the hypotheses of Lemma 19.3 below. Hence the support of the families (am) and
(am,m′) are finite. Therefore Φ(C) ⊂ B and Ψ(C) ⊂ B ⊗ B (recall that τB⊗B is injective) and
we obtain the commutative diagram below:

C
Φ //

∆C

��

B

∆B

��
C ⊗A C

Φ⊗Φ // B ⊗B.

1 Moreover B̂ identifies with the A-submodule of the product AM consisting of families (am)m∈M which tend
to zero in the sense such that for each n ∈ N, all but a finite number of the am belong to In.
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This proves that Φ is a morphism of Hopf algebras C → B, which reduces modulo In+1 to the
given ϕn. This completes the proof of assertion (1).

(2) By assertion (1), the map HomS-gr.(H,G) −→ lim←−n HomSn-gr.(Hn, Gn) is bijective. Fur-

ther, by Th. 18.3, each Gn is an isotrivial MT-group over Sn and hence, by assertion (1) of
Prop. 18.1, each map HomSn-gr.(Hn, Gn)→ HomS0-gr.(H0, G0) is bijective. This proves assertion
(2). �

Lemma 19.3. Let A be a noetherian ring, M a set, (am,m′) a family of elements of A indexed
by M ×M such that:

(1) am,m′ = 0 if m 6= m′ (i.e. the support of the family is contained in the diagonal of M×M).

(2)There exist a finite number of elements bi, ci ∈ AM such that am,m′ =
∑

i b
i
mc

i
m′ for every

m,m′. (This means that the element (am,m′) of AM×M is the image of the element
∑

i b
i ⊗ ci

under the canonical morphism AM ⊗A AM → AM×M).

Then the support of the family (am,m′) is finite.

Proof. By (1), the family (am,m′) is determined by the am = am,m. Define a homomorphism
u : A(M) → AM as follows: for every x = (xm)m∈M ∈ A(M),

u(x)m′ =
∑
m

am′,m xm.

Denote by (em) the canonical basis of A(M). By (1), one has simply u(em) = amem. On the
other hand, by (2) one has

u(em)m′ =
∑
i

cimb
i
m′

hence the u(em) = amem are contained in the finitely generated A-module
∑

iAb
i. Since A is

noetherian, they generate a finitely generated A-module. Since the em are linearly independent,
it follows that am = 0 for all but a finite number of m. �

Corollary 19.4. Let A, I, S, S0 and H be as in Th. 19.2, suppose that G is a smooth affine
S-group scheme and let u0 : H0 → G0 be a morphism of S0-group schemes. Then:

(1) There exists a morphism of S-group schemes u : H → G that lifts u0.

(2) If v is another such lifting, there exists g ∈ Ker
(
G(S)→ G(S0)

)
such that v = int(g)◦u.

Proof. (1) Using Theorem 17.1, one can lift u0 to a projective system of morphisms (un).
Then assertion (1) of theorem 19.2 gives a morphism u : H → G lifting u0.

(2) Let u, v be two liftings of u0. By Theorem 17.1, one obtains a projective system of
elements gn ∈ Ker

(
G(Sn) → G(S0)

)
such that vn = int(gn) ◦ un for all n. That is, we have

a projective system of morphisms of algebras gn : C → A/In+1. Since A is separated and
complete the sequence gn(c) converges, for each c ∈ C, to an element g(c). This gives an
element g ∈ Ker

(
G(S) → G(S0)

)
such that vn = (int(g) ◦ u)n for all n. Since the morphism θ

of Theorem 19.2 is injective, it follows that v = int(g) ◦ u. �

20. The density theorem

Recall that we have always assumed that MT-groups be of finite type, i.e. that the corre-
sponding abelian group M be finitely generated. As this is important in the next theorem, we
write this hypothesis explicitly.
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Remark 20.1. Let G be a commutative affine group scheme over S. For each n ≥ 1, let nG
be the kernel of the n-th power map rn. As we have a cartesian diagram

G
rn // G

nG //

OO

S

ε

OO

and the unit section ε : S → G is a closed immersion (G being affine hence separated over S),
one obtains that nG is a closed sugbgroup of G, hence is defined by a sheaf of ideals that we will
denote by In.

Theorem 20.2. Let G be a MT-group of finite type over S. For each n ≥ 1, let nG be the
kernel of the n-th power map and In the corresponding sheaf of ideals.

(1) Let Z be a closed subscheme of G containing all nG in the schematic sense, i.e. if J
is the sheaf of ideals of OG defining Z, the assumption is that J ⊂ In for all n. Then
Z = G, i.e. J = 0.

(2) Let H be a subgroup scheme of G such that each nG is a closed subscheme of H. Then
H = G.

Proof. 2 (1) Taking a covering of S by affine subsets, we may suppose that S = SpecA is
affine. Denote then by In the ideal of O(G) corresponding to nG. Let A→ A′ be a faithfully flat
morphism such that the pullback G′ of G to S ′ = Spec(A′) is isomorphic to D(M)S′ for some
finitely generated abelian group M . Since the formation of kernels commutes with base change,
we have nG

′ = (nG)×S S ′ and hence, with obvious notation, I ′n = In ⊗A A′.
We have to prove that any f ∈ O(G) belonging to all In is zero. Since the map O(G) →

O(G) ⊗A A′ = O(G′) is injective, it suffices to prove the corresponding result over S ′. Thus,
replacing S by S ′ we may assume that G = D(M)S, i.e. O(G) = A[M ].

One has M ' Zr ×Q for some finite abelian group Q of order q. Denote by B the Laurent
polynomial ring A[T±1

1 , . . . , T±1
r ], then A[M ] ' B[Q]. Let f =

∑
x∈Q bx x ∈ A[M ] and suppose

that f is zero in each quotient O(nG) = A[M/nM ]. Let m be the supremum of the absolute
values of the exponents of the Ti’s in the various bx. Let n be a multiple of q which is > 2m.
Then

A[M/nM ] '
(
A[T1, . . . , Tr]/(T

n
1 − 1, . . . , T nr − 1)

)
[Q]

and hence in A[M/nM ] the elements T d11 · · ·T drr bx, with −m ≤ di ≤ m and x ∈ Q are linearly
independent over A. It follows that every coefficient of f is zero, hence f = 0. This proves (1).

(2) When S is the spectrum of a field k, one knows that every subgroup scheme is closed,
hence (2) follows from (1) in that case. In the general case, let H be a subgroup scheme of
G containing all the nG. Being a subscheme means that H is a closed subscheme of an open
subscheme U of G.

Then, on each fiber one has Hs = Gs. Thus H has the same underlying space as G, hence
U = G and H is a closed subscheme of G, and we conclude by (1) that H = G. �

Remark 20.3. (1) Note that the assumptions and conclusions in the previous theorem are
schematic and not purely topological. Let us illustrate this in the case where S = Spec(k) for
an algebraically closed field of characteristic p > 0.

a) Let G = µp,S; then O(G) = k[T ]/(T p − 1) ' k[T ]/(T − 1)p. Here the reduced scheme
Gred = S has the same topological space as G, but is not equal to G.

2This neat proof is due to Joseph Oesterlé, see [Oes14], §8. In [SGA32], IX, Th. 4.7, Grothendieck proves
the stronger result that the family of subschemes (nG)n≥1 is schematically dense in G.
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b) On the other hand, let G = Gm,S ×S µp,S = D(M)S, where M = Z × Z/pZ. The
above proof shows that it suffices to consider the ni

G for a sequence of integers (ni)i∈N∗
divisible by the order of the torsion group of M such that limi→∞ ni = +∞. Here we can
take ni = pi; then the subgroup schemes piG ' µpi,S ×S µp,S have the same topological
space as S, but any subgroup scheme of G containing them must equal G.

(2) One could be tempted to call “schematic density” the notion considered in the theorem.
In fact, this terminology is used for a stronger property: one says that a family (Yi)i∈I of
subschemes of a scheme X is schematically dense if for every open subset U of X, every closed
subscheme Z of U which contains all Zi ∩ U must equal U . In [SGA32], Th. 4.5, Grothendieck
proves a stronger version of Th. 20.2: the family (nG)n∈N∗ is schematically dense in G.

Remark 20.4. The theorem does not hold for the (non-finitely generated) abelian group Q. Indeed, setting
G = D(Q)S , one has nG = {1} for all n ≥ 1.

21. Free actions of MT-groups on schemes affine over S

This section was meant to be given in Lecture 6, after the results on faithfully flat descent of Section 9 and

their applications in Section 10. In order to go quickly into deformation theory, we postponed it till now and

perhaps, due to lack of time, this material will not be covered in an actual lecture. In a later reorganisation of

this notes, this section will probably be moved to an earlier place.

Theorem 21.1. Let H be a MT-group scheme over S acting freely, say on the right, on a
scheme X affine over S. Then there exists a scheme Y affine over S, together with a faithfully
flat, H-invariant, morphism p : X → Y , which represents the quotient X/H.

In particular, p makes X into a HY -torsor over Y , where HY = H ×S Y .

Proof. See [SGA32], VIII Th. 5.1 together with IX, Prop. 2.3, or [Oes14], §10. �

Corollary 21.2. Let u : H → G be a monomorphism of S-group schemes, where is H is a
MT-group and G is affine over S. Then:

(1) u is a closed immersion.

(2) There exists a scheme Y affine over S, together with a faithfully flat morphism p : G→
Y , which represents the quotient G/H.

(3) Further, if H is a normal subgroup of G then Y has a structure of S-group scheme such
that p is a morphism of group schemes.

Proof. Assertions (1,2) are in Exp. IX, Cor 2.5, whereas assertion (3) follows from Exp. IV,
Prop. 5.2.3. �

Notes for this Lecture

Lemma 19.3 is Lemma 7.2 of Exp. IX.
Assertion (1) of Th. 19.2 is Th. 7.1 of Exp. IX, while assertion (2) is Lemma 3.1 of Exp. X.
The proof of Th. 20.2 is that given by Oesterlé in [Oes14], §8. In [SGA32], IX, Th. 4.7, a stronger result is

proved (with a much longer proof).
The references for the results of Section 21 are given in the text.


